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Abstract

Purpose: The segmentation of brain tumors is one of the most active areas of medical image
analysis. While current methods perform superhuman on benchmark data sets, their applicability
in daily clinical practice has not been evaluated. In this work, we investigate the generalization
behavior of deep neural networks in this scenario.

Approach: We evaluate the performance of three state-of-the-art methods, a basic U-Net archi-
tecture, and a cascadic Mumford–Shah approach. We also propose two simple modifications
(which do not change the topology) to improve generalization performance.

Results: In these experiments, we show that a well-trained U-network shows the best generali-
zation behavior and is sufficient to solve this segmentation problem. We illustrate why exten-
sions of this model in a realistic scenario can be not only pointless but even harmful.

Conclusions: We conclude from these experiments that the generalization performance of deep
neural networks is severely limited in medical image analysis especially in the area of brain
tumor segmentation. In our opinion, current topologies are optimized for the actual benchmark
data set but are not directly applicable in daily clinical practice.
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1 Introduction

Since AlexNet1 won the ImageNet Large Scale Visual Recognition Competition challenge,2 the
influence of deep neural networks has increased dramatically in all domains of image processing
and pattern recognition. From classification to object tracking and image and video segmenta-
tion, new approaches are typically based on deep learning strategies.3–5 These approaches are
also gaining more and more influence in the field of medical image processing. Since
Ronneberger et al.6 proposed the U-Net structure, this model is the de facto standard method
in the field of medical image segmentation. While the original approach could be trained with
relatively few examples in a short time, current models require a large amount of data and a very
time consuming and computationally intense training cycle.7,8 Since several years, it is common
practice to compare the performance of segmentation approaches on benchmark data sets. One of
the best-known data sets has been provided in the scope of the “Multimodal Brain Tumor
Segmentation Challenge” (BraTS).9

Brain tumors account only for a very small fraction of all types of cancer but are also among
the most fatal forms of this deadly disease. Gliomas, developing from the glial cells, are the most
frequent primary brain tumors. The fast growing and more aggressive types of gliomas called
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high-grade gliomas (HGG), come with an median overall survival rate of up to 15 months.10 The
standard diagnosis technique for brain tumor is magnetic resonance imaging (MRI)11 providing
detailed information about the tumor and the surrounding brain. Tumor segmentation is of cru-
cial importance in surgical and treatment planning, while fully automated segmentation is a
challenging task especially for HGG: they usually show diffuse and irregular boundaries and
have intensities overlapping with normal brain tissue caused by peritumoral edema.
Moreover, acquisition parameters are not standardized, and different parameter settings can have
a substantial impact on the visual appearance of the tumor. This makes it difficult to compare the
quality of different methods for brain tumor segmentation. As a step toward an unbiased per-
formance evaluation, the BraTS database has been created,5,9,12 and many recent approaches
report benchmark results on either the full data set or parts of it.7,8,13

Since this data set has been used for seven years now to compare different approaches with
each other, a major drawback has manifested itself over this long time: The main focus of the
researchers is not to present the most robust network with best generalization behavior, but to
maximize the performance metrics of the BraTS benchmark dataset. Thus, it can happen that the
increasingly complicated models are not useful in a real clinical scenario as they heavily overfit
the test set: this benchmark data set is saturated.

Nowadays, models do not get better in a general sense but current best approaches overfit the
test set more than others. Typically, a test set is meant to be a biased version of a specific problem
representation, i.e., all humans with high-grade brain tumors in MRI sequences. To show a sta-
tistically significance of one benchmark result being superior to another one, an appropriate
sample size is necessary.14 Unfortunately, the sample size of the BraTS test set is too small
to provide a statistical significant difference in the best-performing methods.5

In addition, the main strength of deep learning approaches of fitting the underlying data
distribution is also their greatest weakness: in a clinical setting, the assumption that training
and test data belong to the exact same distribution is typically not correct.

In this work, we evaluate the robustness of different segmentation methods with respect to
disturbances in the underlying distribution. We investigate three state-of-the-art methods as well
as a simple and intuitive scheme based on the powerful Mumford–Shah functional.

In addition, we suggest two simple and straight forward modifications that allow to increase
the generalization performance of the evaluated deep neural networks. Finally, we demonstrate
that our semi-supervised segmentation approach is a powerful post-processing step, that allows
to robustify the predictions of deep neural networks with respect to disturbances in the test data
set. Hence, we combine the best of two worlds: We still can learn the class distributions of the
targeted objects while exploiting the robustness of energy formulations to modifications in
the data.

1.1 Contributions

Our contributions are as follows. First, we show that current state-of-the-art neural network
architectures for brain tumor segmentation have a poor generalization behavior and massively
overfit the training data. Second, we apply two simple but powerful modifications from the clas-
sification community to semantic image segmentation. These alterations allow for higher gen-
eralization performance at inference while reducing the network size. Last but not least, we
suggest an effective post-processing step that massively improves the segmentation result when
disturbances in the data are an issue.

