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Abstract

Genomewide association studies (GWAS) across psychiatric phenotypes have shown that common 

genetic variants generally confer risk with small effect sizes (OR<1.1) that additively contribute to 

polygenic risk. Summary statistics derived from large discovery GWAS can be used to generate 

polygenic risk scores (PRS) in independent, target datasets to examine correlates of polygenic 

disorder liability (e.g., does genetic liability to schizophrenia predict cognition). The intuitive 

appeal and generalizability of PRS have led to their widespread use and new insight into 

mechanisms of polygenic liability. However, presently, when applied across traits they account for 

small effects (less than 3% of variance) and are relatively uninformative for clinical treatment and, 

in isolation, provide no insight into molecular mechanisms. Larger GWAS are needed to increase 

their precision and novel approaches integrating various data sources (e.g., multi-trait analysis of 

GWAS) may improve the utility of current PRS.
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It has long been recognized that psychiatric phenotypes travel in families (Schulze et al., 

2004). By the 1820s, the first dedicated psychiatric hospital in the world, Bethlem, routinely 

asked whether presenting illnesses were hereditary (Plomin et al., 2013). In the early 20th 

century, family- and twin-based designs were used to empirically examine the latent genetic 

architecture of psychiatric phenotypes (Kendler, 2015). For example, in the first large scale 

systematic modern psychiatric genetics study, Rüdin examined rates of schizophrenia, 

known as dementia praecox at the time, among 2,733 siblings of 725 diagnosed probands 

(Rudin, 1916). Family and twin studies conducted over the subsequent century have largely 

confirmed early observations that, much like other complex traits, psychiatric disorders and 

related phenotypes (e.g., personality, brain volume) are generally moderately to highly 

heritable with a complex non-Mendelian polygenetic architecture that is importantly 

moderated by experience (Polderman et al., 2015). Clinically, the results from early family-
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based latent genetic research were initially used to enact eugenics programs (e.g., forced 

sterilization) in egregious and ill-fated efforts to reduce severe mental illness (Schulze et al., 

2004) before informing our understanding of disease etiology, comorbidity, and nosology 

(Gilbertson et al., 2002, Posthuma and Polderman, 2013). The direct clinical application of 

latent genetic research is inherently limited; it cannot inform genetic risk beyond simple 

assessments of familial history, detect actionable therapeutic pathways (e.g., specific 

molecular pathways through which latent genetic risk is manifested), or lead to generalizable 

individually tailored treatments.

Advances in molecular genetic knowledge and technology facilitating the examination of 

specific measured genetic variation generated considerable enthusiasm that clinically-

relevant and actionable results would soon be obtained [e.g., mechanistic insight, 

identification of treatment targets, personalized medicine (Craddock and Owen, 1996)]. 

Early hypothesis-driven (candidate gene) efforts adopted a bottom-up approach by studying 

variants with putative functional implications [e.g., COMT rs4680 (Egan et al., 2001), 

ADH1B rs1229984 (Thomasson et al., 1991), 5-HTTLR within SLC6A4 (Lesch et al., 1996, 

Caspi et al., 2003), MAOA promoter variant (Caspi et al., 2002)] within pathways (e.g., 

serotonin, dopamine, alcohol metabolism) known to be associated with psychiatric 

expression. Complementary studies probed biological [e.g., neural phenotypes (Hariri et al., 

2002, Egan et al., 2001)] and behavioral [e.g., working memory (Goldberg et al., 2003)] 

mechanisms through which such putative risk may manifest (Bogdan et al., 2017) as well as 

how genetic variation may impact treatment response (Perlis et al., 2010).

In the past decade, technological advancements and related cost reductions, combined with 

the realization of the candidate gene research limitations (Duncan and Keller, 2011) and 

unprecedented collaborative team science have encouraged the transition to genomewide 

association studies (GWAS) and the use of a top down scientific approach (i.e., from 

associations with clinical manifestations to more basic biological mechanisms)(Kendler, 

2013, Visscher et al., 2017)]. GWAS results have validated the role of some candidate loci 

[e.g., rs1229984 for alcohol dependence (Gelernter et al., 2014)] and genes [e.g., SIRT1 
(CONVERGE, 2015), DRD2 (Schizophrenia Working Group of the Psychiatric Genomics, 

2014)], but not others [e.g., COMT rs4680 and schizophrenia (Schizophrenia Working 

Group of the Psychiatric Genomics, 2014); but see also meta-analytic work supporting this 

association with evidence of recessive mode of inheritance (Gonzalez-Castro et al., 2016)], 

and led to the discovery of replicable associations with novel variants [e.g., CACNA1C 
(Ferreira et al., 2008)]. More broadly, results from GWAS have profoundly reshaped our 

understanding of the genetic architecture of mental illness in two important ways. First, our 

hypotheses regarding the nature of biological contributors to disease were inadequate. Not 

only was our focus on specific pathways (e.g., dopamine for addictions; serotonin for 

depression) relatively naïve, but our estimates of the effect size associated with single 

variants was far too optimistic. We now know that, with few exceptions [e.g., APOE, 

rs429358 and rs7412 haplotypes and Alzheimer’s Disease (Corder et al., 1993)], individual 

common variants are associated with small effects [e.g., odds ratios < 1.1 (Schizophrenia 

Working Group of the Psychiatric Genomics, 2014)]. Our second lesson is more 

encouraging - the additive effects of independent and commonly occurring variants, when 

weighted by their association with a disorder or related construct in an adequately powered 
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GWAS (Figure 1), are reliably predictive of variance in the same and related phenotypes 

(Figure 2; Tables 1–6). These additive scores, which we refer to as polygenic risk scores 

(PRS),1 along with other polygenic approaches (e.g., pathway-based analyses, machine 

learning, LD score regression) hold tremendous potential to contribute to our etiologic 

understanding of psychopathology and quantification of individual risk that may ultimately 

contribute to advances in the characterization and treatment of mental illness.

The Elephant in the Room: Why do Genetic Research

To appreciate achievements in psychiatric genetics and to confront emerging challenges, we 

must, at the outset, examine whether studies aimed at identifying disease-related genetic 

variation are worthwhile. In particular, critics have argued that risk-attributable effect sizes 

are too modest, at least for common variants (e.g., OR < 1.1), to be therapeutically 

meaningful. From a public health perspective, only a few might argue that highly heritable 

traits, such as Autism Spectrum Disorders, Schizophrenia, Bipolar Disorder and Late-Onset 

Alzheimer’s Disease should not be interrogated using genetic approaches. However, some 

may propose that the pursuit of common variant association identification has either not 

yielded sufficiently new discoveries or, as for Schizophrenia, has reached an asymptote 

where the clinical relevance of every new discovery may not be as proportionally related to 

magnitudes of sample size, effort and continued funding, particularly as newly discovered 

variants are likely to be associated with increasingly smaller effect sizes. Similarly, there has 

been skepticism regarding investment of resources to gene discovery for disorders such as 

depression and addictions (Merikangas and Risch, 2003), that are less heritable. The 

skeptical argument is that such conditions are amenable to environmental intervention and 

therefore, building a better genetic model is more a source of intellectual self-gratification 

than of consequence to public health.

We fundamentally disagree with the position that the search for common variants associated 
with psychopathology is no longer relevant. Gene discovery, for disorders with moderate and 

high heritability, continues to be essential from two perspectives: mechanistic insight, and 

treatment improvement. Indeed, GWAS would be less appealing if research were to cease at 

gene discovery. This is rarely the case. However, the progress from discovery and replication 

of a locus to the outline of its etiologic significance takes time, resources, and collaborative 

interdisciplinary science (International Schizophrenia et al., 2009, Sekar et al., 2016).

Mechanistic insight:

Systematic translational research inspired by genetic association has strengthened our 

understanding of gene-brain/body-behavior relationships and identified potential therapeutic 

pathways. We briefly illustrate with two examples:

Immune pathways to schizophrenia: The most strongly linked common genetic 

variation to schizophrenia was identified through GWAS and resides within the major 

histocompatibility complex (MHC) region (e.g., rs115329265 OR=1.21, p≈2.48e−31) 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014). Seven years following 

1Scores are also referred to as genetic risk scores (GRS) or polygenic scores (PGS) within the broader literature.
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the initial identification of this region for schizophrenia (International Schizophrenia et al., 

2009), Sekar and colleagues (2016) distilled the MHC genetic signal, in part, to complex 

structural variation within the complement component 4 gene (C4) (Sekar et al., 2016). C4 is 

a component of the innate immune system’s non-specific defense against foreign pathogens, 

and cellular debris that has also been implicated in the pruning of synapses. These 

researchers also showed that C4 variation altered brain C4 expression proportional to 

schizophrenia risk and that C4 mediated synaptic pruning during postnatal development in 

mice. Collectively, these results suggest that the MHC genetic signal for schizophrenia may 
be partially attributable to variability in C4-related synaptic pruning, which ultimately may 

be leveraged for treatment and/or prevention.

