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Abstract

Cysteines existing in the deprotonated thiolate form or having a tendency to become deprotonated 

are important players in enzymatic and cellular redox functions and frequently exploited in 

covalent drug design; however, most computational studies assume cysteines as protonated. Thus, 

developing an efficient tool that can make accurate and reliable predictions of cysteine protonation 

states is timely needed. We recently implemented a generalized Born (GB) based continuous 

constant pH molecular dynamics (CpHMD) method in Amber for protein pKa calculations on 

CPUs and GPUs. Here we benchmark the performance of GB-CpHMD for predictions of cysteine 

pKa’s and reactivities using a data set of 24 proteins with both down- and upshifted cysteine 

pKa’s. We found that 10-ns single-pH or 4-ns replica-exchange CpHMD titrations gave root-mean-

square errors of 1.2–1.3 and correlation coefficients of 0.8–0.9 with respect to experiment. The 

accuracy of predicting thiolates or reactive cysteines at physiological pH with single-pH titrations 

is 86 or 81% with a precision of 100 or 90%, respectively. This performance well surpasses the 

traditional structure-based methods, particularly, a widely used empirical pKa tool which gives an 

accuracy less than 50%. We discuss simulation convergence, dependence on starting structures, 

common determinants of the pKa downshifts and upshifts as well as the origin of the discrepancies 

from the structure-based calculations. Our work suggests that CpHMD titrations can be performed 

on a desktop computer equipped with a single GPU card to predict cysteine protonation states for a 

variety of applications, from understanding biological functions to covalent drug design.

INTRODUCTION

Cysteines are important players in cellular redox regulation.1 For example, oxidative protein 

folding involves thiol-disulfide exchange reactions,2 and under oxidative stress cysteine 

thiols in antioxidant enzymes and cytoplasmic glutathiones (a tripeptide Glu-Cys-Gly) are 

invoked to eliminate reactive oxygen species.3–6 All these processes are believed to involve a 

reactive cysteine that is in the negatively charged thiolate form (–S−)1,6,7 or has a high 

tendency to shift from the neutral thiol (–SH) to the thiolate form. The inverse relationship 
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between cysteine reactivity and its pKa is well established through measurements of the 

kinetic rate constants of thiol containing compounds or peptides and the pKa’s of the thiol 

groups.7,8 Reactive cysteines are highly nucleophilic and can undergo thiol-Michael addition 

with electrophiles, making them suitable as covalent linkage sites for covalent inhibitors.9,10 

Thus, knowledge of reactive cysteines would assist in covalent drug design for kinases and 

other targets that are not amenable to traditional reversible inhibition. Over the past decade, 

isoTOP-ABPP (isotopic tandem orthogonal proteolysisactivity-based protein profiling) 

techniques have been developed to scan for reactive cysteines in human proteins.11,12 The 

data from the isoTOP-ABPP experiments were used to develop structure-based 

bioinformatics13 and sequence-based machine learning tools14 to predict reactive cysteines. 

However, the reliability of these data-driven tools remains unclear, particularly because the 

protein profiling techniques can generate false positives.15 Thus, developing a physics-based 

in silico capability to accurately and reliably predict thiol reactivities is highly desirable.16

Recently, using a data set of 18 proteins, Rowley and coworker17 evaluated several 

computational methods for predicting cysteine pKa’s, including free energy simulations 

based on thermodynamic integration (TI), traditional structure-based pKa calculations based 

on solving the Poisson-Boltzmann (PB) equation,18–20 and the empirical pKa calculations 

using PROPKA.21 They found that the computationally costly TI method with the 

CHARMM C3622 and the modified Amber ff99SB-ILDNP23 force fields gave respective 

root-mean-square errors (RMSE’s) of 2.4 and 3.2 relative to experimental pKa’s, which are 

lower than the RMSE’s of 3.4–4.7 from the PB and empirical calculations.17 However, these 

errors are on par with the RMSE of 2.7 from the null model, which assumes that all 

cysteines have the model or solution pKa value.17 Thus, the work of Rowley and coworker 

demonstrated a need to improve the accuracies of computational methods for predicting 

cysteine pKa’s.

While TI methods are not routinely used for pKa calculations due to the extremely high 

computational cost, structure-based PB and empirical methods have been widely used. Over 

the past decade, constant pH molecular dynamics (MD) simulations have emerged as 

alternative powerful tools for pKa calculations.24 In constant pH MD,25–33 protonation states 

of titratable sites are determined on the fly based on the free energies of protonation relative 

to that in solution. Since constant pH MD describes the coupling between conformational 

changes and protonation/deprotonation events, pKa predictions can be more accurate than 

structure-based methods, particularly for buried residues34–36 and when protonation/

deprotonation of two or more residues is highly coupled.37 The interested reader is referred 

to the reviews38,39 as well as the original articles on the discrete constant pH MD 

techniques,25,27,30–32 which combine MD with Monte-Carlo sampling of discrete 

protonation states, and the continuous constant pH MD (CpHMD) techniques,26,28,29,35,40,41 

which make use of the extended Hamiltonian λ-dynamics approach42 to sample protonation 

states through an auxiliary set of continuous titration coordinates.

