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Artificial barriers cause widespread impacts on freshwater fish. Swimming performance is often used as the key metric
in assessing fishes’ responses to river barriers. However, barrier mitigation is generally based on the swimming ability of
salmonids and other strong swimmers because knowledge of swimming ability for most other freshwater fish is poor. Also,
fish pass designs tend to adopt a ‘one size fits all’ approach because little is known about population or individual variability
in swimming performance. Here, we assessed interspecific and intraspecific differences in the sustained swimming speed
(Usus) of five freshwater fish with contrasting body sizes, morphologies and swimming modes: topmouth gudgeon, European
minnow, stone loach, bullhead and brown trout. Significant Usus variation was identified at three organizational levels: species,
populations and individual. Interspecific differences in Usus were as large as 64 cm s−1, upstream populations of brown
trout showed mean Usus 27 cm s−1 higher than downstream populations, and species exhibited high individual variation
(e.g. cv = 62% in European minnow). Sustained swimming speed (Usus) increased significantly with body size in topmouth
gudgeon, European minnow and brown trout, but not in the two benthic species, bullhead and stone loach. Aerobic scope
had a significant positive effect on Usus in European minnow, stone loach and brown trout. Sustained swimming speed (Usus)
decreased with relative pectoral fin length in European minnow and brown trout, whereas body fineness was the best predictor
in stone loach and bullhead. Hence, swimming performance correlated with a diverse range of traits that are rarely considered
when predicting fish passage. Our study highlights the dangers of using species’ average swimming speeds and illustrates
why a ‘one size fits all’ approach often fails to mitigate for barrier effects. We call for an evidence-based approach to barrier
mitigation, one that recognizes natural variability at multiple hierarchical levels.
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Introduction

Artificial barriers such as dams, weirs and culverts are
ubiquitous in rivers worldwide (Lehner et al., 2011;
Januchowski-Hartley et al., 2013; Grill et al., 2019; Belletti
et al., 2020) and cause numerous impacts on freshwater
fish populations, including habitat fragmentation (Morita
and Yamamoto, 2002; Santucci Jr et al., 2005), disrupted
migrations (Lucas and Baras, 2008) and reduced connectivity
(Wofford et al., 2005), which can make populations more
vulnerable to other anthropogenic pressures (Fagan, 2002).
To mitigate barrier impacts on fish, natural resource managers
should identify those that are causing the most severe
impacts (Kemp and O’Hanley, 2010). Passage through
velocity barriers, such as culverts and sloping ramps, is highly
dependent on fish swimming speed (Haro et al., 2004; Peake,
2004; Castro-Santos, 2005; Castro-Santos, 2006; Weibel and
Peter, 2013). Swimming performance data are also critical
for the design of effective fish passes to provide passage over
vertical barriers such as dams and weirs (Katopodis, 1992;
Clay, 1995).

There has been historical bias in fish passage research,
which has tended to focus on large, commercially important
salmonids (Clay, 1995; Roscoe and Hinch, 2010). Crucially,
salmonids are the ‘elite athletes’ of river fish communities
(Webb, 1975), well known for their high swimming speeds
and jumping ability (Stuart, 1962), and hence represent an
exception, rather than a fair characterization of the wider
river fish community (Birnie-Gauvin et al., 2019). A lack of
swimming performance data for most non-salmonid species
is likely to be one of the underlying reasons why salmonids
appear to be three times more likely to pass the average fish
pass (Noonan et al., 2012). There has also been a tendency
to focus on diadromous species when considering barrier
effects, while river-resident taxa have largely been ignored
(Lucas and Batley, 1996). This is perhaps due to the mis-
conception that species that complete their lifecycles in rivers
are sedentary and their longitudinal movements are negligi-
ble (Gerking, 1959). However, it is increasingly recognized
that river-resident species regularly undertake long-distance
movements for spawning (e.g. Lucas and Batley, 1996) and
foraging (e.g. Schoby and Keeley, 2011) and these movements
are also important to maintain gene flow between popula-
tions (Wofford et al., 2005). Hence, river-resident fish are
also impacted by barriers, and knowledge of these species’
swimming abilities is crucial for predicting barrier effects, as
well as identifying effective mitigation options (Kemp and
O’Hanley, 2010).