1.2 Structure of the Paper

In Sec. 2, we start with the explanation of different state-of-the-art deep neural networks for brain
tumor segmentation and a classical approach that does not require training and is based on the
well-known Mumford–Shah functional. We then illustrate two new approaches that help to
improve the generalization performance of deep neural networks.

In Sec. 3, we analyze the sensitivity of the previously presented deep neural networks to
slight changes in the data distributions. We complete this work with our conclusions in Sec. 4.
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2 Materials and Methods

The baseline of our evaluation is a segmentation approach that does not require training: a cas-
cadic Mumford–Shah (CMS) cartoon model.15 Since we can almost eliminate an overfit to the
underlying data set, none of the compared deep learning models should score below the per-
formance of this method.

We begin our evaluation with the de-facto standard model for image segmentation with deep
neural networks: the U-Net architecture.6 We continue with an extended version, namely, the No
NewNet approach showing high performance on BraTS 2018.8 Afterward, we take the winner of
last years’ challenge into account: NVDLMED,16 using autoencoder regularization to improve
the segmentation accuracy.7 Last but not least, we investigate the third place of the BraTS 2018
challenge, using a cascade of several neural networks for segmentation.17

2.1 Segmentation Approaches

2.1.1 Cascadic Mumford–Shah cartoon model

The segmentation approach based on a CMS cartoon model,18 does not require training. Its basic
idea is to exploit a simple but reliable prior information: Brain tumors are usually brighter than
the surrounding brain tissues on T2-Flair images. Typically, it is difficult to identify a good
parameter setting for these kinds of segmentation approaches. Fortunately, our method only
depends on a single parameter choice, that can be automatically selected.

Let us consider a cubic data domain Ω ⊂ R3 and some volumetric data set f∶Ω → Rm. For
our application, its m channels describe different MRI modalities, such as T1, T1c, T2, and
T2-Flair. Then a segmentation of f by means of the Mumford–Shah cartoon model19,20 mini-
mizes the energy functional

EQ-TARGET;temp:intralink-;e001;116;427Eðu; CÞ ¼
X
i

Z
Ωi

ku − fk2dxþ νlðCÞ: (1)

Here, the a priori unknown number of segments Ωi partition the data domain Ω, the function
u denotes a piecewise constant approximation of f , k:k is the Euclidean norm in Rm, and the
segment boundaries C have a (Hausdorff) length of lðCÞ. The first term of the energy is a data
term that penalizes fluctuations within each segment, while the second term favors short segment
boundaries. The parameter ν > 0 allows to weight the boundary length in relation to the inho-
mogeneities within each segment. Obviously, the choice of ν is of crucial importance: The higher
the value of this parameter, the less segments are contained in the final result. In Fig. 1, the
number of segments decreases with increasing penalization of the boundary length. At the same
time, the inhomogeneities within individual segments increases. On MRI T2-Flair scans, HGG
contains areas that are brighter than the brain tissue. We use this prior knowledge and segment
for a bright outlier in intensity in the following way: We start with the parameter ν ¼ 400;000

Fig. 1 Exemplary results for different penalizations of the boundary length. (a) T 2-Flair input
image. (b) Result for ν ¼ 1000. (c) Result for ν ¼ 340000.
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and check if this gives a segmentation into two areas: the tumor and the background. If the area
of the thresholded tumor is larger than 50% of the brain volume, this is an indication that ν was
too large such that the tumor has been merged with its background. In this case, we reduce ν by
15% and start the procedure again. This approach is repeated recursively until we have a seg-
mentation where the tumor volume is below 50% of the brain volume.

We use this first segmentation to determine further tumor subcomponents: We minimize the
Mumford–Shah cartoon model again with a very small boundary penalization (ν ¼ 1), but this
time exclusively on the T1c scans and in the previously defined segment. Afterward, we use
Otsu’s thresholding to identify the active tumor, i.e., enhancing- and non-enhancing tumor core.
In this way, we get a splitting of the complete tumor region into active tumor and necrosis/edema.
To get the final subcomponents, we apply Otsu’s method on both subcomponents and split the
first component, i.e., active tumor, into its enhancing and non-enhancing part and the second
subcomponent into necrosis and edema.

2.1.2 U-Net

The U-Net architecture6 is probably the most dominant topology in image segmentation. The
intuition behind its structure is to re-use already learned feature mappings: This architecture can
be split into two components, an encoder and a decoder branch connected by a bottleneck
(see Fig. 2). While the first one learns feature mappings and contracts the image to its vector
representation in the latent space (i.e., the bottleneck), the decoder part reconstructs an image of
the original size using the previously learned feature maps, see Ref. 6 for more details. In this
way, the structural integrity is maintained while distortions due to lost locality are reduced. To
introduce locality to the massively abstracted feature representations, Ronneberger et al.6 apply
skip-connections, allowing a re-usage of already learned filters.