HPA axis regulation and risk for stress-related disease: Genes identified outside 

of GWAS have also produced promising insights. Work pioneered by Binder, Ressler, and 

colleagues has linked variation in FKBP5 to pleiotropic stress-related health effects (e.g., 

PTSD, depression, Alzheimer’s disease, and aging) and related biological correlates (e.g., 

cortisol response, amygdala function) (Zannas et al., 2016). FKBP5 is a critical regulator of 

the hypothalamic-pituitary-adrenal (HPA) axis; it is a co-chaperone of the glucocorticoid 

receptor (GR) complex that diminishes GR sensitivity to cortisol resulting in an impaired 

ability of the HPA axis to return to homeostasis and transcriptionally regulate the genome. 

Through a series of programmatic experiments, Klengel and colleagues (Klengel et al., 

2013) have shown that increased GR-stimulated FKBP5 expression observed among 

individuals with at least one T allele at rs1360780 may arise from alterations in the 3D 

structure of FKBP5. The T allele brings a long range enhancer region in intron 2 into 

physical contact with the transcription start site (TSS) thereby allowing it to affect 

expression. Effects of these conformation changes can be further compounded by T-allele 

specific childhood stress-related demethylation of a functional glucocorticoid response 

element within intron 7, which also contacts the TSS. Demethylation here, which some 

evidence suggests may only be stable following stress exposure early in life, enhances 

FKBP5 expression in the context of GR stimulation, resulting in a further reduction of HPA 

axis negative feedback. It is thus possible that the 3D conformation changes lead to a 
prolonged stress response that, when coupled with early life stress exposure, results in 
lasting epigenetic changes further impairing HPA axis regulation including its ability to 
influence the transcriptome. While recent large-scale GWAS of stress-related disorders (e.g., 

PTSD and depression) have not identified variants in FKBP5 (Duncan et al., 2017, Stein et 

al., 2016, Wray and Sullivan, 2017), this is unsurprising given the highly interactional nature 

of these molecular mechanisms and trauma exposure during early life (i.e., without 

GWASxE such effects would not be expected).

These two examples demonstrate that analyses of common single genetic variants, from 

GWAS and other empirical research, remains relevant and incredibly important in our 

polygenic world by identifying potentially clinically informative and actionable mechanistic 

pathways. They also underscore the premise that moderately heritable traits (e.g. PTSD h2 

~40%; (Cornelis et al., 2010)) that impose considerable personal and public health burden 

(Friedrich, 2017) are worthy of genetic inquiry.
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Treatment insights:

Accumulated wisdom cautions against dismissing the potential clinical relevance of loci that 

are associated with small effects as they may provide flags for potential therapeutic targets. 

Perhaps the most convincing example of how genetic associations with small or modest 

effect sizes can have great treatment potential comes when considering statins, the first line 

drug of choice for the treatment of high cholesterol. Statins, developed in the 1970s, work by 

competitively inhibiting HMG-CoA reductase within the cholesterol synthesis pathway. 

Subsequent candidate genetic and GWAS-based investigations linked common genetic 

variation within the HMG-CoA reductase gene (HMGCR) to cholesterol. However, the 

effect sizes of such common genetic variation on cholesterol and cardiovascular risk are 

miniscule (i.e., < 20×) when compared to the effect of statins (Willer and Mohlke, 2012, 

Barrett et al., 2015). For example, the HMGCR SNP rs12916 reduces LDL cholesterol levels 

by 2.5 mg/dl for each copy of the protective allele, with even smaller associations with 

coronary artery disease, while statins typically decrease LDL by 14–70 mg/dL. This 

example is not unique. Similar observations of large medication effects targeting proteins in 

which common genetic variation is more modestly associated with disease expression, have 

been observed across a host of phenotypes (e.g., bone density and estrogens (Hirschhorn and 

Gennari, 2008)). Indeed, a recent investigation finds that drug targets with evidence of 

disease association through GWAS are twice as likely to be met with success (Nelson et al., 

2015). These results suggest that common genetic variation linked to intermediate 

phenotypes (e.g., cholesterol for coronary artery disease), and also with disease risk at 

modest effect sizes, have the potential for great therapeutic value. Similar expectations for 

psychiatric disorders are not unrealistic (Breen et al., 2016, Wendland and Ehlers, 2016). 

GWAS may be a particularly fruitful pathway to such discovery, especially within the field 

of psychiatry, which has thus far struggled to identify mechanistic pathways that may be 

leveraged for treatment outside of happenstance [e.g., the observed mood benefits of an 

agent developed to treat tuberculosis that inhibited monoamine oxidase and led to the 

development of modern antidepressant medications (Ramachandraih et al., 2011)].

In addition to identifying therapeutic targets, molecular genetic variation may also be used to 

personalize therapeutic options for patients. Such pharmacogenomics approaches have been 

extraordinarily successful in personalizing cancer care and elucidating treatment pathways 

(Wheeler et al., 2013). The genetic architecture of clinically relevant psychological traits and 
psychiatric disorders is more complex and any such diagnostic genetic panel for these highly 
polygenic conditions should be viewed with extreme caution. Nonetheless, genetic research 

is currently bearing clinically-applicable fruit - for example, rs16969968 within CHRNA5, is 

a common missense polymorphism strongly associated with tobacco smoking (b=1.03, 

p≈3×10−73 (Tobacco and Genetics, 2010). This locus moderates the efficacy of treatment 

and influence numbers needed to treat [NNT (Bierut et al., 2014)]; one study found that 

while 4 individuals with the high-risk smoking haplotype needed to be treated to benefit one 

individual (NNT), the corresponding estimate for those with the low-risk haplotype was 

>1000 (Chen et al., 2012). Further, inspired by associations between FKBP5 and stress-

related psychopathology, initial trials of FKBP5 inhibitors in rodent models of stress have 

produced promising results (Gaali et al., 2015).
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If we are convinced of the value of genetic research (more specifically, common variant 

discovery and mechanistic probing), but also cognizant of polygenicity, statistical power, 

and the inherent limitations of nosological boundaries (e.g., heterogeneity and comorbidity) 

and prior mechanistic knowledge, how might genetic research be leveraged to inform 

clinical psychology? Polygenic risk scores (PRS) may usefully contribute to the 

identification of disorder-related risk factors, our understanding of comorbidity, and begin to 

provide insights into the developmental trajectory of psychiatric phenotypes as well as their 

course, treatment, correlates, and underlying pathophysiologies.

Polygenic Risk Scores: A Bridge Between Population Variation and 

Individual Differences

What are PRS

In simple terms, a polygenic risk score is a cumulative index of measured genetic liability to 

a disorder. PRS are similar to “heritability” (h2) in that they represent, to some degree, the 

aggregate and additive effects of segregating loci of small effect (see also section: 

Differences from other Heritability Metrics). Similar to traditional twin estimates of narrow 

heritability, PRS are additive in nature, consistent with numerous illustrations that support 

the widespread role of additivity in complex genetics (Hill et al., 2008). Several excellent 

reviews, both of a technical/practical and interpretive nature, have been written about the 

utility of PRS (Wray et al., 2014, Chatterjee et al., 2016, Bogdan et al., 2017, Plenge et al., 

2013, Dudbridge, 2016). Here, we provide a brief theoretical and practical overview, before 

exemplifying how PRS approaches have begun to inform the field of clinical psychology and 

considering ways forward.

