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Explore a novel function of human 
condensins in cellular senescence
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Abstract 

There are two kinds of condensins in human cells, known as condensin I and condensin II. The canonical roles of 
condensins are participated in chromosome dynamics, including chromosome condensation and segregation during 
cell division. Recently, a novel function of human condensins has been found with increasing evidences that they play 
important roles in cellular senescence. This paper reviewed the research progress of human condensins involved in 
different types of cellular senescence, mainly oncogene-induced senescence (OIS) and replicative senescence (RS). 
The future perspectives of human condensins involved in cellular senescence are also discussed.
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Introduction
Condensins were firstly identified for their fundamen-
tal roles in establishment and maintenance of mitotic 
chromosome condensation in cell-free system from 
Xenopus laevis eggs [1, 2]. Until now, most multicellu-
lar eukaryotes reported have two kinds of condensins, 
termed as condensin I and condensin II [3–6]. The two 
kinds of condensins are also exist in human cells [7–10]. 
Both human condensins are pentameric complexes com-
posed of shared core SMC2/SMC4 (structural mainte-
nance of chromosomes, SMC) heterodimer(also known 
as hCAP-E/hCAP-C)and three accessory non-SMC 
subunits, including a kleisin subunit and two HEAT-
repeat proteins. They are hCAP-H(NCAPH), hCAP-
D2(NCAP-D2) and hCAP-G(NCAPG) for condensin 
I and hCAP-H2(NCAP-H2), hCAP-D3(NCAPD3) and 
hCAP-G2(NCAP-G2) for condensin II [10–12].

The canonical roles of human condensins are partici-
pated in chromosome dynamics, including chromosome 
condensation and segregation during mitosis [7–12]. 

Although both human condensins have similar com-
ponents and alphabetic structure, they show different 
nuclear distribution, localization on chromosomes and 
play distinct roles in chromosome dynamics during mito-
sis [9–13].

In detail, during interphase condensin I is present in 
the cytoplasm, whereas condensin II is enriched within 
the nucleus [10, 14, 15]. During mitosis, initially conden-
sin II participates in chromosome condensation within 
the nucleus in early prophase, whereas condensin I can 
interact with chromosomes only after the nuclear enve-
lope breaks down [11]. Human condensin I shows a 
two-step dynamic binding. Once nuclear envelope break-
down, human condensin I rapidly associated with mitotic 
chromosomes then remained constant from prometa-
phase to late metaphase and chromatin bound human 
condensin I increased again just from anaphase onset 
until late anaphase when it dissociated from chromo-
somes[11, 12]. Similarly, human condensin I complexes 
dynamically bind to chromosomes in two steps during 
prometaphase and early anaphase whereas human con-
densin II complexes are stably bound to chromosomes 
throughout mitosis. Localization of human condensin II 
is centrally confined, but condensin I reaches ∼50% of 
the chromatid diameter from its center [16]. It is indi-
cated that human condensin II but not condensin I is 
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more indispensible for the salt-dependent, reversible 
reorganization of condensin II-based axes in chromo-
some shaping [17]. Moreover, human condensins show 
a discontinuous pattern along mitotic chromosomes 
and play a major role in controlling the elastic stiffness 
of metaphase chromosomes. Depletion of condensin II 
impacts chromosome mechanics more than depletion 
of condensin I and stiffness of the metaphase chromo-
some is more dependent on condensin II than on con-
densin I [18].This idea is somewhat inconsistent with a 
former study. It has been demonstrated that human con-
densin I but not condensin II can associate with KIF4A 
to confer rigidity to centromeres [19]. During anaphase, 
when human condensins are depleted, chromosomes are 
formed with improperly structured kinetochores and 
chromosome bridges appear in the cell [20]. Likewise, 
when human condensins are knocked down or dysfunc-
tion in human cells, chromatin bridges between daugh-
ter cells in anaphase and multiple nuclei in single cells are 
observed[21, 22]. During telophase, human condensins 
are involved in the mitotic chromosome conformation 
transformation into the interphase state as well. Recently, 
it is identified telophase as a critical transition between 
condensin- and cohesin-driven chromosome folding 
[23]. Consistently, human condensin II can initiate sis-
ter chromatid resolution during S phase [24]. Altogether, 
the differences in the timing of binding to chromosome 
and mutant phenotypes of dysfunction strongly indicated 
that human condensin I and II have fundamentally dis-
tinct functions during mitosis. Different nuclear distribu-
tion, localization on chromosomesof human condensin I 
and human condenisn II during cell cycle are shown as 
Fig. 1.