In its original formulation, the U-Net architecture was developed for 2D cell images. However,
its extension to 3D images (necessary for volumetric MRI data) is straightforward—the architec-
ture is identical and only replaces all 2D operators with their corresponding 3D variants.4

In the following, we will discuss the No NewNet topology.8 This recent work shows a very
high performance on several datasets. It was developed on the basic assumption that already the
original U-Net architecture is very powerful and most extensions of its design are not necessary
and too complicated. Since we will follow this assumption in a quite similar way, we explain this
work in detail.

Fig. 2 Basic structure of U-Net approaches. Each blue box indicates a multidimensional feature
map, arrows correspond to operations. Image courtesy of Ronneberger et al.6

Müller, Weickert, and Graf: Robustness of brain tumor segmentation

Journal of Medical Imaging 064006-4 Nov∕Dec 2020 • Vol. 7(6)



2.1.3 No NewNet

Since the publication of the U-Net architecture, the encoder–decoder strategy has become the
dominant approach in image segmentation. Nowadays, almost all new developments in this field
are based on architectural modifications of this topology.7,8,21

In the meantime, it is almost impossible to predict which architecture might be suitable for a
problem due to the multitude of possible extensions: Each of these possibilities has been tested
on a specific data set. Unfortunately, it is an inherent part of deep learning that there is an archi-
tectural overfit to the data set used, making it almost impossible to decide whether an adjustment
is appropriate in a different context.

Isensee et al.8 implemented a number of these variants and evaluated their usefulness. It is not
surprising that they found most of these extensions to be pointless in a general context, compared
to a well trained U-Net model. Overall, they claim that a generic U-Net architecture with a few
minor modifications can be sufficient to provide competitive performance.

Probably, the only significant difference to the original scheme is a normalization after each
convolution layer (see Fig. 3). Obviously, this is fully consistent with current findings that nor-
malization leads to wider optima (with higher generalization performance) in the loss surface.22

To optimize the performance of the model on BraTS benchmark data, the authors suggest a set of
additional extensions, see Ref. 8 for more details. All in all, each of those steps contributed some
improvement to the overall performance.8 While most of their adjustments had only minor in-
fluence on the segmentation performance, the postprocessing step and the training on additional
data noticeably improved the error metric by 0.032 (enhancing core) and 0.013 (complete
tumor), respectively. This indicates that their main improvement in performance was caused
by the inclusion of more training data, i.e., by reducing the overfit of the model to the training
distribution.

2.1.4 NVDLMED: autoencoder regularization

The winner of the 2018 BraTS challenges also followed a basic U-Net architecture.7 While the
backbone can still be reduced to an encoder–decoder structure, the author dramatically increased
the model size and extended most of the basic topology by additional operations: Although the
encoder branch is still similar, its building blocks are massively changed (see Fig. 4). Probably
the most important change is an additional variational autoencoder branch reconstructing the
input image to itself. This sub-network is then used during the training phase as regularization.

To improve the model performance, NVDLMED is built on an ensemble of 10 different
networks. Unfortunately, this setting results in a very large network, that can only be trained
on at least NVidia V100 GPUs, or on a CPU cluster.

Fig. 3 Architecture of the No NewNet model. Each gray box corresponds to a series of convo-
lution, instance normalization, and leaky ReLu. Arrows indicate upsampling and downsampling
operations, respectively. Image courtesy of Isensee et al.8
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2.1.5 Cascadic neural networks

Zhou et al.17 approach the task of brain tumor segmentation from a slightly different perspective.
While most of the state-of-the-art methods consider the identification of the complete tumor
and its subcomponents as a single problem, the authors decompose the segmentation challenge
into three different sub-tasks. In the first step, their method performs a coarse segmentation to
detect the complete tumor. Afterward, the segmentation is refined and intra-tumoral classes are
segmented. Finally, this segmentation is again optimized to classify the enhancing tumor core.
This cascade of segmentation tasks is realized with two different network topologies. On the one
hand, Zhou et al. make use of 3D FusionNets23 (see Fig. 5) to extract the multi-scale context
information. On the other, they apply one-pass multi-task networks.24 In addition, Zhou et al.17

perform several modifications, such that the final ensemble contains seven different neural
network architectures whose results are averaged for the final model prediction.

2.1.6 Preprocessing

Typically MR images are recorded from different hospitals with varying scanners and no stand-
ardized parameter settings. This results in strong variations in the MR intensities: Even the same
sequence of the same patient (e.g., T2) acquired at the same machine, can differ dramatically due
to inconsistent parameter choices. Deep neural networks learn the data distribution provided by
the training set. Hence, it is essential that the value range in the training data corresponds to the
range present in the test set. To compensate for these variations, we follow8 and adjust each
modality independently. In a first step, we substract the mean of the brain region and normalize
by its standard deviation. Afterward, we remove outliers by clipping and rescale the images to
the range [0, 1].