Barriers (both natural and artificial) can affect colonization
by invasive species (e.g. Townsend and Crowl, 1991; Vitule
et al., 2012; Robinson et al., 2019), and in some cases,
selective barriers have been used as a management tool (Rahel
and McLaughlin, 2018). Consequently, there is often a trade-
off between preventing the spread of invasive species and
ensuring population connectivity of native species. Where
invasive species are present, effective barrier management

therefore requires detailed knowledge of the swimming ability
of invasive species, as well as native taxa.

Fish passage guidelines tend to prescribe maximum flow
velocities and barrier heights that should not be exceeded,
and these are deemed suitable for broad groups of fish. For
example, the UK Environment Agency fish pass guidelines
suggest maximum flow velocities of 1.4–2.0 m s−1, and dif-
ferential heads of 0.1–0.2 m, in a pool pass to ensure passage
of ‘coarse fish’ (any freshwater fish other than salmonids;
Armstrong et al., 2010). Such broad generalizations ignore
potential variability in swimming performance, both at inter-
and intraspecific levels (Taylor and McPhail, 1985; Tudorache
et al., 2008).

River fish communities consist of species with different
body shapes, physiological traits and swimming modes that
define their realized niches (Willis et al., 2005; Poff and Allan,
1995; Montaña et al., 2014; Pang et al., 2020). Additionally,
individuals of the same species can show substantial trait
variation at the population level due to adaptation to local
environmental conditions (e.g. Taylor and McPhail, 1985;
Pakkasmaa and Piironen, 2001; Webster et al., 2011). River-
ine habitats show predictable longitudinal changes (Vannote
et al., 1980), with headwater streams tending to be more
turbulent and fast flowing, while lower catchment reaches
tend to provide more slow-flowing habitat. These conditions
should select for higher swimming ability in upstream head-
water populations compared to downstream lowland popula-
tions. Even similar-sized individuals from the same population
can vary 2-fold in swimming speed (Ojanguren and Braña,
2003), as well as differing markedly in functionally relevant
morphological (Boily and Magnan, 2002) and physiological
traits (Metcalfe et al., 2016).

Here, we examined the extent of the interspecific and
intraspecific variation in swimming performance of five
species belonging to four contrasting families: two cyprinids
(topmouth gudgeon Pseudorasbora parva and European
minnow Phoxinus phoxinus), one nemacheilid loach (stone
loach Barbatula barbatula), one cottid (bullhead Cottus
gobio) and one salmonid (brown trout Salmo trutta). These
species were chosen because they occupy contrasting habitat
types (Maitland and Linsell, 2006), vary widely in body
size and shape, and differ in swimming mode. Moreover,
topmouth gudgeon, brown trout and European minnow have
established invasive populations outside their native ranges,
often with severe ecological impacts (Pinder et al., 2005;
Museth et al., 2007; Jones and Closs, 2018), and swimming
performance data for these species are important for invasive
species management (Rahel and McLaughlin, 2018).

Materials and methods
Study species
Between 26 and 36 individuals of each species were collected
by electric fishing (HT-2000 backpack machine, Halltech
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Aquatic Inc., Ontario, Canada) from populations in rivers
and lakes in Wales (Table S1) in summer 2017 when water
temperatures were between 15◦C and 18◦C. Topmouth gud-
geon, European minnow, stone loach and bullhead were each
collected from a single population, whereas brown trout
was collected from two distinct catchments, each sampled
from an upstream headwater and a downstream lowland
site, to assess population-level variability in swimming per-
formance. Brown trout was chosen for the population level
study because they occur in a wide range of fluvial habitat
types, ranging from small headwater streams to large slow-
flowing rivers. Upstream sites were high elevation, steeply
sloping, second-order streams characterized by turbulent fast
flow, while downstream sites were lower catchment, low
gradient, fifth-order rivers that offered more slow-flowing
habitat (Table S1).