In CpHMD, the free energies of protonation are calculated for all titratable sites in a single 

MD trajectory; this is in contrast to TI simulations, wherein the free energy of titrating a 

single site is calculated while fixing the protonation states of all other sites. Consequently, in 

addition to having a substantially lower computational cost, CpHMD can be more accurate 
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than TI due to its ability to account for the coupling between interacting titration sites. In an 

effort to develop an accurate and efficient pKa prediction tool, we recently implemented the 

CPU43 and GPU44 versions of the CpHMD method based on the Amber generalized Born 

(GB) model GBNeck245 in the Amber molecular dynamics package (Amber1846). In 

comparison to older GB models, such as GBSW47 employed in the GB-based CpHMD 

method in CHARMM,26,28 GBNeck245 more accurately reproduces the solvation free 

energies from PB calculations and the experimental structures and stabilities of model 

peptides and proteins.45,48

CpHMD simulations can be carried out in two modes. A single or fixed pH titration returns 

the protonation probabilities of specified titratable sites at a specified pH. Running the 

titration at several pH allows one to calculate the pKa’s by fitting the protonation 

probabilities vs. pH to the Henderson-Hasselbalch equation. CpHMD can also be performed 

with the pH replica-exchange protocol,40 whereby multiple independent titrations are run at 

a set of pH conditions and periodic swaps between adjacent pH conditions are accepted 

according to the Metropolis criterion. Compared to single pH titrations, the replica-exchange 

protocol can accelerate pKa convergence and better resolve the pKa’s of coupled residues 

due to enhanced sampling of both conformational and protonation states.30–32,40,44 

However, single pH titrations are more convenient for routine use on a desktop computer 

equipped with one or two graphics processing units (GPU) cards. Encouragingly, our recent 

work44 showed that 2 ns single pH titrations with the GBNeck2-CpHMD method gave 

comparable overall accuracy as replica-exchange titrations for the pKa’s of Asp, Glu, and 

His residues in 10 benchmark proteins. While CpHMD simulations can also be used to 

predict Cys pKa’s,10 a systematic evaluation of the prediction accuracy and precision has not 

been conducted.

The main objective of the present work is to benchmark the performance and protocols of 

GBNeck2-CpHMD titrations in both single-pH and replica-exchange modes for predicting 

cysteine pKa values and reactive cysteines. We used a data set comprising the 

aforementioned targets compiled by the Rowley group which have mostly downshifted 

cysteine pKa’s17 and additional targets which have mostly upshifted pKa’s taken from a 

database developed by the Alexov group.49 In addition to assessing the accuracy of pKa 

calculations, we evaluated the accuracy and precision of predicting thiolates or reactive 

cysteines at physiological pH, defined as those with a pKa lower than 7.4 or 8.5, 

respectively.10 To determine the most accurate and yet efficient protocols for practical 

applications, we analyzed the convergence and accuracies of single-pH and replica-exchange 

titrations as well as the dependence of the pKa results on the starting structures. Finally, we 

examined the common determinants of cysteine pKa downshifts and upshifts and the origin 

of the discrepancies from the structure-based PB and empirical calculations. For 21 targets, 

the 10-ns single-pH CpHMD titrations predicted thiolates or reactive cysteines with an 

accuracy of 81 or 86% with a precision of 91 or 100%; which is in contrast to the PB-based 

calculations and the popular empirical method PROPKA21 which gives a prediction 

accuracy below 50%. However, our work also exposed a caveat of the current protocols or 

methodology which correctly predicted the protonation states at physiological pH, but were 

not able to yield a pKa value for the deeply buried cysteine involved in several hydrogen 

bonds in three phosphatases.
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METHODS AND PROTOCOLS

Protein data set.

The first 15 proteins were taken from those evaluated by the Rowley group,17 which have an 

experimentally known Cys pKa. The protein names and PDB (Protein Data Bank) ID’s are 

as follows: α−1-antitrypsin (A1AT, PDB 1QLP50), acyl-coenzyme A binding protein wild 

type and M46C, S65C, and T17C mutants (ACBP, PDB 1NTI51), Salmonella alkyl 

hydroperoxide reductase C (AhpC, PDB 4MA952), human DJ-1 (DJ-1, PDB 1P5F53), 

human muscle creatine kinase and the S285A mutant (HMCK, PDB 1I0E54), sperm whale 

myoglobin G124C and A125C mutants (Mb, PDB 2MGE55), wild type and E115Q mutant 

of mouse methionine sulfoxide reductase A (MmsrA, PDB 2L9056), human O6-

alkylguanine-DNA alkyltransferase (AGT, PDB 1EH657), papaya proteinase I (papain, PDB 

1PPN58), and papaya protease omega (ppω, PDB 1PPO59).