2.1.7 Postprocessing

Although deep neural networks proved to produce segmentation results of high quality, post-
processing is a necessary step in a medical context. The BraTS contains HGG and low-grade
gliomas (LGG). While the high-grade tumors typically consist of an enhancing tumor core, it is
rarely present in low-grade abnormalities.

To compensate for this prior knowledge, we follow8 and apply a postprocessing step to
remove potentially false labels of the enhancing tumor core in LGG.

Our interactive segmentation approach15 is a recent method with good results on kidney
tumors25 and already proved its ability to correct for false labels. Since it is less well-known,
let us discuss it in more detail. We follow26 and consider a minimal partitioning problem of the
cubic image domain Ω ⊂ R3 into Ω1; : : : ;Ωn ⊂ R3 non-overlapping regions

Fig. 4 Architecture of NVDLMED. In contrast to the basic U-Net structure, a second decoder
branch is implemented. Image courtesy of Myronenko.16
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EQ-TARGET;temp:intralink-;e002;116;260 min
Ω1;: : : ;Ωn⊂Ω

1

2

Xn
i¼1

PerðΩi;ΩÞ þ
Xn
i¼1

Z
Ωi

hiðxÞdx; s:t: Ω ¼
[n
i¼1

Ωi; Ωi ∩ Ωj ¼ ∅; ∀ i ≠ j;

(2)

where PerðΩi;ΩÞ denotes the perimeter of region Ωi inside Ω, and hi∶R → Rþ are potential
functions reflecting the cost for each pixel being assigned to a certain label i ¼ 1; : : : ; n. To
align image and region boundaries, the perimeter is commonly measured in a metric induced
by the underlying image f∶Ω → R3. In this application, we weight the perimeter PergðΩi;ΩÞ of
region boundaries in the metric

EQ-TARGET;temp:intralink-;sec2.1.7;116;145gðxÞ ¼ expð−EðxÞβ∕EÞ; E ≔
2

jΩj
Z
Ω
jEðxÞjdx:

Here, E∶Ω → R is the output of the fast structured edge detector of Refs. 27 and 28 and β is a
positive parameter. Assume a (measurable) set of user-scribbles Si ⊂ Ω for each label i is given.
We define the potential functions hiðxÞ in Eq. (2) as the negative logarithm of

Fig. 5 Topology of FusionNets. Although the basic U-Net structure is still present, the architecture
changed dramatically. Image courtesy of L. Vidyaratne et al.23
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EQ-TARGET;temp:intralink-;e003;116;735h̃iðxÞ ¼

8>><
>>:

n
1
jSij

R
Si
GρGσdy

o
scale

; x ∈= Sj;

1 − ζ; x ∈ Sj; i ¼ j;
ζ∕ðn − 1Þ; x ∈ Sj; i ≠ j;

; (3)

and

EQ-TARGET;temp:intralink-;sec2.1.7;116;664Gρ ¼ kρiðxÞðx − yÞ; Gσ ¼ kσðf ðxÞ − f ðyÞÞ:

Here f:gscale denotes linear rescaling to [0,1], jSij is the area occupied by i’th label, ζ is the
assumed probability for a scribble being correct, and kσ and kρi are Gaussians with standard
deviation σ in intensity space and adaptive standard deviation ρiðxÞ ¼ α infy∈Si

jx − yj in the
spatial domain, respectively. The spatially adaptive standard deviation attenuates the influence
of the intensity distribution from scribbles that are far away proportionally to the distance of x to
the closest scribble location. Hence, we postprocess the segmentation masks of the deep learning
models as follows: In a first step, we sample every eight voxel in the output mask to sparsify the
data. Afterward, we incorporate this mask in the cost term of our semi-automatic approach and
densify the segmentation.

2.2 Improving the Generalization Performance

Overfitting is one of the major problems in training of deep neural networks. Typically, this issue
is caused by a lack of training data in combination with complex models. Especially in the sit-
uation of medical image segmentation, the amount of data is rather limited. There are several
approaches to relax this problem: Obviously, the most straight forward idea is to add more train-
ing data. However, this is typically a severe problem. Data augmentation is therefore often used
to circumvent the lack of further data. In this approach, for example, additional data are simu-
lated by random rotations, intensity shifts, axis mirror flips, or the addition of noise distributions.
While almost all current methods use data augmentation, the simulation of different noise dis-
tributions is generally not used. In our opinion, this has two reasons: First, it is not possible to
include every distortion that occurs. Although DNNs can handle the exact distortion they were
trained on perfectly, they nevertheless show a strong generalization failure toward previously
unseen variations.29 However, the overfit to a specific dataset is reduced, so that although a better
generalization can be achieved, the overall performance on the dataset drops slightly. Another
possibility is to reduce the capacity of a model by reducing its size. Of course, it is also an option
to regularize either the weights or the loss functions of a model. One more strategy is to include
normalization layers: Recent work22 indicates that normalization layers lead to wider optima and
therefore better generalization.