Fish were housed in separate 200 l cylindrical tanks in a
2500 l recirculating aquaculture system (TMC System 5000P,
Tropical Marine Centre Ltd, Hertfordshire, UK). Individuals
were marked using unique combinations of visual implant
elastomer tags (Northwest Marine Technology, Anacortes,
USA) and left to acclimatize for at least two weeks before
swimming tests. Housing water temperature was maintained
at 15 ± 1◦C and photoperiod was set to 12 h:12 h light/dark
cycle. Fish were fed daily (9 am) to satiation on pellet food
(Atlantic Gold, Pacific Trading Aquaculture Ltd, Dublin,
Ireland), supplemented with live maggots and frozen blood-
worm.

Swimming performance and metabolism
Swimming performance and metabolic rate (MR) were
measured in one of four different sized swim tunnel
respirometers (Loligo Systems, Viborg, Denmark), three
Blaska-type tunnels and one Steffensen-type swim tunnel
(Table S2; Fig. S1). The use of different tunnels ensured
a suitable fish volume:water volume ratio for accurate
measurement of MR (Svendsen et al., 2016). We followed
best practice recommendations for allocating fish to different
tunnels according to body weight (www.loligosystems.com;
Table S2). Because fish size to tunnel size was kept as constant
as possible, we are confident that potential side wall effects
on swimming were kept to a minimum. Water velocities
for each tunnel were carefully calibrated either using a
purpose-built AC10000 flow meter (Loligo Systems, Viborg,
Denmark) or using a proven dye tracing technique (Poulsen
et al., 2012). Swimming speeds were also corrected for solid
blocking effects (the increase in water velocity surrounding
the fish caused by the fish body blocking a portion of the
tunnel) following standard methodologies (Bell and Terhune,
1970). Water temperature was maintained at 15 ± 0.1◦C
in ambient water tanks using a temperature control set
(Model AC10150; Loligo Systems, Viborg, Denmark).
Air stones in ambient tanks ensured dissolved oxygen
was always near saturation (>95%). Weekly cleaning of
equipment and UV treatment of water ensured that bacterial

respiration (measured at the end of each experiment) was
negligible.

Test fish were weighed (±0.1 g) and measured for total
body length (BL, mm) and maximum body girth (MBG,
mm; see Fig. S2), before being introduced individually into
the respirometers at 5 pm daily. AutoResp software (Loligo
Systems, Viborg, Denmark) was used to automate the flush
(180 s), wait (60 s) and measurement periods (420 s). Pre-
liminary trials indicated that this flushing rate was sufficient
to ensure dissolved oxygen never fell below 80%, and mea-
surement periods were long enough to ensure an R2 > 0.9 for
accurate measurement of O2 consumption (Genz et al., 2013).
Flow velocities were set to 1 cm s−1 to ensure adequate mixing
of test water, and fish were left to acclimatize overnight. Oxy-
gen partial pressure (kPa) in the test chambers was measured
using fibre optic sensors (OX11250; Loligo Systems, Den-
mark) and mass-specific oxygen consumption rates (MO2;
mgO2 kg−1 h−1) were calculated for each measurement phase
using AutoResp software. Mass-specific oxygen consumption
rates were used as a proxy for MR (Norin and Malte, 2011;
Svendsen et al., 2013). Standard MR (SMR) was recorded at
9 am the following morning, calculated as the mean of the
10 lowest MR values during the 16 h test period (Norin and
Malte, 2011).