Since only two of the above proteins have cysteine pKa’s upshifted relative to the model 

value, we added 6 proteins with upshifted experimental cysteine pKa’s. These proteins are: 

recombinant rat cathepsin B (Cathepsin B, PDB 1THE60), yeast ubiquitin-conjugating 

enzyme E2 (Ubc13, PDB 1JBB61), human ubiquitin-conjugating enzyme E2 wild type 

(Ubc2b, PDB 1JAS62) and E2 C114S mutant (UbcH10, PDB 1I7K,63 and acyl-coenzyme A 

binding protein V36C and E78C mutants (ACBP, PDB 1NTI51). We note, the Rowley data 

set also included human tyrosine phosphatase 1B (PTP1B, PDB 2HNP64) and Yersinia 

tyrosine phosphatase wild type and H402A mutant (YopH, PDB 1YPT65). These three 

proteins will be considered separately.

Structure preparation.

For wild type proteins, the initial structures were taken from the PDB files. Single mutations 

were performed with SWISS-MODEL.66 For AGT, missing residues (36–44) were added 

with SWISS-MODEL.66 For each structure, the CHARMM program (version c42a1)67 was 

used to add acetylated N terminus and amidated C terminus caps, disulfide bonds (if 

present), and hydrogen atoms. Initially, Asp/Glu were deprotonated, and 

His/Cys/Lys/Arg/Tyr were protonated. The system was then minimized with 50 steps of 

steepest descent method in the GBSW implicit solvent47 with a harmonic force constant of 

50 kcal/mol/Å2 applied to heavy atoms. Dummy atoms were then added to Asp/Glu 

residues, and the structure was minimized for 10 steps of steepest descent and 10 steps of 

Newton-Raphson methods. Next, force field parameters and coordinate files were 

constructed from these structures with the Leap utility in AMBER.46 The structures were 

then energy minimized by 2000 steps of steepest descent followed by 8000 steps of 

conjugate-gradient methods in GB-Neck2 implicit solvent45 to obtain the initial structures 

for the CpHMD titration simulations.

Simulation protocol.

All GBNeck2-CpHMD simulations were performed using the pmemd engine of 

AMBER18.46 The replica-exchange titrations were performed on the CPUs43 and single pH 

titrations were performed on the GPUs.44 The proteins were represented by the ff14sb 

protein force field,68 and solvent represented by the GBNeck2 (igb=8) model with mbondi3 
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intrinsic Born radii and 0.15 M ionic strength.45 Modifications to the GB parameters and/or 

intrinsic Born radii were made for His and Cys residues, as discussed in our previous work.
10,43,44 All simulations were run with an effectively infinite cutoff (999 Å) at a temperature 

of 300 K. SHAKE was used to allow a 2-fs time step. Asp, Glu, His, Lys, and free Cys 

residues were titrated, and the protonation states were recorded every 250 steps. The 

parameters for titrating model Asp/Glu/His/Lys/Cys were taken from our previous work.
10,43,44 The model pKa is 8.55.69,70 The parameterization from thermodynamic integration 

and titration results of the model Cys peptide (AACAA) are given in Fig. S1. The pKa of the 

model Cys is 8.41±0.17 (Fig. S1). Replica-exchange titrations were performed for the first 

15 proteins, whereby 12 independent replicas at pH conditions 0.5 unit apart were run for 4 

ns each, and exchanges between adjacent pH conditions were attempted every 1000 MD 

steps unless otherwise noted. For the single pH titrations, each simulation was run for 50 ns 

for the first 15 proteins and 10 ns for the 6 proteins. Initially, the pH interval was 1 unit, but 

additional simulations at 0.5-unit interval were added if the titration curve appeared to be 

noisy. All other simulation settings were identical to our previous work.10,43,44 pKa’s from 

these simulations were obtained from fitting to the generalized Henderson-Hasselbalch (HH) 

equation. Error estimates were obtained from the estimated errors in the fit parameters.44

RESULTS AND DISCUSSION

Convergence and accuracy of the pKa calculations.

We first assess the convergence of the pKa calculations for the 15 proteins from the Rowley 

data set. Single pH titrations were performed for 50 ns at each pH. The pKa’s were 

calculated every 5 ns based on the cumulatively calculated unprotonated fractions at all pH 

(Fig. S2). Most pKa’s converged at around 25 ns; however, the pKa’s of HMCKS285A, and 

ACBPT17C converged more slowly and drifted towards slightly smaller values until 50 ns, 

while the pKa of A1AT kept decreasing past 50 ns. For this data set, the overall pKa 

accuracy, represented by the correlation coefficient R and root-mean-square error (RMSE) 

with respect to the experimental pKa’s, appeared to be best at 10 ns and slightly worsened as 

simulations were extended (Fig. 1a and b). The RMSE and R values are respectively 1.3 and 

0.82 at 10 ns; 1.4 and 0.78 at 25 ns, and 1.4 and 0.78 at 50 ns. Compared to the single pH 

titrations of Asp/Glu/His in our previous work,44 the convergence rates for the present data 

set are much slower. This could be due to the selection biases in the two data sets. In our 

previous work, CpHMD titrations were performed on proteins where all titratable residues 

had measured pKa values, many of which do not have large shifts relative to the model 

values. In contrast, free cysteine residues are uncommon in nature, and the ones with 

experimental pKa’s are typically functional cysteines with large pKa shifts. We therefore 

expect the pKa calculations in the present data set to require longer sampling time to 

converge than those in our previous work.