In the following, we discuss two approaches: The first one, octave convolutions,30 addresses
the reduction of weights in a neural network while not reducing its capacity. This advanced
operator allows to exploit the mixture of frequencies inherent to each image. Second, we illus-
trate the stochastic weight averaging22 that enables the optimization algorithm to converge to
wider and therefore better generalizing optima in the loss surface.

2.2.1 Octave convolutions

The fundamental aspect of convolution layers is their ability to identify local structures in their
input data. These characteristics are then assigned to a new filter response, typically the image
resolution does not change during this process.

However, each image can be divided into its low-frequency signal, which describes the
coarse structure and the global layout, and its high-frequency signal, containing fine details (see
Fig. 6). Although this is well known in the classic image processing community, this inherent
information cannot be exploited by standard convolutional layers. Recently, there are several
attempts to express this structure within layers of deep neural networks.30,31 The multigrid
approach of Ke et al.31 maps every convolutional layer into a pyramid of operations. In this
way, features at different scales can be extracted. However, this type of strategy obviously has
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a massive disadvantage: The amount of required parameters increases with the number of scales
in the pyramids.

Octave convolutions use a similar concept but interpret output feature maps as mixtures of
information at different frequency scales.30 Hence, these advanced convolutions factorize the
output maps only into two groups: low and high frequencies. The corresponding smoothly
changing low-frequency maps are then stored in a low-resolution tensor (half of the original
input resolution) to reduce spatial redundancy;30 (see Fig. 7).

Following this idea, octave convolutions process low-frequency information with corre-
sponding (low frequency) convolutions. This not only increases the receptive field in the original
pixel space but also collects more contextual information. Since the resolution for the low-
frequency filter responses can be reduced, this saves both computational load and memory
consumption.

The effort for such an octave convolution architecture consists of an additional hyperpara-
meter α ∈ ½0; 1� indicating the ratio of low-frequency components. To compute the output feature
maps, the convolution kernel is split accordingly (see Fig. 8).

Obviously, filter responses of intra-frequency maps can be computed with regular convolu-
tions. However, upsampling and downsampling (or pooling) operations for inter-frequency
computations can also be folded up into the convolutions; see Ref. 30 for more details.

In total, the application of octave convolutions is straight-forward. Due to its inherent design,
it is a plug-and-play component, not leading to any architectural changes. In some of our experi-
ments, we replaced all standard convolutions with their octave variants. Although this change

Fig. 6 Illustration of low- and high-frequency parts in an image. The input image of an MRI of the
(a) brain is split into its (b) low frequencies and (c) high frequencies.

Fig. 7 Detailed design of octave convolutions. Red arrows indicate communication between low-
and high-frequency components, green arrows depict regular information updates. Image cour-
tesy of Chen et al.30
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had no consequences with respect to network architecture, it dramatically reduced the memory
footprint of the models and training time per epoch while improving their generalization behav-
ior (see Sec. 3).

2.2.2 Stochastic weight averaging

The training of deep neural networks is a tedious and time-consuming task. While in most cases,
the capacity of the model architecture is large enough to solve the depicted problem, finding
reasonable hyperparameters (e.g., learning rate and batch size) can be challenging: Especially,
the learning rate has massive influence to the training procedure, and an optimal value is of
crucial importance. In medical image segmentation, neural network architectures tend to be com-
plicated and can easily overfit due to a limited amount of training data. In this scenario, an
appropriate learning rate is even more important.

Typically, deep neural networks do not converge to a global minimum. Therefore, the quality
of the model is evaluated with respect to its generalization performance. In general, local optima
with flat basins tend to generalize better than those in sharp areas.3,22,32 Since even small changes
of the weights can lead to dramatic changes in the model prediction, these solutions are not
stable. If the learning rate is too low, the model converges to the nearest local optimum and
may hang in a sharp basin. Once the learning rate is high enough, the inherent random motion
of the gradient steps not only prevents the solution from being trapped in one of the sharp regions
but can also help the optimizer to escape. Obviously, finding a reasonable learning rate boils
down to the trade-off between convergence and generalization.

Probably, the most common strategy to solve this problem is the usage of an cyclic
scheme.32,33 In cosine annealing, the learning rate cyclically decreases from a given maximal
value following the cosine function.33 It turned out that each of the local optima at the end
of the cycles had similar performance, but lead to different but not overlapping errors in the
model prediction (see Fig. 9). Hence, Huang et al.3 suggested to combine the local optima of
each cycle into an ensemble prediction. Unfortunately, computation time at inference increases
dramatically with the number of snapshot models used in the ensemble.

