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Abstract

This paper proposes machine learning approaches to support dentistry researchers in the context of 

integrating imaging modalities to analyze the morphology of tooth crowns and roots. One of the 

challenges to jointly analyze crowns and roots with precision is that two different image 

modalities are needed. Precision in dentistry is mainly driven by dental crown surfaces 

characteristics, but information on tooth root shape and position is of great value for successful 

root canal preparation, pulp regeneration, planning of orthodontic movement, restorative and 

implant dentistry. An innovative approach is to use image processing and machine learning to 

combine crown surfaces, obtained by intraoral scanners, with three dimensional volumetric images 

of the jaws and teeth root canals, obtained by cone beam computed tomography. In this paper, we 

propose a patient specific classification of dental root canal and crown shape analysis workflow 

that is widely applicable.
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1 Introduction

In the context of dentistry imaging, machine learning techniques are becoming important to 

automatically isolate areas of interest in the dental crowns and roots [1]. Root resorption 

susceptibility has been associated to root morphology [2–4], and interest in variability in 
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root morphology has increased recently [5–7]. Analysis of root canal and crown shape and 

position has numerous clinical applications, such as root canal treatment, regenerative 

endodontic therapies, restorative crown shape planning to avoid inadequate forces on roots 

and planning of orthodontic tooth movement. External apical root resorption (RR) is present 

in 7% to 15% of the population, and in 73% of individuals who had orthodontic treatment 

[8, 9].

Here, we propose automated root canal and crown segmentation methods based on image 

processing, machine learning approaches, shape analysis and geometric learning in medical 

imaging. The proposed methods are implemented in open source software solutions in two 

pipelines. The first pipeline is based on U-net for root canal and crown automatic 

segmentation from cone-beam computed tomography (CBCT) images and the second one is 

based on ResNet architecture for automatic segmentation of digital dental models (DDM) 

acquired with intraoral scanners. The proposed analysis is based on three main phases: (i) 

features extraction from raw volumetric and surface meshes, (ii) representative anatomic 

regions identification, and (iii) overall voxel-by-voxel and meshes vertices classification. 

The proposed automatic segmentation methods provide clinicians with labeling of the crown 

and root morphologies.

The paper sections are organized as follows. The next section reviews the materials and 

methods, describing the proposed approach. The experimental part and results are described 

in Sect. 3, followed by Sect. 4, dedicated to the discussion and conclusion.

2 Materials and Methods

2.1 Material

This retrospective study was approved by the Institutional Review Board. The sample of the 

present study was secondary data analysis and no CBCT scan was taken specifically for this 

research. The data consisted of 40 mandibular digital dental models (DDM) and CBCT 

scans for the same subjects. All subjects were imaged with the 2 imaging modalities. The 

mandibular CBCT scans were obtained using the Veraviewepocs 3D R100 (J Morita Corp.) 

with the following acquisition protocol: FOV 100 × 80 mm; 0.16 mm3 voxel size; 90 kVp; 3 

to 5 mA; and 9.3 s. DDM of the mandibular arch were acquired from intraoral scanning with 

the TRIOS 3D intraoral scanner (3 Shape; software version: TRIOS 1.3.4.5). The TRIOS 

intraoral scanner (IOS) utilizes “ultrafast optical sectioning” and confocal microscopy to 

generate 3D images from multiple 2-dimensional images with accuracy of 6.9 ± 0.9 μm. All 

scans were obtained according to the manufacturer’s instructions, by 1 trained operator.

2.2 Methods

Two open-source software packages, ITK- snap, version 3.8 [10] and Slicer, version 4.11 

[11] were used to perform user interactive manual segmentation of the volumetric images 

and common orientation of the mandibular dental arches for the learning model training. All 

IOS and CBCT scans were registered to each other using the validated protocol described by 

Ioshida et al. [12]. In this paper, we proposed two machine learning pipelines to boost the 

segmentation performance of root canal in volumetric images and dental crowns in surface 

Dumont et al. Page 2

Shape Med Imaging (2020). Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scans. We first perform pre-processing in which we enhance the quality of images and 

increase the ratio between pixels belonging to root canals and background pixels . Then, we 

train a deep learning model to segment root canals. As there might be outliers in the results 

and the images might be over/under segmented we perform post-processing to address these 

issues.