We next examine the convergence of the replica-exchange titrations. The pKa’s were 

calculated every 0.5 ns per replica (Fig. S3). All pKa’s converged after about 2 ns per 

replica, including the pKa’s of the three proteins, for which single pH titrations were not 

able to converge until or after 50 ns. Consistently, the RMSE and R values also plateaued 

after about 2 ns, with the respective values of 1.3 and 0.83 at 2 ns per replica and 1.2 and 
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0.83 at 4 ns per replica (Fig. 1c and d). Thus, the overall accuracy of the replica-exchange 

titrations of 2–4 ns per replica is similar to that of the single pH titrations of 10–50 ns per 

pH. The significant acceleration in convergence can be attributed to the ability of the replica-

exchange protocol to overcome local barriers of hydrogen bonding which is a major 

contributor to the pKa shifts of cysteines (see later discussion). This is consistent with the 

effect of replica exchange on the pKa’s of residues involved in salt-bridge interactions.40,71 

In what follows, we will focus on 10-ns single-pH and 4-ns replica-exchange simulations 

(Table 1).

The RMSE and R of the pKa calculations by single-pH titrations are respectively 1.3 and 

0.82, while those by replica-exchange titrations are respectively 1.2 and 0.83 (Table 1). This 

indicates that the accuracy is similar and replica-exchange titrations are perhaps slightly 

more accurate (see later discussion about the calculations with crystal structures). As 

expected and consistent with our previous work,43,44,71 the titration data (unprotonated 

fractions vs. pH) from the replica-exchange simulations display excellent fits to the HH 

equation (except for MmsrA-E115Q), while the titration data for several proteins from the 

single-pH simulations are very noisy (Fig. S4 and S5). The latter results in large uncertainty 

in the calculated pKa, e.g., for MmsrA and the the E115Q mutant the errors are 0.9 and 1.2 

respectively (Table 1).

We note, for the three remaining proteins in the Rowley data set, human and Yersinia 

tyrosine phosphatase proteins, PTP1B and WT/mutant YopH, the relevant cysteines 

remained deprotonated in the entire pH range of the single pH and replica-exchange 

titrations due to multiple persistent hydrogen bonds. Although the experimental pKa 

downshifts were correctly predicted, no specific pKa values could be assigned from these 

simulations. We speculate that in order to reproduce the experimental pKa’s (4–7), these 

persistent hydrogen bonds would need to break, which would require much longer 

simulation times. It is also possible that sampling in explicit solvent is required to generate 

the conformational changes for a protonation state switch, as demonstrated in our previous 

work based on the hybrid-solvent CpHMD titrations in CHARMM72 as well as work from 

others.35 We will further examine these systems in future work.

Dependence of the pKa calculations on the starting structures.

Although compared to structure-based PB or empirical methods, MD-based pKa calculations 

are less sensitive to starting structures,24,34 it is worthwhile examining the dependence of the 

pKa results on the starting structures, particularly given the use of implicit solvent and 

limited conformational sampling. To do so, we divided the 15 targets into two groups: 8 Cys 

pKa’s were calculated using the crystal structures (all but one are of the wild type proteins) 

and 7 Cys pKa’s were calculated using the computationally mutated crystal structures.

For the pKa calculations with crystal structures, the RMSE and R from single-pH titrations 

are respectively 1.3 and 0.74, while those from replica-exchange titrations are respectively 

0.95 and 0.81. Thus, the replica-exchange simulations appear to give somewhat more 

accurate pKa’s. The largest pKa error and also the largest difference between the single-pH 

and replica-exchange calculated pKa’s is for Cys106 of DJ-1, where the experimental pKa 

downshift of Cys106 is overestimated by 1.7 units by replica-exchange and 3.0 units by 
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single-pH titrations. This difference is due to the persistence of hydrogen bonding in the 

single-pH simulations (see later discussion).

For the pKa calculations with the mutated crystal structures, the RMSE and R from single-

pH titrations are respectively 1.4 and 0.2, while those from replica-exchange titrations are 

respectively 1.5 and 0.08. Thus, both methods gave larger errors compared to the 

calculations with crystal structures, and the decrease in performance is much worse for 

replica-exchange titrations. These observations indicate that for mutated proteins we may 

need to run longer simulations so that the conformation relaxes more closely to the natural 

state. We can see some evidence for this from the time evolution of the RMSE in the single-

pH simulations. For single pH titrations with crystal structures, the RMSE is the lowest 

(1.2–1.25) at 5–10 ns and increases to about 1.5 in the next 40 ns. In contrast, using the 

computationally mutated structures the RMSE reached a minimum of 1.25–1.3 at 20–25 ns. 