In addition to their mitotic functions, human con-
densins also play important roles in the prestressed 

condensed state of the nucleus, homologous recombina-
tion repair and gene expression during interphase [20, 
24–35]. Beyond the multiple roles of human condensins 
mentioned above, increasing evidences show a novel 
function of human condensins in cellular senescence [36, 
37].

Cellular senescence plays important protective roles in 
development, tissue homeostasis, wound healing, mul-
tiple age-related diseases and cancer [38, 39]. Cellular 
senescence is a stable state of irreversible cell cycle arrest 
caused by various forms of cellular stresses. Senescent 
cells lose DNA replication ability and still maintain cel-
lular metabolic activity [40, 41]. Especially, cellular senes-
cence can also be induced by pathophysiological stimuli, 
such as ROS (reactive oxygen species), oncogene acti-
vation, cytotoxic drugs and aging [38]. Nowadays four 
kinds of cellular senescence are recognized, i.e., onco-
gene-induced senescence (OIS), replicative senescence 
(RS), stress-induced premature senescence (SIPS) and 
therapy-induced senescence (TIS) [37, 38, 41, 42]. OIS 
is induced by oncogene expression and RS is induced by 
telomere shortening [37, 38, 41, 43–45]. SIPS is induced 
by various external signals, such as UV, hyperoxia, hydro-
gen peroxide, etc. [41, 45]. TIS is caused by traditional 
cancer therapy and it can be an effective way to treat can-
cer while lessening side effects [42, 46–48].

Although human condensins play classical roles in 
chromosome dynamics during mitosis, their nonmitotic 
functions have been payed more and more attention than 
before. As a novel function of human condensins in cel-
lular senescence during interphase, much more problems 
remain to be further explored. This paper reviewed the 
research progress of human condensins involved in dif-
ferent types of cellular senescence, mainly oncogene-
induced senescence (OIS) and replicative senescence 

Fig. 1  Different nuclear distribution, localization on chromosomes of human condensin I and condensin II during cell cycle (one chromosome is 
illustrated as an example)
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(RS). The future perspectives of human condensins in 
cellular senescence are also discussed.

Human condensins involved in cellular senescence
Firstly, human condensins are involved in OIS. Initially, 
human condensin II is found to play a novel role in OIS. 
Overexpression of human condensin II, but not human 
condensin I, induces cellular senescence and senescence-
associated heterochromatic foci (SAHF) formation and 
depletion of human condensin II inhibits the establish-
ment of OIS [36]. In detail, the N-terminus truncated 
variant, hCAP-H2ΔN (lacking the first 50 amino acids) is 
mostly localized at the nuclear matrix and accumulates in 
quiescent and senescent cells. The ΔN variant exists as an 
insoluble nuclear structure while the full-length hCAP-
H2 associates with mitotic chromosome. Overexpression 
of the full-length hCAP-H2 and ΔN variant can signifi-
cantly induce senescence. Expression of hCAP-H2ΔN 
was increased during OIS. Moreover, hCAP-H2 knock-
down (KD) also inhibited Ras-induced senescence. It is 
suggested that human condensin II drives senescence via 
nuclear/genomic reorganization [36]. Recently, the roles 
of human condensin II are reported to participate in cel-
lular senescence through compartmental reorganiza-
tions coupled to gene regulation [37]. Human condensins 
strengthen and expand euchromatic A compartments 
and promote/maintain BA transitions upon senescence. 
Concretely, localization of hCAP-H2 is firstly studied and 
the results show they localize at active senescence genes, 
highly transcribed housekeeping genes, and potential 
enhancers. Next, by compared the general organization 
of the human genome into A and B compartments in OIS 
and growing cells, it is found that A compartments in 
OIS cells were significantly enlarged (~ 50%) compared to 
counterparts in growing cells. The increased BA transi-
tions result in the significant enlargement of A compart-
ments in OIS cells compared to growing cells. In efforts 
to find a functional link between senescence-dependent 
compartmental reorganizations and condensin, the fol-
lowing results show that human condensin II binding 
and dissociation are involved in BA and AB transitions 
and this mechanism is conserved between OIS and RS. 
In addition to promoting and maintaining BA transi-
tions, human condensin II also play important roles to 
maintain euchromatic A compartments and facilitate 
genomic contacts in A compartments, that is, to rein-
force A compartments. Further research suggests that 
human condensin II plays a direct role in the upregula-
tion of senescence genes because that many genes upreg-
ulated upon OIS and downregulated by hCAP-H2 KD 
(knock down) are hCAP-H2 binding genes. Collectively, 
human condensins are not only involved in euchromatic 
A compartments and BA transitions, but also involved in 

the upregulation of senescence genes upon senescence. 
Therefore, the roles of human condensin II in cellular 
senescence may be through compartmental reorganiza-
tions coupled to gene regulation [37].