Stochastic weight averaging follows the same idea but at a fraction of computational load.
The basic idea is to conduct an equal average of the weights traversed by the optimizer with a
learning rate schedule.22 Intuitively, by taking the average of several local optima in the loss
surface, a wider basin can be reached with better generalization performance.22,34

In contrast to ensemble approaches, we only need two models: The first one keeps track of
the running average of the model weights, while the second one is traversing the weight space. At
the end of each learning rate cycle, the state of the second model is used to update the weights of
the running average model as

Fig. 8 Illustration of the octave convolution kernel. The kernel is split in intra- and inter-frequency
parts. Image courtesy of Chen et al.30
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EQ-TARGET;temp:intralink-;e004;116;334wswa ¼
wswa · nmodels þ w

nmodels þ 1
: (4)

Here, wswa are the weights of the running average model, while w are the weights of the
model traversing the weight space, respectively. The total number of models to be averaged
is given as nmodels. All in all, stochastic weight averaging significally improves generalization
performance,34 being less prone to the shifts between train and test error loss (see Fig. 10). In
general, the strategy can be divided in two phases: In the first phase of 75% of training time, the
learning rate schedule follows a standard scheme, e.g., it is fixed to a specific value and decays
after several epochs. In the second phase, the learning rate can be set to a constant value or follow
a cyclic scheme to encourage the exploration of the loss surface (see Fig. 11).

Fig. 9 Illustration of different model snapshots. While the standard learning rate schedule slowly
converges to the minimum, snapshot ensembles are a combination of different local optima.
Image courtesy of Huang et al.3

Fig. 10 Illustration of SWA and SGD showing the weights suggested by SGD and SWA at con-
vergence. SWA started the weights of SGD after 125 training epochs. Image courtesy of Izmailov
et al.22

Fig. 11 Sketch of stochastic weight averaging.
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3 Results

The BraTS is a widely accepted benchmark data set.5,9,12 The challenge contains skull-stripped
and spatially registered multimodal MR images (T1, T1c, T2, and T2-Flair) with a voxel size of
1 mm in every direction. Tumors are of different shape, size, and location in each data set.

In 2018, the BraTS challenge contained 285 training instances accompanied with 66 vali-
dation and 191 test cases. Unfortunately, the testing data set allows only for a single submission,
disqualifying this compound for our analysis. However, we found the validation data set to be
rather small and therefore not expressive. We decided to rely in our evaluation on five-fold cross
validation on the training data set. We follow Isensee’s assumption8 that the conclusions drawn
from the training set with cross validation are more general in nature and more robust to changes
in the underlying distributions.

We performed nearly all network training on four NVidia Titan V with 12 GB memory and
5120 cuda cores. In case of NVDLMED, we do not have a graphics card with sufficiently large
memory: We trained this network for several weeks on Intel Xeon Gold 6132 (“Skylake”) with
28 CPU cores and 192GB of main memory.

We set all hyperparameters of the considered networks as described in their publications and
used code provided by the authors whenever possible.

To generate a baseline for our experiments, we evaluated all analyzed approaches on the
original BraTS2018 training data (see Table 1). Here, “CMS” denotes our cascadic Mumford–
Shah method (Sec. 2.1.1) while “CascNN” means the cascadic segmentation approach with
multiple neural networks (Sec. 2.1.5), and “No NewNet” refers to the No NewNet approach
with region optimization and postprocessing (Sec. 2.1.3). It is noteworthy that “NVDLMED”
represents a single NVDLMED network (Sec. 2.1.4) not an ensemble of several models.

The neural networks surpass the cascaded Mumford–Shah approach as expected.
Nevertheless, the assumption that a brain tumor has higher average intensities in T2-Flair images
is a reliable prior knowledge: This intuitive method shows a remarkable performance when the
entire tumor is considered. However, the most significant difference between the results of the
various networks is shown in their accuracy to identify the enhancing tumor core.

Typically, a medical benchmark data set is intended as a biased version of a particular prob-
lem, i.e., in the case under consideration, all patients with high-grade brain tumors in MRI
sequences. BraTS addresses this issue by providing comprehensive multi-institutional routine
examinations of glioblastoma multiforme (HGG) and LGG with pathologically confirmed
diagnosis.5,12 However, care was mostly taken to create a representative visual representation
of the brain tumors themselves. In a real clinical scenario, time and cost pressures usually prevail.
For this reason, the assumption that voxels have a size of 1 mm in all directions is not realistic. In
fact, exactly the opposite is typically true: While in-slice images are taken at high resolution,
across-slice images are mostly sampled at lower resolution.