PRS Practicalities

Figure 1 illustrates the basic process of deriving a PRS, the steps to which are briefly 

described here:

STEP 1: Identify a well-powered discovery GWAS in which your sample is not 
included and obtain summary statistics from that analysis.—The remarkable 

popularity of PRS is in part attributable to the increasing availability of full summary 

statistics from discovery GWAS, a data-sharing approach spearheaded by the PGC (https://

www.med.unc.edu/pgc/results-and-downloads), who not only share the summary statistics of 

their GWAS but also do so prior to formal publication and host results files from other 

consortia and investigators. PRS are derived by applying the “effect” alleles and their 

corresponding effect sizes (odds-ratios or beta coefficients) from a discovery GWAS to an 

independent, target sample (Figure 1). Because the effect size is used to weight allelic risk, 

its reliability is critically important. Hence, the better powered the discovery GWAS is, 

which is undoubtedly related to sample size, but also, arguably, to phenotypic relevance and 

strength of assessment, as well as sample composition (CONVERGE, 2015), the greater the 

confidence we might have in the resulting effect sizes. In Figure 1, we use the example of 

the current largest GWAS of Schizophrenia which includes 36,989 cases and 113,075 

controls (Schizophrenia Working Group of the Psychiatric Genomics, 2014). While it is not 

necessary for the discovery GWAS to have identified replicable genomewide significant loci 
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(i.e., association p-values < 5 × 10−8), the ability for a GWAS to identify such loci may be 

seen as evidence for statistical power and its potential utility for PRS analyses.

STEP 2: Establish commonality between your target dataset and the 
discovery GWAS.—PRS are amenable to differences in SNP content across the discovery 

and target samples; it is preferable to begin by working with imputed data in both the 

discovery and target dataset to maximize convergence. First, SNPs in the target dataset that 

overlap with SNPs in the discovery GWAS are extracted. Second, the target data are aligned 

to the discovery dataset (i.e., individual genotypes are oriented to the same strand of DNA 

and strand-ambiguous SNPs - A/T or G/C - are either excluded or closely evaluated). These 

steps are critical to ensure that effect sizes from the discovery GWAS are being accurately 

applied to the target sample. Typically, sex chromosomes are also removed. Traditional 

quality control indices should be applied to the target dataset including minor allele 

frequency cutoffs, Hardy-Weinberg-equilibrium testing, missingness by individual and 

marker exclusion, cryptic relatedness exclusion, sex check, ancestral outliers, and imputation 

quality.

STEP 3: Eliminate SNPs in high LD.—Correlated variants can represent non-

independent association signals that, if ignored, could overweight PRS in favor of loci in 

high LD, by essentially counting a single signal multiple times. Indeed, not thinning a PRS 

according to LD can reduce their precision (Wu et al., 2013). As a result, it is recommended 

that variants be clumped so that the LD statistic, r2, is no greater than 0.10. When there are 

correlated SNPs, it is recommended to select the SNP in your target dataset based on the 

strength of association in the discovery GWAS (i.e., p-value-informed clumping). For 

example, if there are 80 SNPs forming an LD block, the SNP selected to represent this 

cluster should be the one with the largest effect size in the discovery GWAS. Not clumping 

data may limit the polygenic interpretability of PRS, especially at more significant p-value 

thresholds where an entire PRS could be driven by a series of correlated variants; but see 

Improvements in PRS estimation for alternatives. Studies also commonly exclude areas of 

complex linkage structure (e.g., MHC region) or retain one representative SNP across such 

regions.

STEP 4: Calculate PRS for each individual in your sample.—For each individual 

in the target sample, multiply the effect size (if ORs, the log-transformed allelic OR) 
observed in the discovery GWAS by the number of effect alleles for that variant that the 
individual possesses. In our example (Figure 1), for each polymorphism, this product term 

represents an individual’s liability to schizophrenia that is attributable to the alleles present 

at that single variant. These individual allele scores can then be averaged across the genome 

to form an overall polygenomic liability, or PRS, for each individual. Typically, an 

investigator creates multiple PRS that represent degrees of type II error/alpha (i.e., varying 

p-value thresholds) in the discovery GWAS. Therefore, one might aggregate all variants that 

were significant at p<1.0, p < .50, p < 0.30, p < .10, < 0.05, p < 5 × 10–3, p < 5 × 10–5 and p 

< 5 × 10–8 in the discovery GWAS, generating a person-specific PRS for schizophrenia at 

each p-value threshold. To limit multiple testing, one could select a p-value threshold that is 

most predictive of variability of the GWAS phenotype or related phenotype in an 
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independent sample or use permutation based testing to assess whether the overall pattern of 

associations across p-value thresholds is more than expected by chance within the target 

dataset (Carey et al., 2016b). PRS can then be used as continuous variables within traditional 

analytic settings (e.g., regression). Typical covariates in further analyses include factors that 

confound gene - outcome analyses, such as ancestry differences, age, and sex.

Software programs including PLINK (Purcell et al., 2007, Chang et al., 2015) and 

integration with PRSice (Euesden et al., 2015b) facilitate PRS calculation.

Technical Considerations.

Sample size:  This review underscores the rational range of effect sizes that should be 

considered when determining sample sizes that would be amenable to PRS analyses (Figure 

2). There are two issues to consider here: how predictive is a PRS, and how large of a target 

sample will usefully detect the effects of that PRS on an outcome. Several technical papers 

discuss the predictive utility of PRS - So and Sham (So and Sham, 2017) found that SCZ 

PRS (Schizophrenia Working Group of the Psychiatric Genomics, 2014) had the greatest 

predictive power of all psychiatric disorders (max Area Under the Curve, AUC = 0.82), 

which was even higher than some health-related traits [e.g., Type 2 Diabetes and Coronary 

Artery Disease max AUC = 0.61 (So and Sham, 2017)]. Predictive power for psychiatric 

disorder PRS appears to increase at more inclusive p-value thresholds, unlike metabolic 

traits, which is consistent with a greater degree of expected polygenicity. Further, psychiatric 

PRS are modestly superior in performance when drawn from studies with greater phenotypic 

precision. Other expositions on the topic have considered R2 estimation in the context of 

discovery GWAS sample size (N), the number of presumed independent causal loci 

(M~70,000) and SNP-h2 (Daetwyler et al., 2008, Dudbridge, 2013). Simulations from these 

studies are sobering. For instance, in their GWAS meta-analysis of educational attainment, 

Rietveld and colleagues (Rietveld et al., 2013) concluded that a discovery GWAS of 1 

million individuals for this phenotype might generate a polygenic score that explained 15% 

of the variance in the same phenotype in a new sample. The second consideration is whether 

a target sample size is large enough to rule out false negatives or positives. PRS analyses are 

often simple regressions, and typically account for 0.01% (conservatively) to 3% 

(optimistically) of variance in cross-trait prediction (e.g., schizophrenia PRS predicting task 

performance among healthy individuals; Figure 2, Tables 1–6). As such with optimistic 

estimates, target data sample sizes of at least 300 are needed to detect 3% of variation with 

80% power. Samples of 800, 8,000, and 80,000 would be needed to account for 1%, 0.1%, 

and 0.01% of variance with 80% power, respectively (computed using GPower; (Faul et al., 

2007).

Improvements in PRS estimation:  Method improvement for PRS estimation is an active 

area of research, with several new approaches only recently proposed - here, we briefly 

highlight two. One approach, LDpred (Vilhjalmsson et al., 2015), takes into account the LD 

between markers, thus eliminating the need for LD-thinning, which may limit the variance 

explained by PRS in some cases. LDpred estimates posterior mean effect sizes based on LD 

patterns from a reference genome, by specifying an LD radius (i.e., number of SNPs that are 

accounted for on either side of another SNP), and has been found to have better accuracy 
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and calibration. For example, in the same target sample, LDpred explains 25% of the 

variance in schizophrenia compared to 18% from traditional PRS. Another approach, MTAG 

(Multi-Trait Analysis of GWAS; (Turley et al., 2017)), which may be thought of as an 

extension of traditional meta-analysis, enables the joint analysis of several traits, resulting in 

improved PRS precision. MTAG takes advantage of the increasing number of publicly-

available GWAS summary statistics, and the development of techniques which can estimate 

trait heritability and genetic correlations from summary statistics [LDSR; (Bulik-Sullivan et 

al., 2015), see also related user-friendly online interfaces/databases (e.g., LD Hub; http://

ldsc.broadinstitute.org/ (Zheng et al., 2017)]. Indeed, early analyses have successfully 

applied MTAG to the study of several psychiatrically relevant traits, resulting in prediction 

accuracy improvements of 25–50% and increased numbers of genomewide significant hits 

((Hill et al., 2017, Turley et al., 2017). Beyond these two examples, several approaches 

incorporating Bayesian estimation (Mak et al., 2016, So and Sham, 2017) and machine-

learning (Pare et al., 2017, Shi et al., 2016), have also been proposed.