Secondly, human condensins are involved in RS. SMC2 
and SMC4, core subunits of human condensins, are dem-
onstrated to be down-regulated in the serially passaged 
fibroblast cells by proteomic study and they are sup-
posed to play an important role in RS [41]. Consistently, 
several subunits of human condensin I and II (mainly 
non-SMC subunits, i.e., hCAP-D2, hCAP-D3, hCAP-
G, hCAP-G2, hCAP-H and SMC4) are downregulated 
in KDM3A- or KDM4C-knockdown human umbilical 
cord-derived stromal cells (hUCMSCs) or upregulated 
in KDM3A or KDM4C-overexpressing hUCMSCs (49). 
Especially, hCAPD-2 and hCAPG-2 are positively regu-
lated by KDM3A and KDM4C with their H3K9 demethy-
lase activity and human condensins regulated by KDM3A 
or KDM4 might be critical for stability of the heterochro-
matin structure during senescence. Recently,as men-
tioned above, human condensin II is involved in BA and 
AB transitions not only during OIS but also during RS 
[37].

Hitherto, there are few literatures published from 
the point that human condensins are involved in 
stress-induced premature senescence (SIPS) and ther-
apy-induced senescence (TIS) [36, 37, 49]. Abnormal 
expression of subunits of human condensins and changes 
of structure of chromosomes in four types of cellular 
senescence are shown in Table 1.

Conclusions
Apart from the multiple canonical functions of chro-
mosome dynamics played by human condensins dur-
ing mitosis and interphase, increasing evidences show 
a novel function of human condensins in cellular senes-
cence. Human condensins play important roles in the 
main two types of cellular senescence, i.e. oncogene-
induced senescence (OIS) and replicative senescence 
(RS).

Future perspectives of human condensins in cellular 
senescence
To explore a novel function of human condensins in cel-
lular senescence, three future perspectives are presented 
as follows.

Firstly, how human condensins involved in inter-
phase nuclear reorganization during cellular senescence 
needs further study. Both human condensin I and II are 
required for maintenance of the interphase nuclear archi-
tecture. Human condensins regulated by KDM3A or 
KDM4 might be critical for stability of the heterochroma-
tin structure during senescence [49]. Depletion of human 
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condensin II leads to dramatic disruption of nuclear 
architecture and nuclear size [50]. Interaction between 
human condensin II and SAHF provide an additional 
platform for studies on condensins participating dynamic 
interphase chromatin reorganization [51]. Recently, 
human condensin II subunit hCAP-H2 is demonstrated 
to associate with shelterin protein TRF1 and be required 
for telomere stability [52]. Furthermore, there is small 
fraction of human condensin I retained and be active in 
both gene regulation and chromosome condensation in 
interphase nuclei [53–55]. Although human condensin 
II is reported to be involved in SAHF formation and BA 
and AB transitions, whether human condensin I involved 
these process is still unclear [36, 37]. It is also intriguing 
to explore what roles of human condensin I play in cellu-
lar senescence during interphase.

Secondly, the different functions and possible inter-
plays of human condensins in cellular senescence, quies-
cence and carcinogenesis needs further study. Although 
cell cycle differences exist between cellular senescence 
and quiescence, either cellular senescence or quiescence 
misregulation is implicated in cancer progression [39, 42, 
56, 57]. It is surprising that condensins are involved in all 
the three processes [36, 37, 41, 49, 58–62]. In a mutant 
mouse carrying a constitutive missense mutation in 
the condensin II kleisin-β subunit Caph2, the mutation 
specifically causes chromatin decondensation and con-
densin II is demonstrated to be required for peripheral 
T-cell development and maintenance of the quiescent 
state [58–60]. With further analysis, the mutant mice 
show condensin II-dependent thymic lymphomas for-
mation through tissue-specific genome instability [61]. 
Recently, in the quiescent state of Saccharomyces cerevi-
siae, condensin is required for widespread transcriptional 

silencing and dramatic chromatin condensation through 
binding throughout the budding yeast genome and 
induces the formation of large chromatin loop domains 
[62]. Hitherto, apart from cellular senescence and tumor-
genensis, whether human condensins play a role in qui-
escence is unclear. In addition, how human condensins 
involved the three processes need be extensively explored 
[41, 49, 52, 62]. It is promising to explore possible inter-
plays of cellular senescence and tumor formation and 
anticancer therapy from the viewpoints of human con-
densins [63–65].