Immediately after measurement of SMR, velocity was
incrementally increased to measure maximum MR (MMR)
and sustained swimming speed (Usus). Sustained swimming
speed (Usus) is a measure of the aerobic swimming ability
of fish (Brett, 1965), shows individual repeatability (Oufiero
and Garland Jr, 2009) and is one of the most widely used
metrics used in fish pass design (e.g. Clough et al., 2004;
Laborde et al., 2016). The upstream half of the swim tunnels
was covered to encourage a rheotactic response against the
current (Fig. S1). Test velocities started at 5 cm s−1 and
were increased in 5 cm s−1 increments every 9 min, while
measuring MO2 (180 s flush, 60 s wait, 300 s measure),
until fish stopped swimming effectively against the current.
For the species that predominantly swam higher in the water
column (topmouth gudgeon, European minnow and to a
lesser extent brown trout), Usus was defined as the point at
which fish switched from a steady to an unsteady locomotory
gait (Drucker, 1996). This point, known as ‘gait transition
speed’, is recognizable in a range of fish species and is a
reliable point at which to measure MMR and Usus (Peake,
2008). Gait transition was not appropriate to measure Usus in
bullhead and stone loach because preliminary trials indicated
that they did not show consistent active swimming but rather
tended to use their pectoral fins and occasional tail beats
to hold a benthic position at the upstream end of the swim
tunnels. For these two species, Usus was recorded at the point
at which fish failed to maintain position at the upstream end
of the chamber for over 10 s. Fish were observed constantly
during swimming trials to identify the endpoints described
above. MMR was estimated as the highest MO2 recorded
(over a full 300 s measurement period), and aerobic scope
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(AS) was calculated as MMR minus SMR (Metcalfe et al.,
2016).

Morphology
After testing in the respirometer, fish were euthanized via
an overdose of 2-phenoxyethanol (following Home Office
Schedule 1 procedures) and standardized photos (dorsal and
lateral views) were taken using an overhead camera (Pana-
sonic Lumix G2). Total BL, MBG, pectoral fin length (PL),
caudal fin height (CL) and caudal fin area (CA) were mea-
sured (±1 mm; Fig. S2) using ImageJ (Schneider et al., 2012).
Three metrics of body morphology were calculated due to
their relevance for swimming ability (Fig. S2). Aspect ratio
(AR) is a metric derived from the height and surface area of
the caudal fin, and individuals with higher AR generally show
higher swimming performance (Sambilay, 1990). Fineness
ratio (FR) is a measure of how streamlined fish are, and
more streamlined individuals tend to show higher swimming
performance (Baktoft et al., 2016). Pectoral fin length ratio
(PFLR) is a measure of pectoral fin length relative to BL,
and individuals with longer pectoral fins tend to show higher
swimming performance (Ojanguren and Braña, 2003).

Statistical analysis
Interspecific differences in Usus were tested by ‘ANCOVA’,
with Usus as the response variable, and ‘Species’ as the pre-
dictor, while statistically controlling for the effect of BL. Slope
comparisons were examined using the ‘emtrends’ function in
R package ‘emmeans’ (Lenth, 2019) to calculate Bonferroni
corrections for multiple pairwise comparisons. Intercept com-
parisons were carried out using the ‘emmeans’ function in
the same package. Interspecific differences in physiological
and morphological traits were evaluated by general linear
models with SMR, AS, MMR, BL, FR, PFLR and AR as the
response variables and ‘Species’ as the explanatory variable.
Trait values were log or square root transformed to stabilize
variances and normalize residuals, where necessary.

Interspecific differences in the relationship between MR
and swimming speed were explored using a linear mixed-
effects model (LMM), with MR as the response variable,
‘Swimming speed’ and ‘Species’ and their interaction as fixed
factors, and individual ‘FishID’ as a random factor to account
for multiple measurements (at different swimming speeds)
at the individual level. Pairwise comparisons of slope and
intercept were carried out using the ‘emtrends’ and ‘emmeans’
functions.

Inter-population differences in Usus, SMR, MMR, AS, BL,
FR, PFLR and AR in brown trout were examined using sep-
arate LMMs, with ‘Location’ (i.e. upstream or downstream)
and BL as fixed effects and ‘Catchment’ as a random factor.
The ‘lmerTest’ package (Kuznetsova et al., 2017) was used
to estimate the statistical significance of model coefficients

using the Satterthwaite’s approximation to calculate degrees
of freedom.