Thus, prolonging the single pH titrations from 10 to 20 ns somewhat improved the pKa 

calculations with mutated structures but has a negligible effect on the calculations with 

crystal structures. We did not see any noticeable improvement in the RMSE with the mutant 

structures in the replica-exchange titrations between 2 and 4 ns, but perhaps we would 

observe some improvement with significantly longer simulations.

Common determinants of the cysteine pKa downshifts.

The Rowley data set is dominated by the downshifted pKa’s of cysteine; we first examine 

Cys145 of AGT. Both single pH and replica-exchange titrations revealed that the buried 

Cys145 accepts hydrogen bonds from the hydroxyl group of Tyr158 and the amino group of 

Asn137 when it becomes deprotonated. Fig. 2 demonstrates that the occupancies of these 

hydrogen bonds increase with pH and the pH-dependence is perfectly correlated with the 

pH-dependent deprotonation of Cys145, suggesting that Cys145 thiolate is stabilized by the 

hydrogen bond interactions. Consequently, the pKa of Cys145 is downshifted relative to the 

model value despite the lack of solvent exposure which would raise the pKa. Interestingly, 

none of the hydrogen bonds is present in the initial crystal structure. This may explain why 

the empirical method and PB calculations (except for DelPhiPKa which uniformly predicts 

pKa downshifts82) overestimate the pKa of Cys145 (Table 1), as they only consider the 

crystal structure. This observation is consistent with our previous finding that by capturing 

the pH-dependent hydrogen bond formation, CpHMD titrations can make more accurate pKa 

predictions than structure-based methods.37

Cys283 in HMCK and HMCKS285A provides another interesting example. Consistent with 

our previous finding,10 both replica-exchange and single-pH simulations agree that, although 

Cys283 in HMCK is buried, its pKa is downshifted due to the formation of hydrogen bonds 

with the side chains and backbones of Ser285 and Asn286. Interestingly, when Ser285 is 

mutated to Ala in HMCKS285A, both sets of simulations predicted a significant increase in 

pKa to above the model value due to the loss of the hydrogen bond with Ser285 and 

destabilization of the conformation where it could form the other three hydrogen bonds. 

However, the experimental pKa of Cys283 in HMCKS285A is downshifted to 6.7, compared 

to 9.8 and 9.3 from the respective replica-exchange and single-pH titrations. One possible 

explanation for this discrepancy is that when modeling HMCKS285A we started with the 

Harris et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wild-type crystal structure. It is possible that the mutant conformation differs in some way 

that leads to a large change in the pKa. Indeed, as the single-pH titrations were extended 

beyond 10 ns, a conformational change occurred such that Cys283 forms new hydrogen 

bonds with the backbone atoms of Thr71, Val72, and Gly73, stabilizing the thiolate form and 

lowering the pKa by 1.5 units to 7.8 at 50 ns, in closer agreement with the experimental 

value of 6.7 (Fig. S2). Notably, Cys283 became increasingly deprotonated in the simulations 

at pH 7.5 and above, it remained fully protonated at pH 7. Thus, we expect that with further 

prolonged sampling the pKa of Cys283 may stabilize just above pH 7, in better agreement 

with experiment. Nonetheless, it is also possible that the formation of new hydrogen bonds 

is an artifact of GB simulations which tend to overstabilize hydrogen bonds.40,45 A detailed 

investigation will be deferred to a future study using the GPU implementation of the fully 

explicit-solvent CpHMD as well as the asynchronous replica exchange scheme which allows 

replica exchange simulations to be performed on a single GPU card (Harris and Shen, work 

in progress).

Common determinants of the cysteine pKa upshifts.

Since the Rowley data set is dominated by downshifted Cys pKa’s, we added 5 targets with 

upshifted Cys pKa’s. We also included a protein with an extremely low experimental pKa to 

further test the accuracy and reliability for predicting downshifted Cys pKa’s (Table 1). Due 

to our limited computational resources, titrations were only performed in the single-pH 

mode for 10 ns at each pH (the sampling time found to give the smallest overall RMSE for 

the 15 aforementioned proteins). Including the additional 6 targets, the RMSE and R value 

of the single-pH titrations are 1.2 and 0.89, respectively (Table 1).

These additional data allowed us to examine the molecular determinants of the upshifted 

pKa’s of cysteine. It is well established that solvent exclusion favors the protonated thiol 

form, thus increasing the pKa; however, the pKa increase is often compensated by the ability 

of a buried thiolate to accept hydrogen bonds, which lowers the pKa of Cys, as demonstrated 

in our discussion of the downshifted pKa’s of Cys145 in AGT and Cys283 in HMCK as well 

as HMCKS285A. Thus, it is not surprising that the cysteines with upshifted pKa’s are (at 

least) partially buried but do not form frequent hydrogen bonds. Another mechanism for 

cysteine to have a pKa increase is to have acidic residues in the vicinity which can 

potentially form repulsive electrostatic interactions. For example, Cys87 in Ubc13 has the 

highest experimental pKa of 11.1 and the single pH titrations gave a pKa of 11.2. The 

simulations revealed that Cys87 is partially buried and its thiolate form is destabilized by the 

electrostatic repulsion with the negatively charged Asp81 that is about 4–6 Å away. Thus, 

both solvent exclusion and electrostatic interactions are major contributors to the pKa upshift 

of Cys87.