Finally, whether some crosstalks exist in condensins, 
cohesins and SMC5/SMC6 complexes is yet unclear 
during human cellular senescence. SMC complexes 
have ancient origins and share structural similari-
ties. Condensin, cohesin and SMC5/SMC6 complex 
are three types of evolutionarily conserved SMC com-
plexes within eukaryotic cells and the three complexes 
are all reported to be involved in cellular senescence 
in different organisms. Concretely, loss of the recruit-
ment cohesin and condensin I complexes to pericen-
tromeric regions causes to block efficient repair of 
the regions and leads to formation of persistent DNA 
damage foci in senescent human adult stem cells [66]. 
Depletion of human SMC5/6 subunits by RNAi inhib-
its telomere homologous recombination and causing 
telomere shortening and cellular senescence in human 
ALT (ALT, alternative lengthening of telomeres) cells 
[67, 68]. Similarly, SMC5/SMC6 complex as a target of 
Mms21-dependent sumoylation is also involved in cel-
lular senescence in Saccharomyces cerevisiae [69]. Of 
note, interaction of condensin and cohesin is reported 
as a chromosome folding intermediate during telo-
phase as a critical transition between condensin- and 

Table 1  Abnormal expression of subunits of human condensins and changes of structure of chromosomes in four types 
of cellular senescence

“↑” is a symbol as upregulation of expression, “↓” is a symbol as downregulation of expression

Types of cellular 
senescence

Abnormal expression of subunits 
of human condensins

Changes of structure of chromosomes Number of literature

OIS hCAPH2↑
hCAPH2ΔN↑
SMC2↓, SMC4↓

Formation of senescence-associated heterochro-
matic foci (SAHF), drives senescence via nuclear/
genomic reorganization; strengthen and expand 
euchromatic A compartments and promote/main-
tain BA transitions upon senescence

[36, 37, 41 (Supplementary 
Fig. 8)]

RS SMC2↓
SMC4↓
hCAP-D2(NCAPD2)↓
hCAP-D3(NCAPD3)↓
hCAP-G(NCAPG)↓
hCAP-G2(NCAPG2)↓
hCAP-H()(NCAPH)↑, hCAPH2((NCAPH2)↑

SAHF were not detected in RS cells, the sizes of 
both A and B compartments became significantly 
enlarged and the numbers of A and B compart-
ments decreased; heterochromatin reorganization 
to restrain DNA damage and progression of MSC 
senescence via transcriptionally activating human 
condensins; telomere shortening

[37, 41, 43–45, 49 (Supple-
mentary Figure S4)]

SIPS Unpublished [37, 41, 49]

TIS Unpublished [37, 41, 49]
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cohesin-driven chromosome folding [23]. Distinct roles 
of cohesin and condensin are required in the estab-
lishment of 3D nuclear organization in Drosophila 
[70]. Common kleisin-hinge interaction and different 
modes of regulation are also proposed in condensin 
and cohesin in fission yeast [71]. Likewise, functional 
interplay between cohesin and Smc5/6 complexes is 
reviewed for significant overlap of their location, func-
tion and crosstalk between these two complexes [72]. 
Similarly, there are also papers about interactions with 
condensin and Smc5/6 complexes. Depletion of Smc5 
and Smc6 results in abnormal distribution of con-
densins and chromosome segregation errors in human 
cells [73]. Furthermore, mutation of SMC5 also leads 
to abnormal distribution of condensin along chro-
mosomes with decreased condensin accumulation at 
pericentromeric regions and enrichment of condensin 
on chromosome arms in mouse embryonic stem cells 
(mESCs) [74]. There are complex chromatin reorgani-
zations in senescent cells [75–77]. Recently, different 
models of SMC complex function have been presented 
[78–80]. Based on all mentioned above, we propose 
that senescence-associated chromatin reorganization 
may need cooperative function of the three SMC com-
plexes, but the molecular mechanism is yet unknown.

Taken together, human condensins play important 
roles in cellular senescence. It is worthy to be explored 
for the new multifunctions of human condensins in cel-
lular senescence.
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