In addition, noise also plays an important role in MRI images. These recordings are very
costly and time-consuming: Often, MR sequences differ dramatically in sampling rates and suf-
fer from heavy noise disturbances. All in all, real clinical MR images do not correspond to the
scheme of the BraTS benchmark data. To ensure the applicability of segmentation approaches

Table 1 BraTS18 evaluation for different segmentation approaches in terms of
Dice score. No additional disturbances.

Method Enhancing Complete Core

CMS 0.70 0.84 0.76

U-Net 0.73 0.89 0.82

CascNN 0.78 0.89 0.84

No NewNet 0.77 0.90 0.84

NVDLMED 0.82 0.91 0.86
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tested on BraTS data in everyday clinical practice, it is necessary for them to show high gen-
eralization performance.

For this reason, we analyze the outcomes of the different approaches when the distribution of
the validation data set does not exactly match that of the training data. In a first step, we add
Gaussian noise with zero mean and standard deviation σ ¼ 0.02 to the validation data. The
results are given in Table 2. The Dice scores indicate that the prior information about tumor
appearance used in the cascadic Mumford–Shah approach is highly robust to disturbances.
Although this approach performed worse than the considered neural networks in the original
setting, it copes relatively well with the noisy data and the Dice score is only marginally reduced
(≈0.02 for all categories).

On the contrary, all of the tested neural networks have a major problem with the different
distribution in the validation data. All of them show a significant decline in their segmentation
performance. This problem obviously also becomes more serious the more complicated the
respective architecture is. While the basic U-Net and the No NewNet model drop by a Dice
score of ≈0.06 on average, the much more complex CascNN and NVDLMED show a significant
decline by a Dice score of≈0.11 and≈0.12, respectively (see Fig. 12). This is consistent with our
assumption that the best performing models are not the ones that generalize best on the test data,
but only have the strongest overfit. This conclusion unfortunately disqualifies models trained and
evaluated on BraTS data to be directly applied in a real clinical scenario.

The two approaches No NewNet and NVDLMED were almost equal in the evaluation of the
BraTS18 challenge and our analysis in Table 1. Since the NVDLMED in particular shows a
strong overfit on the data set while its training is extremely computationally intensive, we
exclude this network in the following from our evaluation.

An obvious remedy to cope with noisy validation data is to add the same noise distribution to
the training data as well (see Table 3). In fact, this additional information helps the three deep
learning approaches to handle the altered distribution and their performance returns close to the
original value. Certainly, it would be possible to add different noise distributions to the training
data. However, at training time, it is usually not known how much noise is present in the test set.
Another approach would be to include a preprocessing step to denoise the input images.

Table 2 BraTS18 evaluation for different segmentation approaches. Gaussian
noise (σ ¼ 0.02) is added to the validation data.

Method Enhancing Complete Core

CMS 0.69 0.82 0.74

U-Net 0.71 0.82 0.75

CascNN 0.65 0.76 0.76

No NewNet 0.72 0.83 0.79

NVDLMED 0.68 0.80 0.74

Fig. 12 Exemplary result for the No NewNet model on original, and slightly disturbed (σ ¼ 0.02)
input data.
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Unfortunately, this idea also has a massive disadvantage, small details might be lost. In our
opinion, both approaches only lead to disguising the problem, but not to solving it. For this
reason, we address the overfitting in the network topology itself.

In the following, we consider the No NewNet (without the adjustments suggested by the
authors) as our baseline. Similar to our first experiments, we add Gaussian noise with zero mean
and standard deviation α ¼ 0.02 and α ¼ 0.04 to our validation data (see Table 4). It turns out
that the model in its simplest form performs similar to our cascadic Mumford–Shah method
when not much noise is present in the data. However, as soon as the noise is seriously altering
the data distribution, the model prediction collapses and is outperformed by the classical
approach. Obviously, the generalization performance is limited and the network overfits the
training data.

In a first step, we apply stochastic weight averaging (see Sec. 2.2.2) with a cycle length of 10
after 75% of the training epochs. This adaptation of the training cycle obviously has an massive
influence on the generalization behavior. The averaging of multiple minima in the loss surface

Table 3 BraTS18 evaluation for different segmentation approaches. Gaussian
noise (σ ¼ 0.02) is added to training and validation data.

Method Enhancing Complete Core

CMS 0.69 0.82 0.74

U-Net 0.72 0.87 0.81

CascNN 0.76 0.89 0.81

No NewNet 0.75 0.90 0.84

Table 4 BraTS18 evaluation for different adaptations of No NewNet. Gaussian noise is added to
the validation data.