Overestimation of the pKa downshift of Cys106 in DJ-1.

The largest pKa error in this data set is for Cys106 in DJ-1. Although the direction of the 

pKa shift was correctly predicted by both replica-exchange and single pH titrations, the 

downshift was overestimated by 1.7 and 3 units, respectively. Considering the crystal 

structure, the downshift may be surprising, as Cys106 is largely buried, which would raise 

the pKa, and its proximity to Glu16 would also be thought to increase the pKa, as Glu 
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residues are generally negatively charged at physiological pH. However, the CpHMD 

simulations revealed that while Cys106 becomes increasingly deprotonated as pH increases 

from 1.5 to 3, it accepts hydrogen bonds from the protonated carboxyl group of Glu16 and 

the backbone amide group of Gly75 (Fig. 3a and b). Additionally, the thiolate form is 

stabilized by the salt-bridge interaction with the protonated His126 (Fig. 3a and b). The 

latter two interactions are not present in the crystal structure; however, it is consistent with 

our previous finding that new hydrogen bond interactions may form to facilitate 

deprotonation events.37 This may explain why the structure-based PB and empirical methods 

failed to predict a downshifted pKa for Cys106 (Table 1), except for DelPhiPka which gave 

downshifted pKa’s for all targets.82 We suggest that the overestimation of the pKa downshift 

may be attributed to the overstabilization of hydrogen bonding, a well-known limitation of 

GB simulations.40,45 This problem is less severe in the replica-exchange titrations, as 

hydrogen bonds were able to break and reform, illustrating the benefit of the enhanced 

sampling provided by replica exchange.

Performance of predicting thiolates and reactive cysteines.

Another objective of the present work is to evaluate whether CpHMD can reliably predict 

thiolates at pH 7.4 (physiological condition) or pH 8.5. The latter can be used to identify 

reactive cysteines, which are defined as those existing in the thiolate form for at least 10% at 

physiological pH.10 To do the evaluations, we grouped the data of predicted vs. experimental 

pKa’ into four quadrants around the dividing pH of 7.4 for protonation state prediction and 

8.5 for cysteine reactivity prediction. Data in the lower left quadrant are the true positives 

(TP), i.e., both predicted and experimental pKa’s are lower than 7.4 or 8.5. Data in the upper 

left quadrant are the false positives (FP), i.e., the predicted pKa is lower and the 

experimental pKa is higher than 7.4 or 8.5. Data in the lower right quadrant are the false 

negatives (FN), i.e., the predicted pKa is higher and the experimental pKa is lower than 7.4 

or 8.5. Data in the upper right quadrant are the true negatives (TN), i.e., both predicted and 

experimental pKa’s are higher than 7.4 or 8.5.

The percentages of TP, FP, TN, and TP are entered in a confusion matrix for evaluating the 

accuracy and reliability of single pH CpHMD predictions based on the 21 targets (Table 1). 

The accuracy for predicting thiolates or reactive cysteines at physiological pH, defined as 

(TN+TP)/(TN+TP+FN+FP), is 86% or 81%, respectively (Fig. 4). The precision (also 

known as the positive predictive value) of the predictions, defined as TP/(TP+FP), is 100% 

or 91%, respectively. The miss rate (also known as the false negative rate) of the predictions, 

defined as FN/(TP+FN), is 27% or 21%, respectively. A similar analysis for the replica-

exchange titrations gave an accuracy of 74% with a precision of 87% or 90% for predicting 

thiolates or reactive cysteines at physiological pH (Fig. S6). The accuracy is slightly lower 

due to the smaller data set (the additional targets with upshifted pKa’s were not included).

Comparison to the structure-based calculations.

To compare with the popular structure-based pKa calculation methods, Table 1 also lists the 

Cys pKa’s predicted by the PB solvers H++,18 MCCE,19 and DelphiPKa20 as well as the 

empirical method PROPKA.21 The RMSE’s range from 2.6 to 4.0, and the R values range 

from −0.48 to 0.61. The smallest error and best correlation is given by DelPhiPKa;20 

Harris et al. Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



however, it predicts that all Cys pKa’s are downshifted. With regards to prediction of 

thiolates or reactive cysteines at physiological pH, the accuracy of these methods is about 

50%, with the exception of DelphiPKa which gave 67% for predicting thiolates although the 

precision also 67% (Table S1). We suggest that the better performance of CpHMD relative 

to structure-based methods is the ability to capture pH-dependent formation of hydrogen 

bonds or salt bridges that are not present in the starting structure. As discussed above, 

Cys145 in AGT and Cys106 in DJ-1 have downshifted experimental pKa’s, and these 

downshifts were correctly predicted by CpHMD; however, the structure-based PB and 

empirical methods (except for DelPhiPka) predict either an upshift or no significant shift. 

Analysis suggests that the reason for this discrepancy is that CpHMD sampled the hydrogen 

bonds that are not present in the initial crystal structure.