Improvements in Discovery GWAS:  In addition to increasing the sample size of discovery 

GWAS and using new tools to improve the utility of PRS available from current GWAS 

summary statistics, improving discovery GWAS phenotyping may also produce more 

reliable, applicable, and precise PRS. Indeed, relying on GWAS of psychiatric disorders may 

be problematic for refining nosology and mechanistic understanding because many, if not 

all, psychiatric disorders represent heterogeneous amalgamations of symptoms and their 

correlates. Such heterogeneity may dilute observed genetic effects or result in the 

identification of broad and generalized genetic associations that may not be applicable to 

more specific phenotypes. For example, many patients with MDD do not exhibit the cardinal 

symptom of anhedonia (Treadway and Zald, 2011). Thus, genetic associations with 

heterogeneous MDD not predicated on the presence of anhedonia, may not be informative 

for reward-related neural or behavioral phenotypes (Bogdan et al., 2013). The potential 

implications of GWAS phenotyping may be observed when contrasting two GWAS of 

depression. In the larger study, which contained 9,240 MDD cases and 9,519 controls, no 

genomewide significant loci were detected (Major Depressive Disorder Working Group of 

the Psychiatric et al., 2013). The second study which consisted of Han Chinese women with 

recurrent, primarily melancholic, depression (n=5,303) or without MDD (n=5,337), 

identified 2 genomewide significant loci (CONVERGE, 2015), including one within a 

candidate gene, SIRT1, which has been previously linked to reward-related neural and 

behavioral phenotypes in non-human animal models, as well as anxiety and age-related 

disease and mortality (Libert et al., 2011, Kishi et al., 2010, Kuningas et al., 2007). 

Arguably, the phenotypic and population homogeneity of the CONVERGE effort resulted in 

relatively improved power (Sullivan, 2015). Notably, however, other large scale GWAS of 

even more heterogenous phenotypes (e.g., those self-reporting a depression diagnosis 

through 23andMe) have also been met with success (Hyde et al., 2016). Further, other 

evidence suggests that traditionally conceptualized intermediate phenotypes (e.g., brain 

volume), may not be associated with larger effects related to common genetic variation 

suggesting potential limitations to “deeper” phenotyping (Franke et al., 2016). Going 

forward it will be important to not only have large studies, but also studies with deep 

phenotyping so that both heterogenous and more precise phenotypes could be leveraged and 

Bogdan et al. Page 9

Annu Rev Clin Psychol. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ldsc.broadinstitute.org/
http://ldsc.broadinstitute.org/


their predictive utility for cross-trait association contrasted. Indeed, the genetic architecture 

of a disorder may be partially or even fully distinct from the genetic architecture underlying 

related pathophysiology, its response to current treatment (see also Treatment Relevance), or 

its interplay with the environment (see also Other Applications). Lastly, for some disorders, 

which require exposure (e.g., substance use disorders, PTSD), it may be important to restrict 

controls of discovery GWAS to exposed individuals who have not been diagnosed with the 

disorder to identify sources of disorder liability. Such an approach was recently successful 

when considering opioid dependence when contrasting with opioid-exposed controls who 

did not progress to daily injection (Nelson et al., 2016).

Cross-ancestry PRS prediction:  Because they rely on LD patterns, which vary ancestrally, 

PRS derived from a discovery GWAS of Europeans might not be an informative predictor in 

another ancestral group. Even within ancestral groups, inclusion of indices of nuanced 

ancestral variability derived from GWAS data, can significantly improve prediction in PRS 

analyses by eliminating such spurious admixture effects from the weighted PRS (Chen et al., 

2015). Studies have begun to probe whether PRS generated from one ancestral population 

may be predictive of the same phenotype in another. For example, Bigdeli and colleagues 

(Bigdeli et al., 2017) combined results from the aforementioned CONVERGE Han Chinese 

cohort with those from a large GWAS meta-analysis of Europeans to report a trans-ancestry 

genetic correlation of ~0.30 – 0.40. However, LDpred PRS-based analyses were only 

predictive of recurrent depression, but not other depression phenotypes, after correction for 

multiple testing (R2=0.002). A similar study found that PRS derived from a GWAS of 

neuroticism in 170,910 individuals participating in the European UK Biobank (Okbay et al., 

2016) predicted variance in both depression (R2=0.001) and neuroticism (R2=0.083) in Han 

Chinese women (Docherty et al., 2016). Thus, with caution, one could experiment with 

projecting effect sizes from population A to population B. Of course, the most valuable 

resource in this regard would be large well-powered discovery GWAS conducted in 

homogenous populations from different ancestral origins, which are becoming more 

common (Duncan et al., 2017, Meyers et al., 2017, Xu et al., 2015). Related approaches 

combining results from large and readily available European or mixed-ethnicity cohorts with 

smaller training datasets of another ancestry to produce ancestry-adjusted PRS have also 

been proposed ((Marquez-Luna and Price, 2016, Coram et al., 2017).

Differences from other heritability metrics:  Even though they represent the additive 

effects of segregating loci, PRS are distinct from twin-heritability and SNP-heritability. 

SCZ-PRS explain ~18% of the variance in the disorder in independent samples 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014); family/twin-h2 and 

SNP-h2 are 80% and 41% respectively (Sullivan et al., 2017). Estimates of twin-h2 are 

based on latent sources of additive (and in some cases, non-additive) genetic factors and 

assume uniform effects of all segregating loci. Furthermore, they rely on certain 

assumptions, some of which can be reasonably questioned (e.g., random mating). PRS 

represent a portion of this genetic variance that is attributable to a set of uncorrelated loci, 

and are less assumption-laden. In fact, PRS approaches have been used to demonstrate the 

widespread occurrence of assortative, (non-random) mating - for instance, polygenic liability 

to educational attainment in one spouse accounts for 14–19% of the partner’s education 
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outcomes (Hugh-Jones, Verweij et al. 2016). SNP-h2, calculated with a variety of methods 

[Genetic Complex Traits Analysis: GCTA (Yang et al., 2011); Linkage Disequilibrium Score 

Regression: LDScR; (Bulik-Sullivan et al., 2015)], may be used to examine the net effect of 

all genomewide variants, genotyped and imputed and is related to both twin-h2 and PRS. 

SNP-h2 is more similar to twin-h2 in that they harness effects of all variants, but only 

explain a proportion of twin-h2 (especially for behavioral traits), which are typically 

considered the denominator (perhaps, inaccurately) for such estimation. PRS at a threshold 

of p < 1.0 might reasonably be expected to approximate SNP-h2, however some have noted 

that the LD pruning step of PRS estimation may diminish its predictive utility (Vilhjalmsson 

et al., 2015), by removing correlated loci with independent effect. Nonetheless, PRS are only 

expected to predict variance in the same trait if SNP-h2 > 0, and in other traits if they are 

significantly genetically correlated (SNP-rg > 0); however, we view them to be 

philosophically different (although, SNP-h2 has attractive technical characteristics)2. Twin-

h2 and SNP-h2 represent the total variance accounted for by latent genetic and measured 

common genomic variation, respectively. On the other hand, the essence of PRS is 
“prediction” in an independent sample, using a metric that is algebraically simple (weighted 

average), so that it might be viewed to have future generalizable clinical relevance.

PRS Application: The example of Schizophrenia

Undoubtedly, schizophrenia (SCZ), which was subjected to GWAS meta-analysis in 36,989 

cases and 113,075 controls by the PGC [(Ripke et al., 2013) for other GWAS by the PGC, 

see (Sullivan et al., 2017)], is amongst the most frequently analyzed and robustly associated 

psychiatric PRS. Using these SCZ-PRS, in Figure 2; Tables 1–6, we illustrate the utility of 

the PRS approach in advancing our understanding of the genetic architecture of SCZ and its 

relationship with other traits and disorders. Broadly, two observations are immediately 

apparent. First, unlike GWAS, PRS may be examined in substantially smaller samples. 

Sample sizes range from <200 for certain clinical traits as well as neuroimaging outcomes 

(e.g., brain activation during probabilistic learning task) to > 100, 000 for population-based 

studies of common traits, such as self-rated health; how large a sample is sufficient is 

addressed above in Technical Considerations. Second, effect sizes are (mostly) modest with 

PRS explaining <1% of the variance for correlated traits [e.g., R2 for negative symptoms in 

the population is 0.007, or 0.7%; (Jones et al., 2016) or 0.3% for cognitive abilities (Riglin et 

al., 2017). These effect size estimates are sobering; even for highly correlated disorders, 

such as SCZ and Bipolar Disorder (Charney et al., 2017), PRS rarely account for more than 

3% of variance in a trait [e.g., 2.5% for educational attainment PRS predicting cognitive 

function (Rietveld et al., 2013)]. Thus, studies accounting for >5% of variance in cross-trait 

prediction, or with fewer than several-hundred participants, should be viewed with some 

skepticism when using current GWAS summary statistics.