Slight disturbance (σ ¼ 0.02)

Method Enhancing Complete Core

CMS 0.69 0.82 0.74

Baseline 0.69 0.82 0.76

Baseline + SWA 0.73 0.86 0.81

Baseline + OctConv 0.71 0.84 0.77

Baseline + OctConv + SWA 0.74 0.88 0.83

Baseline + OctConv + SWA + post 0.78 0.89 0.84

Moderate disturbance (σ ¼ 0.04)

Method Enhancing Complete Core

CMS 0.67 0.79 0.71

Baseline 0.66 0.72 0.70

Baseline + SWA 0.70 0.81 0.76

Baseline + OctConv 0.69 0.77 0.72

Baseline + OctConv + SWA 0.71 0.82 0.79

Baseline + OctConv + SWA + post 0.73 0.85 0.81
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allows the model to cope well with the disturbed data while neither the model capacity nor the
training time is increased: While the model improves in the first scenario by ≈0.04 on average,
the performance gain of ≈0.06 in the second setting with heavier noise disturbances is massive.

Octave convolutions (see Sec. 2.2.1) have already shown in various applications that, in addi-
tion to a massive reduction in model size, they also contribute to improving generalization
performance.30 Consequently, we exchange all ordinary convolutions in the model by 3D octave
convolutions (α ¼ 0.75). Although this minor change does not alter the network topology, in
both settings the performance increases by ≈0.02 and 0.03 in Dice score over the baseline
approach. This indicates a better generalization at inference to the validation data. The combi-
nation of stochastic weight averaging and the inclusion of frequency-aware octave convolutions
leads to a improvement of ≈0.06 with slight and ≈0.08 moderate disturbances over the baseline.

The results of both of these modifications let us conclude that overfitting is indeed a serious
problem, otherwise our changes would not lead to such drastic improvements.

Afterward, we use the sparsified results as input for our semi-automatic segmentation
approach (see Sec. 2.1.7). In the first setting, this postprocessing step mainly corrects for
false-positive labels of the enhancing tumor core (see Table 4). However, in the second scenario
the robust energy formulation stabilizes the segmentation and increases the overall performance
for all classes.

In the end, we evaluated our final model (No NewNet+OctConv+SWA+post) on the original
BraTS data without additional noise. We did not observe any drop in its performance: With Dice
scores of 0.79 for the enhancing tumor core, 0.90 for the whole tumor, and 0.85 for the tumor
core our approach is on par with current state-of-the-art approaches.

It is noteworthy that the intention of this work is not to publish the next neural network
trained on BraTS data. We rather want to highlight that generalization is a serious problem when
improving on the benchmark metrics is the main goal. Definitely, one might argue that those
networks are never meant to be directly applied in a clinical setting. We only partly agree with
this opinion. First, BraTS was originally designed to allow for a fair comparison and especially
to push research in the direction of brain tumor segmentation. In this context, neural networks
that can only be applied to benchmark data sets counteract the goal of a medical image seg-
mentation challenge. Second, networks with a high performance on these data sets should at
least perform similar on real data, but in our experiments, all approaches except the No
NewNet architecture showed a much lower performance than in the benchmark setting, and even
dropped below our method that exclusively rely on reliable prior information. Third, we are
deeply convinced that increasing complex models do not lead to a satisfying real-world perfor-
mance. Similar to Isensee et al.,8 we implemented several suggested network extensions and
found them mostly pointless. Our experiments even indicate that they might be harmful as soon
as training and validation data are not generated by the exactly same distribution. Hence, we fully
agree that a well trained U-Net architecture is sufficient to solve this segmentation task.

All in all, we improved the generalization performance of the No NewNet architecture by
straight forward adjustments in the model and the training procedure itself.

Although we neither changed its topology nor did we need to include the noise distribution in
our training data, we could robustify the network while improving its generalization perfor-
mance. Since this model is actually only a slightly modified version of the original U-Net, our
suggested modifications also apply to similar structures.

4 Conclusions

With our paper, we have addressed the general problem of model overfitting of deep neural
networks in brain tumor segmentation. Although the basic assumption to learn a class distribu-
tion from the training data is very powerful, it is also an Achilles heel when training and val-
idation data slightly differ. In a first step, we added noise to the validation data. Unfortunately,
our evaluations showed that such small variations lead to a massive drop in network performance
for two of the three best-performing methods of BraTS 2018. Afterward, we analyzed the behav-
ior of networks when training and validation data both are disturbed in the same way. It turned
out that this additional information allows the network to cope with noisy data. However, since
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adding noise to the training data can have massive side-effects, we suggested several straightfor-
ward modifications to be included in network designs. Last but not least, we showed that these
adjustments dramatically improve the generalization performance. Although we did not include
the disturbance in the training data, we could reach with the same network topology nearly the
same performance as without adding noise. This leads us to the conclusion that, in principle, all
extensions of a well trained U-Net architecture for brain tumor segmentation not only fail to
improve the result but also worsen the generalization performance.

In our ongoing research, we plan to investigate further simplifications of deep neural network
models and the application of our findings to different benchmark data sets. Furthermore, we
target the problem of architectural overfit of network topologies with a data-dependent design.
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