CONCLUDING DISCUSSION

Based on a test set of 21 protein targets, we benchmarked the performance of single-pH and 

replica-exchange GBNeck2-CpHMD titrations for cysteine pKa calculations and predictions 

of thiolates or reactive cysteines at physiological pH. We found that 10-ns single pH and 4-

ns replica-exchange titrations gave similar RMSE (1.2–1.3) and R (0.8–0.9) for pKa 

calculations. The accuracy of predicting thiolates or reactive cysteines at physiological pH 

with single-pH titrations is 86 or 81% with a precision of 100 or 90%, respectively. The 

accuracy and precision with the 4-ns replica-exchange protocol are similar.

Given crystal structures, the calculated pKa’s from both protocols are in significantly better 

correlation with experiment. However, while the RMSE from the replica-exchange titrations 

using crystal structures is significantly decreased (0.95) relative to that (1.5) using the 

computationally mutated structures, the RMSE from the single-pH titrations based on the 

crystal structures is only slightly smaller (1.3 vs. 1.4). This difference can be attributed to the 

noise in the single-pH titrations, which also manifests itself in the poor fitting of the 

protonation fractions to the HH equation for several proteins. By contrast, replica-exchange 

titrations gave smooth titration curves for nearly all proteins. In addition to the reduction in 

statistical noise, our data also demonstrates that the pH replica-exchange protocol 

significantly accelerates pKa convergence, corroborating the previous findings by us40 and 

others using continuous and discrete constant pH methods.30–32 while the replica-exchange 

titrations gave converged pKa’s for all proteins at 4 ns per pH replica, the single-pH 

titrations for several proteins, e.g., A1AT, ACBPT17C, and HMCKS285A, did not converge 

even at 50 ns, due to persistent hydrogen bonds that resulted in a continued pKa decrease. 

Interestingly, the decreasing pKa’s of A1AT and ACBPT17C are associated with increasing 

deviations from experiment, whereas the decreasing pKa of HMCKS285A corresponds to an 

improved agreement with experiment. This explains why extending single-pH titrations from 

10 ns to 50 ns did not reduce the RMSE of the calculated pKa’s, although the errors may 

start to decrease with a significantly longer simulation time, e.g., hundreds of nanoseconds. 

Contrasting the single-pH titrations, hydrogen bond life time is shorter in replica-exchange 

titrations, which resulted in faster convergence and lower statistical noise. Nonetheless, for 

computationally mutated structures, it remains to be seen if extending the replica-exchange 

titrations can further reduce errors. This issue will be addressed in a future study with the 
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implementation of the asynchronous replica exchange scheme which allows users to perform 

replica-exchange CpHMD titrations on a single GPU card.

The benchmark data based on 21 proteins are encouraging; however, a caveat remains. For 

three phosphatase proteins, in which a deeply buried cysteine forms several strong hydrogen 

bonds (in the crystal structures), both CpHMD titrations (up to 50 ns in single pH mode or 4 

ns in replica-exchange mode) correctly predicted the protonation state at physiological pH 

but failed to yield pKa values as the cysteine remained deprotonated in the entire pH range. 

This failure may be attributed to a known limitation of GB simulations, which tend to 

overstabilize hydrogen bonding and/or restrict the extent of conformational changes of 

buried groups.40,72 However, it is also possible that a large conformational change may take 

place in order to break the strong hydrogen bonds and allowing protonation of the deeply 

buried cysteine. Such a conformational change may involve a large kinetic barrier, which 

was not surmountable with the limited sampling time. This issue will be investigated in our 

future work using the GPU implementations of the fully explicit-solvent and the GB-based 

CpHMD methods with asynchronous replica exchange (Harris and Shen, ongoing work).

Our data demonstrates that CpHMD titrations outperform the conventional structure-based 

PB and empirical methods for cysteine pKa calculations and predictions of and thiolates or 

reactive cysteines at physiological pH. The analysis showed that the ability of thiolate to 

accept hydrogen bonds is the major driving force for the pKa downshifts, while solvent 

exclusion in the absence of hydrogen bonding is the major determinant of the pKa upshifts. 

The ability of CpHMD titrations to reproduce experimental pKa downshifts for cysteines 

that do not form hydrogen bonds in the crystal structures arises from the sampling of pH-

dependent hydrogen bond formation, which is not accounted for by the structure-based 

methods. Our work also demonstrates that CpHMD titrations can reliably predict thiolates or 

reactive cysteines at physiological pH. These tasks are useful in preparing MD studies, 

understanding biological redox functions, and assisting covalent drug design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Convergence of the simulation accuracy.
(a) and (b) Time series of root-mean-square error (RMSE) and correlation coefficient (R) 

with respect to the experimental data in the single-pH titrations of the 15 proteins. (c) and 

(d) Time series of RMSE and R in the replica-exchange titrations of the 15 proteins.
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Figure 2: Cys145 thiolate in AGT is stabilized by hydrogen bonding.
(a) Occupancies of the hydrogen bond between Cys145 and Asn137 (cyan) or Tyr158 (red) 

at different pH. (b) Deprotonated fractions of Cys145 (gold) at different pH. (c) Zoomed-in 

view of the structural environment of Cys145 in AGT (PDB ID: 1EH657). Data from (a) and 