SCZ-PRS have primarily been applied to understand relationships across 6 broad domains: 

schizophrenia-related phenotypes (e.g., psychosis, treatment), other psychiatric disorders, 

cognition, brain-related phenotypes, immune and health-related and, finally, other 

2SNP-h2, especially from LD Score Regression, does not require access to raw genotypes, can be used for quality control and can be 
automated, with less likelihood of user error. However, it requires large sample sizes (n > 3K).
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phenotypes (e.g., urbancity). Effect sizes for these studies are graphically summarized in 

Figure 2 with individual study summaries provided in Table 1–6, and discussed (briefly) 

below.

Schizophrenia-related Phenotypes (Table 1):

SCZ-PRS have been repeatedly linked to various measures of psychosis, psychotic 

symptoms and experiences, within clinical and general population samples. Associations 

with negative and positive symptoms have also been noted. For instance, Jones et al (2016) 

report that SCZ-PRS are associated with 0.5–0.7% of the variance in psychotic experiences 

at ages 12–18. In addition, SCZ-PRS have been linked to chronicity and course of illness 

with one study finding SCZ-PRS to predict the number of hospital admissions, length of 

hospital stay and enrollment in supportive housing (Meier et al., 2016). Mixed evidence also 

exists for an effect of SCZ-PRS on treatment response (Wimberley et al., 2017b, Li et al., 

2017). Interestingly, the predictive utility for antipsychotic response is improved by 

incorporating rare variants into such scores (Ruderfer et al., 2016), although null findings 

also exist (e.g., (Hettige et al., 2016)). Family history also accentuates risk conferred by 

SCZ-PRS (Agerbo et al., 2015).

Psychiatric disorders and traits (Table 2):

Genetic liability to SCZ has been linked to numerous other psychiatric conditions, including 

bipolar disorder, major depression, obsessive compulsive disorder, anorexia nervosa, 

posttraumatic stress disorder, alcohol dependence and attention deficit hyperactivity disorder 

(Anttila et al., 2016); however, a preponderance of these studies have calculated genetic 

correlations (SNP-rg). Nonetheless, studies employing the PRS approach find strong 

associations with a variety of psychiatric phenotypes. Of particular interest, SCZ-PRS 

successfully distinguish between clinical subtypes of Bipolar Disorder, with stronger 

associations with Bipolar I and schizoaffective forms (Charney et al., 2017). Substance use 

disorders have also been robustly linked to SCZ-PRS e.g., (Carey et al., 2016a). In 

particular, addressing the controversy regarding the role of cannabis use in the development 

of psychosis (Hall and Degenhardt, 2008), multiple studies have used SCZ-PRS to clearly 

demonstrate the role of shared genetic etiologies between these two phenotypes (e.g., 

R2=.47% for SCZ-PRS and ever using cannabis), thus challenging prior causal assertions 

and providing a new outlook on this relationship that was not possible to query with twin 

data (Power et al., 2014, Carey et al., 2016a, Verweij et al., 2017, Reginsson et al., 2017, Aas 

et al., 2017). Within the longitudinal framework, the correlation between SCZ-PRS and 

psychiatric traits (ADD, ODD/CD, Anxiety and Depression) increases from 0.10 at age 6–7 

to 0.25 by age 16 (Nivard et al., 2017). This application of PRS for a clinically uncommon 

and severe discovery phenotype (i.e., SCZ) to a general population sample of longitudinally 

evaluated youth highlights the important role that PRS analyses play in bridging clinical 

psychiatry with developmental psychology and behavioral genetic research that was largely 

unattainable using latent genetic models of uncommon disorders (e.g., SCZ). One of the 

largest studies evaluating SCZ-PRS among other traits shows that it predicts a small amount 

of variance in neuroticism (0.12%) (Gale et al., 2016).
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Cognition (Table 3):

SCZ-PRS have unequivocally established a link between genetic susceptibility to SCZ and 

cognitive deficits during the lifespan. SCZ-PRS are predictive of IQ at ages 7–9 (Riglin et 

al., 2017, Hubbard et al., 2016) and also to cognitive decline in later life (Liebers et al., 

2016). One study suggests stronger effects on Wechsler IQ at age 70 but not age 11, with 

SCZ-PRS predicting 0.8% of the variance in this developmental decline. Collectively, this 

research suggests that cognition deficits observed in schizophrenia are attributable in part to 

common genetic variation, that can also be observed in the population.

Brain-related (Table 4):

A variety of neuroimaging approaches have been used to evaluate potential neural substrates 

of schizophrenia (Kahn et al., 2015). However, with the exception of offspring and sibling-

based studies (Chung and Cannon, 2015), it has been difficult to disarticulate whether such 

associations may be a consequence of medication (ubiquitous in most samples) or disorder 

expression as opposed to a marker of risk (Tost et al., 2010). SCZ-PRS can be leveraged to 

probe whether such neural metrics, or perhaps even novel ones (masked for example by 

medication usage), may be associated with genetic liability to schizophrenia within healthy 

populations unexposed to antipsychotic medication or disease course. Most commonly 

studied in this context are metrics of brain structure (e.g., cortical thickness, cortical 

gyrification, and gray matter volume), which have produced mixed evidence that increased 

schizophrenia genomic liability may be associated with reduced cortical thickness and 

volume (French et al., 2015, Van der Auwera et al., 2017). Other studies have begun to link 

SCZ PRS to functional imaging phenotypes such as reward- and working memory-related 

brain function; however results thus far have been mixed and are often derived from small 

samples (Lancaster et al., 2016b, Erk et al., 2017, Lancaster et al., 2016a). Overall, this 

evidence suggests that some neural phenotypes associated with schizophrenia may represent 

neural mechanisms of common polygenic liability. However, other evidence, drawn from 

large samples, suggests minimal genomic overlap between subcortical brain volume and 

schizophrenia (Franke et al., 2016). Lastly, a recent study reports that SCZ-PRS are 

associated with differentially methylated probes in postmortem tissues from the prefrontal 

cortex, striatum and cerebellum of schizophrenic and control decedents (Viana et al., 2017). 

The most significantly associated probe was within DISC1, a gene associated with 

schizophrenia. Such studies provide exciting new opportunities for linking static genomic 

variation, in their polygenic form, to epigenetic variation.

Immunity and Health (Table 5):

Immune-related vulnerabilities are commonly observed in those with SCZ (Muller et al., 

2015). Maternal immune response to infectious agents have been causally implicated in 

individual risk for SCZ, particularly among individuals with a diathesis (Knuesel et al., 

2014). Even ex-utero, exposure to infectious agents, such as Toxoplasmosis gondii, 
primarily transmitted to humans through fecal matter from infected carrier felines, 

precipitates onset of motor, psychotic, and cognitive symptoms (Torrey and Yolken, 2003, 

Sutterland et al., 2015). Antithetically, while individuals with schizophrenia are more likely 

to exhibit a pro-inflammatory phenotype (e.g., higher levels of cytokines), risk for 
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rheumatoid arthritis, an autoimmune disorder is markedly reduced in those with 

schizophrenia and corresponds to a small, but significant, negative genetic correlation across 

the disorders as well (rg=−0.046) (Lee et al., 2015, Stringer et al., 2014, Euesden et al., 

2015a). PRS may be particularly informative in studies exploring relationships with the 

immune system due to the overrepresentation of immune function loci in SCZ GWAS 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014). For example, SCZ-PRS 

have been leveraged to test novel immune-related hypotheses with one study finding no 

evidence that SCZ-PRS moderates the relationship between infection and schizophrenia 

(Benros et al., 2016). Going forward, system-based PRS composition (i.e., forming a PRS 

from SNPs within biologically-defined pathways) may be particularly useful in this regard 

(see Improving PRS section below). Studies on health-related phenotypes also highlight 

several novel genetic relationships that transform our understanding of the relationship 

between schizophrenia, health and disease, ranging from self-rated health (Harris et al., 

2016) to chronic and debilitating conditions such as migraines (Van der Auwera et al., 2016) 

and farther, to rare but serious progressive neurodegenerative disorders like Amyotrophic 

Lateral Sclerosis (ALS, Lou Gehrig’s Disease (McLaughlin et al., 2017). Prior to the 

development of the PRS approach, the notion that the genetic underpinnings of such health-

related conditions could overlap with predisposition to psychiatric disorders seemed to be an 

insurmountable challenge to address, particularly for uncommon conditions (e.g., SCZ, 

ALS) that make family-based approaches impractical.