Relationships between individual Usus and traits were
assessed using separate LMs for each species, fitting Usus
as the response variable and traits (BL, SMR, AS, FR,
PFLR and AR) as explanatory variables. Model selection
was undertaken using the ‘dredge’ function in the R
package ‘MuMIn’ (Barton, 2018) to identify the most
parsimonious model by minimizing corrected Akaike
Information Criteria (AICc). Where more than one candidate
model had similar levels of support (�AICc < 2), the
‘model.avg’ function in ‘MuMIn’ was used to calculate
parameter estimates across the ‘top model set’ (Grueber
et al., 2011). All statistics were carried out using R statistical
software (Version 3.6.1; R Core Team, 2019).

Results
Interspecific variation
Sustained swimming ability showed significant interspecific
differences (F4,144 = 53.97, P < 0.001), when the effect of
BL (F1,144 = 74.50, P < 0.001) was accounted for (Fig. 1),
and there was a significant interaction between ‘Species’
and BL (F4,144 = 5.84, P < 0.001). Mean Usus ranged from
a minimum of 35 ± 5 cm s−1 in topmouth gudgeon to
99 ± 10 cm s−1 in brown trout (mean ± 95% confidence
interval (CI); Fig. 2). European minnow showed a sig-
nificantly higher slope than all other species (pairwise
differences: �β ≥ 1.22, t.ratio144 ≥ 2.86, P < 0.039), except
topmouth gudgeon (pairwise difference: �β = 0.99 ± 0.53,
t.ratio144 = 1.87, P = 0.336). No other interspecific dif-
ferences in slope were statistically significant (β ≤ 0.63,
t4,144 ≤ 1.32, P ≥ 0.679). Controlling for the effect of BL,
two pairwise species comparisons were significant: European
minnow showed significantly higher Usus than both stone
loach (α = 46 ± 14, t.ratio144 = 3.31, P = 0.010) and trout
(α = 43 ± 11, t.ratio144 = 3.98, P = 0.001). There was little
indication that interspecific variation in Usus was related to
any of the other traits measured (Table 1).

There were significant interspecific differences in the rela-
tionship between MR and swimming speed (F9,1220 = 128.6,
P < 0.001; Fig. 3). European minnow and topmouth gudgeon
showed substantially higher mass-specific MRs (typi-
cally 200–300 mgO2 kg−1 h−1) at low swimming speeds
(<20 cm s−1) compared to stone loach, bullhead and
brown trout (typically 100–150 mgO2 kg−1 h−1). Bull-
head and brown trout showed significantly lower slopes
in the relationship between MR and swimming speed
compared to European minnow and topmouth gudgeon
(t.ratio173–215 > −4.01, P < 0.001). These differences in
swimming energetics were largely in line with behavioural
observations during swimming trials: European minnow and
topmouth gudgeon actively swam even at very low current
speeds, whereas bullhead, brown trout and stone loach tended
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Figure 1: Interspecific variation in sustained swimming speed (Usus) with BL; slope estimates (β), t values and P values provided for each species.

Figure 2: Interspecific differences in sustained swimming speed (Usus).

to maintain position using their pectoral fins at lower current
speeds (<50 cm s−1), generally only swimming actively at
current speeds exceeding 50 cm s−1.

Population variation in brown trout
Brown trout from upstream populations showed significantly
higher Usus (mean ± standard error (SE) = 115 ± 7 cm s−1)
than those from downstream populations (mean ± SE = 88 ±
7 cm s−1; Fig. 4), when the effects of BL and ‘Catchment’
were controlled for (t32 = 2.97, α = 21.84 ± 7.35, P = 0.006).
No upstream–downstream population trait differences
were observed, except for upstream populations of brown
trout showing significantly lower PFLR (t34 = −2.36,
b = −0.007 ± 0.003, P = 0.024; Table S3).

Individual variation
There was substantial intraspecific variation in Usus (Fig. 2),
with bullhead varying the least (cv = 25%) and European

minnow the most (cv = 62%). Sustained swimming speed
(Usus) increased significantly with BL in topmouth gudgeon,
European minnow and brown trout, but not in bullhead
or stone loach (Table 2). AS showed a significant positive
relationship with Usus in European minnow, stone loach and
brown trout, but not in bullhead or topmouth gudgeon.
Sustained swimming speed (Usus) increased significantly with
FR only in stone loach (P = 0.014).