(b) were obtained from 10-ns single pH titrations.
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Figure 3: Cys106 thiolate in DJ-1 is stabilized by a protonated Glu and a doubly protonated His.
(a) Occupancies of the hydrogen bonds between Cys106 and Glu16 (red), His126 (cyan), or 

Gly75 (black) at different pH. (b) Deprotonated fractions of Cys106 (yellow) and His126 

(cyan) at different pH. (c) Zoomed-in view of the structural environment of Cys106 in DJ-1 

(PDB ID: 1P5F53).
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Figure 4: Performance of single-pH titrations for predicting cysteine pKa’s and identify thiolates 
at pH 7.5 or 8.5.
Comparison between experimental pKa’s and those obtained from 10-ns single-pH titrations 

of the entire data set of 21 proteins. Linear regression line is shown in black, and the 

correlation coefficient R and RMSE are given. Calculations based on crystal structures are 

shown in black, and those based on the computationally mutated structures in gold. The data 

are grouped into four quadrants around the dividing pH 7.4 (red) or pH 8.5 (cyan). A 

confusion matrix is shown on the right, with the rates for false positives (FP), true positives 

(TP), true negatives (TN), and false negatives (FN) given for thiolate predictions for pH 7.4 

(red) and pH 8.5 (cyan). See main text for more explanation.
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Table 1:

Comparison of calculated pKa’s from replica-exchange and single-pH GBNeck2-CpHMD titrations with 

experiment, Poisson-Boltzmann and empirical predictionsa

Protein PDB Residue Expt Replica Single pH H++ MCCE DelPhiPKa PROPKA

Crystal structures

AGT 1EH6 C145 5.373 6.7 6.4±0.01 9.5 8.3 5.3 10.6

HMCK 1I0E C283 5.674 5.6 6.3±0.13 9.1 6.8 6.0 10.4

DJ-1 1P5F C106 5.475 3.7 2.4±0.40 11.3 12.6 6.0 12.3

papain 1PPN C25 3.376 4.0 3.7±0.05 9.3 8.8 5.6 10.5

ppΩ 1PPO C25 2.976 3.7 3.1 ±0.12 9.4 7.6 4.9 7.5

A1AT 1QLP C232 6.977 7.3 6.5±0.08 7.3 8.3 5.5 9.1

MmsrA 2L90 C72 7.278 7.9 8.2±0.91 >12.0 16.3 6.6 13.1

AhpC 4MA9 C46 5.979 5.2 5.3±0.52 9.4 9.1 5.8 9.1

Cathepsin B 1THE C29 3.660 - 3.4±0.02 11.2 - 6.4 11.2

Ubc2 1JAS C88 10.280 - 9.4±0.55 9.8 - 6.2 9.1

Ubc13 1JBB C87 11.180 - 11.2±0.07 9.3 - 6.5 9.9

UbcH10C114S 1I7K C102 10.980 - 9.0±0.15 >12.0 - 6.4 12.7

RMSE 0.95 1.3(1.1)

R 0.81 0.74(0.92)

Computationally mutated structures

HMCKS285A 1I0E C283 6.774 9.8 9.3±0.12 9.3 6.6 5.9 11.2

ACBPM46C 1NTI C46 8.251 7.3 7.6±0.15 8.8 8.8 6.6 9.0

ACBPS65C 1NTI C65 9.051 7.8 8.0±0.05 8.8 9.4 6.7 9.6

ACBPT17C 1NTI C17 9.851 10.1 10.5±0.03 8.4 8.8 6.4 8.9

ACBPV36C 1NTI C36 9.551 - 8.9±0.11 9.0 - 6.2 8.9

ACBPE78C 1NTI C78 9.651 - 11.5±0.18 8.7 - 6.0 9.1

MmsrAE115Q 2L90 C72 8.278 8.7 8.0±1.21 >12.0 15.4 6.6 11.4

MbA125C 2MGE C125 8.481 8.7 8.7±0.21 8.3 8.8 6.6 9.2

MbG124C 2MGE C124 6.581 8.3 8.7±0.06 8.1 8.5 6.0 8.4

RMSE 1.5 1.4 (1.3)

R 0.08 0.2 (0.5)

Overall RMSE 1.2 1.3 (1.2) 3.62 4.22 2.60 4.02

Overall R 0.83 0.82(0.89) −0.48 0.23 0.61 −0.10

The pKa’s from the 4 ns (per replica) replica-exchange and 10 ns (per pH) single pH titrations are listed. For single pH titrations, the RMSE and R 

values in parentheses include the additional 6 proteins (see main text). For the PB-based H++,18 MCCE,19 and DelPhiPka,20 as well as the 

empirical PROPKA21 methods, data were taken from the previous publications if available,17,82 or computed with the H++,18 DelPhiPka20 and 

PDB2PQR83 (for PROPKA21) online servers.
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