Others (Table 6):

The advent of the PRS approach has also led to unique answers to additional age-old 

questions. We now know that genetic liability to SCZ (i.e., PRS) is related to variance in 

living in urban environments and in neighborhood deprivation, both leading environmental 

contributors to schizophrenia. Notably, schizophrenia represents an evolutionary paradox 

(van Dongen and Boomsma, 2013) in that while risk alleles are at selective advantage, the 

disease is associated with lower reproductive fitness with older paternal age implicated as a 

risk factor [potentially, due to de novo mutations in the male germ line (Malaspina et al., 

2001)]. Yet, SCZ-PRS when applied to a sample of 150, 656 individuals found no 

correlation with number of children or age at first birth. However, perhaps most sobering is 

evidence that individuals with higher SCZ-PRS are more likely to drop out of subsequent 

waves of longitudinal studies, suggesting that distributions of SCZ-PRS, and consequently, 

their range of related phenotypes, might not be fully represented in cohort data (Martin et 

al., 2016).

Other Applications

Gene x Environment Interaction (GxE):

Environmental factors, in particular, chronic and unpredictable stressors during childhood, 

are among the largest risk factors for the expression of psychopathology (Green et al., 2010). 

Such factors act independently and in concert with genetic liability through predisposing 

(i.e., gene - environment correlation, RGE) or moderating (i.e., GxE) mechanisms. PRS are 

beginning to be used to represent genomic liability in the context of stress. For example, five 

studies of depression PRS report that stressful life events or childhood trauma, as well as 
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PRS, are independently associated with depression. However, much like the candidate single 

variant environment interaction literature (Duncan and Keller, 2011), these initial studies 

have provided conflicting evidence of their interactive effect (GxE) (Musliner et al., 2015, 

Mullins et al., 2016, Colodro-Conde et al., 2017). Of the 3 reports evaluating stressful life 

events, 2 report null interactions (Musliner et al., 2015, Mullins et al., 2016) with 1 

(Colodro-Conde et al., 2017) suggesting that elevated PRS potentiates the depressogenic 

effects of stress. In the study with positive findings, the observed PRS x stressful life event 

interactions accounted for only 0.12% of variance in depression; however, their estimates 

suggest that it could potentially account for as much as 20% of variance in depression if PRS 

were derived from a larger GWAS. While significant PRS interactions with childhood 

trauma explained up to 1.9% of variance in depression, the shape of these interactions was 

inconsistent. One study found that childhood trauma was associated with increased 

depression risk among those with lower polygenic liability to depression while depression 

PRS were associated with elevated depression risk in the context of no childhood trauma 

(Mullins et al., 2016). In opposition to these findings, the other report found a significant 

interaction wherein elevated PRS was associated with increased childhood trauma-related 

depression (Peyrot et al., 2014). Multiple explanations may be evoked to explain these 

discrepancies such as the use of PRS derived from different GWAS and differences in 

phenotypic assessments, and sample composition and size. GWAS x E studies are needed 

(e.g., (Polimanti et al., 2017) as the genetic architecture supporting the development of 

psychopathology (e.g., depression) in the context of stress may be distinct from the genetic 

architecture conferring general disorder risk as assessed in the original GWAS from which 

PRS were derived.

Disorder Specificity:

It may be tempting to contrast the predictive value of PRS derived from discovery GWAS of 

different disorders to evaluate disorder specific or shared mechanisms that may ultimately 

inform nosology (e.g., do SCZ-PRS predict reward-related neural function better than 

depression-PRS?). We suggest that such comparisons should be interpreted with caution, for 

2 reasons. First, much like recent unifactoral models of psychopathology (Lahey et al., 

2012) and evidence of shared neural mechanisms (Hariri, 2009, Goodkind et al., 2015), 

cross-disorder GWAS (Cross-Disorder Group of the Psychiatric Genomics, 2013) suggest 

that common genetic variation conferring liability to various disorders may be shared. Thus, 

clear hypotheses are needed for expected disorder specificity which may be present for some 

psychiatric phenotypes, but not others. Second, the robustness of the discovery GWAS can 

make it challenging to compare PRS. For example, if a PRS for schizophrenia [derived from 

GWASs containing 36,989 cases and 113,075 controls and identifying 108 independent loci 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014)] is associated with 

reward-related brain function, but a PRS derived for depression (derived from GWASs 

containing 9,240 cases and 9,519 controls identifying no genomewide significant SNPs 

(Major Depressive Disorder Working Group of the Psychiatric et al., 2013) is not, whether 

this is indicative of genetically-conferred disorder specificity or simply a confound of the 

power of the discovery GWAS cannot be disarticulated. However, as the field continues to 

advance and more well powered psychiatric GWAS are conducted across disorders, 
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comparisons of PRS across disorders to detect shared and specific polygenic variability may 

prove informative.

Mendelian Randomization (MR):

MR is an extension of epidemiological causal models (for review see: (Davey Smith and 

Hemani, 2014, Holmes et al., 2014)). Assume that two traits are correlated - such as body 

mass index (A) and cardiovascular disease (B) - and that it is reasonable to hypothesize that 

A causes B. If one could identify genetic variants, including single loci, or multiple variants 

that comprise a PRS, that are robustly associated with A, but have no independent effects on 

B [although, methods that adjust for such pleiotropy exist (Bowden et al., 2015)] or on any 

covariate (e.g., smoking) related to B, then such a PRS might serve as a “genetic instrument” 

for MR analyses. If BMI PRS predict cardiovascular disease, indirectly through BMI, then 

such an association may be viewed as evidence in favor of causation (i.e., higher BMI results 

in cardiovascular disease) (Holmes et al., 2014). In an empirical test of this hypothesis, one 

study found that BMI PRS (discovery N = 108, 912) predicted cardiometabolic traits and 

outcomes, but not coronary artery disease, in an independent cohort of 34, 538 individuals. 

Each unit increase in the BMI-PRS corresponded to 1.08 kg/m2 increase in BMI, and was 

associated with inflammation (e.g., C-Reactive Protein: 12% increase), cardiometabolic 

traits (e.g., fasting insulin: 8.4% increase) and disorders (e.g., type 2 diabetes, OR = 1.29) 

suggesting that BMI may cause such outcomes. The use of PRS in the study of clinically 

relevant psychiatric phenotypes is limited, although some argue that cross-trait PRS 

predictions may, in some cases, be indicative of MR. Current tests of MR in clinical 

psychology rely on individual loci, arguing that they are less likely to have pleiotropic effect, 

or create a noisy instrument (e.g., cannabis initiation loci predicting SCZ (Gage et al., 

2017)). However, as better powered GWAS of putative causal factors emerge, one may begin 

to craft PRS as genetic instruments, that may be used to test the plausibility of causality 

among phenotypes, as long as the potential of pleiotropic effects remains tractable (from a 

biological and statistical perspective). Several tools have been developed to facilitate MR 

analyses [e.g., MR-Base: (Hemani et al., 2016) and for gene expression: Summary-data-

based Mendelian Randomization (SMR): (Zhu et al., 2016)]. However, it is unclear whether 

the assumptions of MR analyses (e.g., lack of assortative mating; no confounding pathways) 

can truly be overcome, and may become more concerning for PRS analyses in light of 

extensive shared polygenic pathways (Cross-Disorder Group of the Psychiatric Genomics, 

2013) and even potential omnigenic undergirding (Boyle et al., 2017).

Treatment Relevance: A Prognostic and/or Diagnostic Tool?

In our opinion, current PRS are not clinically actionable, even though some studies have 

proposed to have identified marker sets (using other related approaches) that can be 

diagnostically implemented (Skafidas et al., 2014, Robinson et al., 2014, Belgard et al., 

2014). Pleiotropic effects of PRS are evident from Figure 2 and Tables 1–6. How this 

overgeneralized liability can be harnessed to refine treatment currently remains unclear. At 

present, the utility of PRS might lie, not as harbingers of future diagnosis but as indicators of 

vulnerability, which may be modified by a variety of other mitigating or exacerbating 

influences (e.g., environment, modifier loci). For example, using traditional PRS analyses, 

SCZ PRS can account for up to 18% of the variance in liability to schizophrenia in an 
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independent dataset with the upper decile being associated with an OR of 20. Such 

information may be leveraged to identify individuals at risk. While this likely would not 

currently impact the immediate treatment that one would receive, it would be intriguing to 

evaluate whether those most genomically vulnerable respond better or worse to early 

interventions, which may eventually have public health implications. Of note, PRS derived 

from GWAS of other psychopathologies (e.g., depression) do not currently account for 

nearly as much variance in disorder expression (Levine et al., 2014). However, it is expected 

that sample sizes for discovery GWAS will continue to increase, and with that, there will be 

greater precision in the effect sizes that are used as weights, and, consequently, the 

proportion of variance that they explain. Until then, it is critical that PRS are not construed 

as diagnostic tools but as ordinary predictors of risk, such as childhood trauma or family 

history, but with less explanatory power.