Discussion
Our study reveals that a ‘one size fits all’ approach for
estimating fish swimming performance in relation to barrier
passability is not tenable. Substantial interspecific variation
in swimming ability was observed, with mean Usus differing
by as much as 64 cm s−1 even among species of similar body
size. As barrier impacts are related to swimming ability (Cas-
tro-Santos, 2006; Makrakis et al., 2007; Castro-Santos and
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Figure 3: Interspecific variation in MR with current speed in swimming respirometers; slope estimates, t values and P values for each species.

Figure 4: Differences in sustained swimming speed (Usus) between
brown trout from upstream headwater and downstream lowland
populations (mean ± SE).

Haro, 2010), our study indicates considerable potential for
velocity barriers to select against weak swimmers. Moreover,
as the interspecific differences in Usus were strongly influ-
enced by body size, barriers may have size-selective effects
(Volpato et al., 2009; Noonan et al., 2012).

Barriers associated with road crossings (e.g. culverts) tend
to be abundant in river systems globally (Januchowski-Hart-
ley et al., 2013; Mantel et al., 2017; Jones et al., 2019;
Belletti et al., 2020), so, based on our data, selective effects

based on swimming ability and body size are likely to be
widespread. Passage of culverts by weaker swimming fish
can be facilitated by adding baffles (Newbold et al., 2014),
and decreasing baffle spacing can improve passage of small-
bodied fish (Cabonce et al., 2019). Our results also serve
to highlight the challenge of designing efficient fish passes
for diverse groups of fish. Fish pass hydraulics should be
designed with flow velocities low enough to accommodate
the weakest-swimming target fish. However, faster-swimming
fish can sometimes be deterred from entering fish passes
with insufficient attraction flows (Williams et al., 2012). In
this sense, fish passes that provide diverse flow conditions
(e.g. nature-like fishways) are likely to be most successful in
allowing passage of groups of fish with contrasting swimming
abilities (Bunt et al., 2012; Williams et al., 2012).

MR increased rapidly with flow velocity in most species,
suggesting that even swimming at speeds considerably lower
than Usus requires substantial energetic expenditure, which
has considerable implications for predicting barrier effects
on fish movement. For example, while passage of a single
instream structure might be well within the maximum swim-
ming speed of fish, the presence of multiple structures will
likely have a cumulative effect that may be beyond their ener-
getic scope (Armstrong et al., 2010; Roscoe and Hinch, 2010).
Additionally, the energetic cost of passage may leave fish with
insufficient energy reserves to reproduce or complete other
basic life history functions (Caudill et al., 2007; Thiem et al.,
2016). There are also clear implications for the provision of
resting pools in fish pass design, which are added in an effort
to prevent fatigue (Katopodis, 1992; Castro-Santos and Haro,
2010; Williams et al., 2012). If flow speeds within resting
pools are not sufficiently low, fish may be unable to negotiate
other parts of the fish pass (Castro-Santos and Haro, 2010).
Our study indicates that more benthic-swimming species
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s. (bullhead, stone loach and to a lesser extent brown trout)

were able to maintain position in low flow velocities (5–
15 cm s−1) with relative ease (close to SMR values) by holding
position using pectoral fins, while the more pelagic species
(European minnow and topmouth gudgeon) had to spend
substantially more energy by active swimming. Thus, flow
velocities in resting pools may need to be lower for some
pelagic-swimming species than for benthic fish.