The current limited utility of PRS should not be taken to imply that there is no future for 

precision medicine in psychiatry. For some disorders, such as Autism Spectrum Disorders, 

highly penetrant mutations, copy number variants and chromosomal rearrangements have 

been compiled into genetic panels used for prediction (Vorstman et al., 2017). Even for other 

disorders, certain monogenic origins are routinely ruled out in clinical practice (e.g., a 

deletion on chromosome 22q that causes a schizophrenia-like syndrome) (Bassett and Chow, 

2008). To improve and begin to personalize treatments, particularly for the broader range of 

psychiatric disorders characterized by such polygenicity and largely unknown mechanisms, 

it may be important to not rely on markers of genomic risk for disorder expression (which 

may usefully identify new therapeutic targets), but rather on markers of response to current 

treatments. Consistent with this speculation, one recent approach found no associations 

between depression and SCZ PRS and response to antidepressants (Garcia-Gonzalez et al., 

2017) among 3756 treatment receiving patients. Further, pharmacogenomics GWAS (i.e., the 

study of treatment response) have consistently revealed larger effects (OR 2.5) than studies 

of disorder, even when comparing sample size-matched studies (Maranville and Cox, 2016). 

Thus, the genetics of treatment response, much like the genetics underlying interaction with 

the environment, may be, at least partially, distinct from the genetics of disorder liability and 

require its own PRS to have clinical implications.

A Summary of PRS Strengths and Limitations

Strengths

Consistent with their widespread use, PRS approaches offer many strengths. First, they 

model psychiatric disease liability within a polygenic framework. Second, they are easy to 

compute and analyze making them amenable to research extensions. Relatedly, their results 

are intuitive and readily interpretable by a large audience. Third, while PRS require large 

discovery samples, they can be tested within much smaller samples, making them highly 

appealing to studies with deeper phenotyping on fewer subjects (e.g., neuroimaging). How 

small is large enough? This will depend upon the precision of PRS and target sample 

phenotypes and questions. However, given that current observed effects from cross-trait 

associations suggest that PRS predict 0.01–3.00% of variance across traits, sample sizes 

would need to be >300 given optimistic estimates of effect size (3%), and in all likelihood, 
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much larger (see Technical Considerations; Figure 2). However, the application of novel 

techniques such as LDpred and MTAG may increase their precision and allow for their 

application in smaller samples (Vilhjalmsson et al., 2015, Turley et al., 2017). Regardless, 

research using smaller samples should consider the possibility of false positive and/or 

negative results. Fourth, PRS can be extremely useful within general population samples. 

Indeed, the consequences of medication and disease expression are an important confound 

for identifying factors that confer disease risk, especially for severe conditions such as 

schizophrenia. By using PRS as tools to uncover genetically-driven individual differences in 

mechanistic phenotypes, the field can combat confounds of medication and disease 

expression. Fifth, unlike other measures of cumulative genomic influence (e.g., SNP-h2), 

PRS approaches can be generalized and applied across samples. For these reasons, PRS have 

accelerated the incorporation of genomically-informed analyses into various clinical 

psychology subspecialties.

Limitations

Despite their widespread application, unique strengths, and the formative insight generated 

by their application, PRS have numerous limitations that require careful consideration. First, 

PRS are constrained to the sample size and phenotyping of the discovery GWAS. Such 

phenotyping may have a completely or partially distinct genetic architecture of comorbidity, 

related pathophysiology, response to current treatment, or interplay with the environment. 

Thus, GWAS across a variety of phenotypes and attempts to harmonize results is becoming 

increasing important. Second, traditional PRS are uninformed by system-level knowledge or 

functional annotation and provide no insight into molecular mechanisms. Alternative 

approaches, such as biologically informed multilocus profiles (BIMPS) that additively 

combine candidate variants based on their functionality, or methods that combine SNPs into 

meaningful pathways or networks by liaising with mRNA expression data, and even more 

sophisticated machine learning methods may overcome this limitation of PRS, but also have 

their own challenges (Bogdan et al., 2017). Along these lines, PRS are not currently 

amenable to direct translational work in nonhuman animals, though multiplex CRISPR/Cas9 

approaches are beginning to be employed (Cong et al., 2013, Wang et al., 2013), which may 

ultimately be used to model polygenic variability. Third, while PRS are more predictive than 

single common polymorphisms, they are not currently predictive of substantial variance, 

even in the same phenotype as originally probed (with the exception of schizophrenia; see 

Technical Considerations). As a result, for adequate power, they still require relatively large 

samples (>300 for optimistic estimates of cross trait assocaitions using traditional PRS). 

Fourth, PRS assume additivity. While this assumption has support (Hill et al., 2008), 

evidence of epistasis is also present (Gibert et al., 2017, Mitra et al., 2017, Hemani et al., 

2014).

Improving PRS: Future Directions

How might PRS be improved? In addition to generating larger, well-phenotyped GWAS, and 

adopting refined approaches for PRS calculation, one potential immediate future pathway is 

to leverage additional data to enhance and refine meaningful signals. An example of how 

additional GWAS data may be leveraged in the context of GWAS-based summary statistics 

to inform PRS construction comes from our multisite study lead by Arloth and Binder 
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(Arloth et al., 2015). Here, the GR agonist dexamethasone was administered to healthy and 

depressed participants who were genotyped. RNA expression was measured before and after 

(+3 h) dexamethasone administration. First, we identified SNPs that were associated with 

dexamethasone-related changes in gene expression. Second, we found that these SNPs were 

significantly enriched for nominal associations in GWAS of various psychiatric disorders, 

including depression. Third, we created a PRS of SNPs that are associated with both 

dexamethasone-induced gene expression and depression and found in independent samples 

that this profile was predictive of depression as well as an overgeneralized amygdala 

response. Thus, it is possible to use GWAS derived summary statistics alongside additional 

targeted results to prioritize SNPs with both evidence of mechanistic function and disease 

association that may be more powerfully predictive than disease association alone. In this 

context, it would be important to show that such biologically-constrained PRS are not 

merely reflective of global genomic risk and indeed provide greater predictive utility.

Such approaches could also be implemented without one’s own independent data using 

available databases of basal gene expression (e.g., GTEx (Consortium, 2013), Braineac 

(Hardy et al., 2009), CommonMind (Fromer et al., 2016)) and methylation to prioritize 

variants across the entire genome. Similar approaches have been used to functionally 

partition SNP-h2 using functional annotation. (Gusev et al., 2014, Finucane et al., 2015). 

Such integration may enhance the biological plausibility of disease associated variants and 

potentially enhance their power. However, such an approach becomes clearly dependent on 

the quality of data in both contributing datasets and currently available databases of 

biological phenotypes such as mRNA expression, which are typically composed of small 

samples with restricted age ranges and tissue types, as well as a lack of detailed phenotypic 

and exposure characterization. For instance, many psychiatric disorders are precipitated by 

stress. Given that stress responsive systems can have direct effects on gene transcription it 

may be important to consider stress-related gene transcription for such phenotypes (Arloth et 

al., 2015) and basal expression may not be as informative. Consistent with this notion, 

glucocorticoid-related gene expression outperforms baseline gene expression when 

predicting depression [though notably such data should be interpreted as preliminary given 

the relatively small current sample sizes; (Menke et al., 2012)].

As highlighted above (see Improvements in PRS estimation), several techniques can be 

leveraged to improve PRS in one’s own data, most of which do not require any, or only 

minimal, additional data. While they require additional work to compute, the potential pay-

off cannot be overstated, as the improvement in accuracy will result in a substantially better-

powered study. Here we describe one hypothetical workflow for how these techniques may 

be integrated into future analyses. First, MTAG may be used to generate summary statistics 

for polygenic risk scores by jointly analyzing the trait of interest with genetically-correlated 

traits (Turley et al., 2017). Instead of relying on summary statistics from a single GWAS 

study, MTAG may be used to integrate information from genetically-correlated phenotypes 

to improve the precision of summary statistics that can be leveraged for PRS construction. 