Velocity barriers rarely present uniform flow conditions,
and fish passes generally offer resting places with slow flows,
pinch points where maximum flows are found and a range of
flow speeds between these extremes (Katopodis, 1992; Clay,
1995). The Environment Agency (UK) fish pass guidelines
(Armstrong et al., 2010) suggest maximum flows of 1.1 m s−1

in culverts to allow passage of course fish and less than
1.25 m s−1 to allow passage of brown trout. These values were
higher than the Usus of 98% of course fish and 86% of brown
trout in our study. Prescribed flow speeds for pool passes are
also higher than the Usus of the vast majority of fish in our
study (1.4–2.0 m s−1 for coarse fish and 1.7–2.4 m s−1 for
brown trout; Armstrong et al., 2010). Fish use a combination
of anaerobic burst (at pinch points), sustained (moderate
velocity areas) and endurance (in rest areas) swimming types
to negotiate obstacles (Castro-Santos, 2006) so the guideline
flow speeds would not necessarily prevent passage. However,
our data do suggest that even culverts and fish passes built to
best practice guidelines are likely to be energetically demand-
ing for many fish and a large proportion of fish are likely to
be excluded from upstream passage. The poor performance of
fish passes globally (Noonan et al., 2012) is likely to be at least
in part due to overestimation of swimming performance and
underestimation of the energetic demands of passage. Some
options for improving passage efficiency include reducing
flow speeds, increasing rest areas and limiting the number of
pinch points where energetically demanding burst swimming
is required.

The significantly higher Usus observed in upstream pop-
ulations of brown trout compared to downstream popula-
tions is consistent with a priori predictions, based on higher
flow velocities in headwater areas selecting for higher swim-
ming ability (Taylor and McPhail, 1985; Páez et al., 2008;
Leavy and Bonner, 2009). Brown trout can inhabit a much
wider range of hydrological conditions than that covered
by our study (Lobón-Cerviá and Sanz, 2017) so it is likely
that population-level variation may be much greater than
observed here. There was no evidence that the observed
population-level differences in Usus were due to body size,
but individuals from the upstream populations had shorter
pectoral fins relative to their body size, which has previ-
ously been associated with higher swimming ability (Rouleau
et al., 2010). The upstream–downstream population differ-
ences could be due to local adaptation (Garcia de Leaniz
et al., 2007) or phenotypic plasticity (Oufiero and Whitlow,
2016). Irrespective of the drivers, the results indicate river
managers also need to take population location into account
when considering barrier effects and mitigation options.
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Table 2: Model averaged parameter estimates for best performing models (�AICc < 2) predicting relationship between intraspecific variation in
Usus and the various morphological and physiological traits examined

Species Trait β ± SE z or (t) value P value

Topmouth gudgeon (n = 32) BL
AS

0.90 ± 0.32
0.02 ± 0.02

2.67
0.45

0.008
0.655

European minnow (n = 30) BL
AS
PFLR

1.74 ± 0.20
0.04 ± 0.01
−454 ± 165

(8.77)
(3.05)

(−2.75)

<0.001
0.005
0.011

Stoneloach (n = 30) AS
FR
SMR

0.09 ± 0.03
315 ± 122
0.14 ± 0.14

2.78
2.47
1.00

0.005
0.014
0.316

Bullhead (n = 26) FR
AR
BL

226 ± 122
19 ± 13

0.29 ± 0.26

1.77
1.40
1.06

0.077
0.160
0.288

Trout (n = 36) AS
BL
PFLR
AR
SMR

0.14 ± 0.05
0.66 ± 0.12
−924 ± 426
−22 ± 13

−0.27 ± 0.18

2.57
5.15
2.09
1.61
1.43

0.010
<0.001
0.037
0.106
0.151

BL, body length; SMR, standard metabolic rate; AS, aerobic scope; FR, fineness ratio; PFLR, pectoral fin length ratio; AR, aspect ratio.

The extent of intraspecific variation in Usus was unex-
pected (e.g. 37–172 cm s−1 in brown trout) and highlights
the importance of working with the full range of swim-
ming abilities that species exhibit, rather than using mean
values. To effectively mitigate barrier impacts, fish passes
should aim to provide passage for all individuals (Baras and
Lucas, 2001), but using mean swimming speeds as bench-
marks would inevitably select against the weakest-swimming
individuals. This highlights the need to explicitly consider
potential selective pressures of barriers and fish passes on fish
communities (e.g. Volpato et al., 2009).