Importantly, summary statistic files can come from any study, as long as they are all of the 

same ethnicity - this includes partially or fully overlapping samples. The primary restriction 

on which studies can be included is that none of them should have substantially greater 

power than the study of the trait of interest, as this will increase false-positives.
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Second, PRS could be generated using MTAG generated summary statistics by LDpred, 

which As mentioned above, leverages LD structure and results in improved PRS predictive 

ability relative to traditional PRS computation. Notably, there are several other 

computational approaches for improving PRS accuracy, both by adjusting effect-sizes and 

by modeling LD-structure. These approaches all require additional training data, and as yet a 

single approach which reliably out-performs all others has yet to emerge. Thus, the choice of 

adjustment algorithm will largely depend on the availability and nature of training data. 

LDpred (Vilhjalmsson et al., 2015) is the most well-vetted of these algorithms, and is thus 

the one we can most confidently recommend. It requires a moderately sized reference panel 

(N≥1,000) and is the most computationally intense, but importantly, only additional genetic 

reference panel data are required. This may prove to be particularly useful for studies 

examining less easily-obtained phenotypes. More recently developed approaches also hold 

great promise, though they need further validation. For example, GraBLD (Pare et al., 2017) 

is notable for requiring only a small training dataset (N≥200) that includes the trait of 

interest. It performs an adjustment for LD and updates effect sizes using a simple machine 

learning algorithm. Similarly, Lassosum (Mak et al., 2017) uses machine learning, penalized 

regression, to correct for LD structure and to update effect sizes. It is particularly notable as 

it can use cross-validation to replace an external training dataset.

Conclusions

The widespread use of PRS to represent generalizable polygenic disorder risk is beginning 

to provide tractable information about how polygenic liability leads to psychiatric expression 

as well as the structure of and mechanisms underlying psychiatric comorbidity. At present 

PRS have the most promise to improve our understanding of putative mechanisms of genetic 

liability. In this context, it is important to conceptualize such measures as indicators of 

vulnerability, rather than harbingers of future diagnosis. In fact, any current genetic 

prediction panel for psychiatric disorders that relies on common variation should be 

evaluated with considerable rigor for its purported clinical utility. Nonetheless, a unique 

strength to this approach is that PRS may be applied to large general population samples 

studying deeply phenotyped constructs, extending the range of psychiatric genetics research. 

Further, it will be important to consider that effect sizes are small and currently can 

reasonably be expected to account for only 0.01–3% of variance in related phenotypes when 

designing studies. In this context, it is critical for adequately powered research to be 

conducted so that false positive and false negative findings do not misguide research efforts.

As GWAS continue to expand and include large-scale studies of treatment response, it is 

possible that PRS results may be clinically applicable and potentially even usefully guide 

personalized treatment recommendations in the distant future. Further, as multiplex gene 

editing in preclinical models advance, it is plausible that polygenic effects across systems 

can be modeled to identify potentially influential, covarying, or even novel pathways for 

future treatment development. In addition to using novel analytic tools such as LDPred and 

MTAG to enhance the predictive utility of PRS, it will be important to increase the size and 

diversity of GWAS samples alongside the use of refined and diverse phenotyping. For 

example, it is possible that genetic loci associated with disorder expression are entirely or 

partially distinct from those associated with mechanistic pathways and treatment response. 
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Lastly, integrating polygenic GWAS statistics with functional data (Arloth et al., 2015) and 

pathway analyses may help guide the identification of potential treatment pathways.
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Central Points

Polygenic risk scores (PRS) represent the additive effect of multiple common variants; 

they explain <5% of cross-trait variability.

Currently studies of polygenic risk require at least 300 participants to achieve adequate 

power for cross-trait associations, given optimistic estimates.

Clinical utility of PRS might necessitate discovery GWAS of specific traits (e.g., of 

treatment response).

Incorporating information from biological systems and/or summary statistics from 

GWAS of genetically-correlated traits (e.g., MTAG) may improve their predictive utility.
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Unresolved Issues

Are PRS for disorders or traits useful for predicting treatment response or interactions 

with the environment?

Are PRS be clinically informative or prognostic?

How can PRS be modified to be informative from a molecular and system-level 

perspective?
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Terms and Definitions

Single nucleotide polymorphism, or SNP: Change in single base pair, A, T, G or C.

Linkage Disequilibrium, or LD: Genetic variation that is physically proximal to each 

other may be correlated. Knowing an individual’s genotype at one locus allows us to 

guess their genotype at a locus in high LD.

Admixture, or population stratification: Variations in allele frequency and LD across 

ancestral populations that can lead to spurious association signals if cases or controls 

have different proportions of individuals from each ancestral group.

GenomeWide Association Study, or GWAS: estimating the association between disease 

or behavioral trait and common SNPs across genome. Significance is p < 5 × 10−8, i.e., 

Bonferroni corrected for 1 million independent tests.

Haplotype: Set of alleles that are observed in a population, likely due to evolutionary 

selection, more often than expected by chance alone.

Imputation: Probabilistic estimation of an individual’s genotype, based on LD with 

known genotypes and comparison to a reference genome.

Major Histocompatibility Complex, or MHC: Large segment, spanning 4 × 10−6 base 

pairs on chromosome 6, with complex LD patterns across highly polymorphic SNPs 

spanning over 200 Human Leukocyte Antigen (HLA) genes involved in immune 

response.

Pleiotropy: The phenomenon of the same genetic variation contributing to different 

disorders or conditions.

Pharmacogenomics: Tailoring treatment based on an individual patient’s genetic 

composition.

Reference genome: Comprehensive sequence data of a reference set of individuals of a 

specific ancestry; freely available to compare with one’s study participant data.
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Resources

A variety of resources are available to facilitate PRS analyses.

LDHub (Zheng et al., 2017) allows for computation of SNP-h2 and inter-trait genetic 

correlation (SNP-rg) using summary statistics. Assists with identification of genetically 

correlated traits for MTAG: http://ldsc.broadinstitute.org/

MRBase (Hemani et al., 2016) run Mendelian Randomization analyses with summary 

statistics or data upload: http://www.mrbase.org/

PLINK Software (Chang et al., 2015, Purcell et al., 2007)and online user resources 

provide tools and information for PRS computation:https://www.cog-genomics.org/

plink2 & http://zzz.bwh.harvard.edu/plink/

PRSice Software (Euesden et al., 2015b): Software package that works with plink to 

generate PRS scores: http://prsice.info/

Psychiatric Genomics Consortium Downloads contain summary statistics that can be 

used to compute PRS for a variety of psychiatric phenotypes for analyses from the PGC 

and other groups: https://www.med.unc.edu/pgc/results-and-downloads
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Figure 1. Practicalities of PRS computation.
Here, we exemplify using statistics from the most recent Psychiatric Genetics Consortium 

GWAS of schizophrenia (Schizophrenia Working Group, 2014) in which a discovery GWAS 

of 34,241 schizophrenia cases and 45,604 controls (initial discovery not including 

replication due to shared summary statistics). The effect allele and effect size for each SNP 

from the discovery GWAS is applied to each individual in a target dataset to create a unique 

person-specific polygenic risk score. We illustrate the approach using 4 SNPs. Summary 

statistics may be obtained here: https://www.med.unc.edu/pgc/results-and-downloads
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Figure 2. Schizophrenia PRS Effect Sizes Across 6 domains.
Plotted here is the range of the maximal percentage of variance explained by PGC SCZ2 

PRS (Schizophrenia Working Group of the Psychiatric Genomics, 2014) in each study. 

Studies using other summary statistics are not included. Notably, as these are the maximal 

amount of variance explained and many studies reporting null effects did not report effect 

sizes, these estimates should be viewed as optimistic. The percentage of variance explained 

by Schizophrenia PRS in related traits ranges from 0.001 to 40% with 0.5–1.0% being most 

common. All = all identified Schizophrenia PRS studies. Course of illness = studies 

assessing course of illness. Psychiatric disorders and traits = studies evaluating other 
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psychaitic disorders (e.g., bipolar disorder) or traits (e.g., neuroticism). Cognition = 

cognitive phenotypes (e.g., working memory). Brain-related = imaging phenotypes (e.g., 

cortical thickness), Health and immune function = immune (CRP levels) and reported health 

(e.g., physical health). Other = various other phenotypes related to schizophrenia (e.g., 

urbanicity). Individual studies contributing to this are summarized and * in Tables 1–6.
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