At the intraspecific level, Usus showed a positive associ-
ation with BL in European minnow, brown trout and top-
mouth gudgeon. In contrast, Usus was unrelated to BL in
stone loach and bullhead, perhaps indicating other traits are
more important in benthic species. The positive relationship
identified between Usus and AS in European minnow, stone
loach and brown trout is consistent with other studies (Reidy
et al., 2000; Killen et al., 2012) and shows the importance
of considering metabolism in fish passage. The negative rela-
tionships we observed between Usus and PFLR in brown trout
and European minnow was unexpected as longer pectoral
fins have been previously shown to confer better station-
holding ability and faster swimming speeds (Arnold et al.,
1991; Ojanguren and Braña, 2003). However, our findings
are in agreement with Rouleau et al. (2010) who found
salmonids with shorter pectoral fins swam faster, possibly

because short fins reduce drag. Overall, our results indicate
that the drivers of intraspecific variation in swimming speed
vary between species and are more complex than simple size-
related variation.

The potential use of velocity barriers to prevent passage of
invasive fish has been put forward by several studies (New-
bold et al., 2016; Rahel and McLaughlin, 2018; Zielinski
et al., 2019). Dispersal along river catchments is a major path-
way for secondary invasions in topmouth gudgeon (Pinder
et al., 2005), but the wide range of Usus observed emphasizes
the difficulties in designing effective selective barriers to pro-
hibit their passage. The maximum Usus of topmouth gudgeon
was 68 cm s−1, which was above the mean Usus for many
of the native taxa. To be effective, selective barriers need to
prevent all invasive individuals passing, without disrupting
the passage of native species. In this case, using a threshold
of > 68 cm s−1 to prevent passage of topmouth gudgeon
would clearly impair the passage of native species. Hence,
the use of velocity barriers in controlling invasive fish will
often be challenging, needs to be carefully considered, and
requires detailed knowledge of the full range of swimming
performance of both invasive and native species.

We used four different swim tunnels to test Usus in a
range of fish sizes to ensure accurate measurement of MRs.
While we followed best practice to minimize any potential
tunnel size effect (e.g. keeping fish volume:water volume rel-
atively consistent, carefully calibrating current velocities, and
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correcting for solid blocking effects) we cannot be absolutely
sure that the use of different tunnels did not affect swim-
ming behaviour. Unfortunately, controlling for any such effect
statistically was not possible as tunnel size was completely
confounded by fish body size so this approach would have led
to erroneous conclusions. Ultimately, we are confident that we
used the best possible approach to simultaneously test Usus
and measure MRs across a range of fish sizes.

Longitudinal migrations have been documented in
river-resident brown trout (Clapp et al., 1990), bullhead
(Knaepkens et al., 2005), European minnow (Nunn et al.,
2010) and stone loach (Maerten et al., 2007). These
movements are crucial for spawning, foraging, accessing
refugia, counteracting downstream displacements in high
flows and allowing recolonization of vacant habitat patches
following disturbance (Lucas and Baras, 2008). Even where
such movements are rare, they are very important to support
gene flow between populations (Junker et al., 2012). Free
movement is therefore essential to the maintenance of healthy
river fish communities, but velocity barriers and ineffective
fish passes are disrupting these movements. It is crucial that
river managers worldwide base decisions on representative
swimming data for the whole target fish community.

Conclusions
Our study shows substantial variability in Usus among species,
among populations and among individuals within popula-
tions. Swimming speed is a major determinant of passage
success (Haro et al., 2004; Castro-Santos, 2006) and migra-
tion rates (Eliason et al., 2011). There is a general consen-
sus that traditional methods in fish pass design are failing
(Noonan et al., 2012; Kemp, 2016; Birnie-Gauvin et al.,
2019), and new approaches are needed. There is a need to
move away from a ‘one size fits all’ approach to address
natural variability in swimming performance within river fish
communities. Barrier removal should always be considered,
but in cases where removal is not feasible, we suggest that fish
passes affording diverse and spatially heterogeneous flows
(e.g. nature-like fish passes; Katopodis et al., 2001; Calles
and Greenberg, 2005) offer the option that best embraces
the variability in swimming performance existing in natural
populations.
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Supplementary material is available at Conservation Physiol-
ogy online.
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