Automatic Root Canal Segmentation.—One of the main issues in many machine 

learning applications is class imbalance. To improve the accuracy in the first proposed 

pipeline and deal with the imbalance issue caused by low percentage of root canal pixels 

compared to the entire scan, we performed slice cropping to increase the ratio between the 

pixels which belong to root canals to the background pixels. All the 3D volumetric scans 

were cropped depending on their size in order to keep only the region of interest where the 

root canal pixels are. The cross-sectional images without root canals were automatically 

removed in order to feed the neural network almost exclusively with the images of interest. 

The algorithm selected the same anatomic cropping region for every 3D scan in the dataset, 

then split it into 2D cross-sections, and every cross-section was resized to 512 × 512 pixels. 

Contrast adjustment was performed as the original 3D scans had low contrast. After image 

pre-processing, 150 cross-sectional images were obtained for each patient.

UNet Model Training.: This dataset was then trained in a UNet model [13, 14]. This 

network was first developed for biomedical image segmentation and then used in other 

applications, such as field boundary extraction from satellite images [15]. The network 

hierarchically extracts low-level features and recombines them into higher-level features in 

the encoder first. Then, it performs the element-wise classification from multiple features in 

the decoder. The encoder–decode architecture consists of down-sampling blocks to extract 

features and up-sampling blocks to infer the segmentation in the same resolution. The 

training has been done with 100 epochs, 400 steps per epochs, and a learning rate of 1e-5.

We also performed a 10-fold-cross validation in which each fold contains 4 scans. Therefore, 

10 models were trained and for each model, 9 folds (36 scans) were used for training and 1 

fold (4 scans) was used as the validation set. In order to identify the precision of the results, 

the quantitative measurements included Area Under the ROC Curves (AUC), F1 Score, 

accuracy, sensitivity and specificity were computed between the machine learning 

segmentation and the semi-manual segmentation. We did find a model that all of its 

measurements were the highest. Then the trained model with the highest AUC, and adequate 

F1 Score, accuracy, sensitivity and specificity, was selected and used it as the reference 

model for the segmentation.

Automatic Dental Crowns Segmentation.—The data analytics of the 3D dental model 

surfaces requires extracting shape features of the dental crowns. The approach consists of 

taking 2D images or pictures of the 3D dental surface and extracting their associated shape 

features plus the corresponding label (background, gum, boundary between teeth and gum, 

teeth). The ground truth labeling of the dental surface is done with a region growing 

algorithm that uses the minimum curvature as stopping criteria plus manually correcting the 

miss-classified regions.
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The 2D training samples are then generated by centering and scaling the mesh inside a 

sphere of radius one. The surface of the sphere is sampled regularly using an icosahedron 

sub-division approach, and each sample point is used to create a tangent plane to the sphere. 

The tangent plane serves as starting point of a ray-cast algorithm, i.e., the dental surface is 

probed from the tangent plane. When an intersection is found, the surface normal and the 

distance to the intersection are used as image features. The corresponding ground truth label 

map is also extracted here.

Figure 1A shows the wireframe mesh of the sphere, the object inside the sphere, the tangent 

plane to the sphere and a perpendicular ray starting at the tangent plane. The plane 

resolution is set to 512 × 512. These purely geometric features are proposed because they 

led to higher accuracy in classification in our preliminary study [16], and do not depend on 

the position nor the orientation of the model, which may vary across the population. Each 

image is then used to train a modified Unet model with connections similar to a ResNet [17] 

training model. The modified architecture is shown in Fig. 1B and C. Specifically, the up-

sampling block shown in Fig. 1B is modified to mirror the down-sampling blocks of ResNet 

in Fig. 1C, and this architecture is referred to as Ru-Net.

The prediction of a label on a new dental model is done following a majority vote scheme, 

i.e., a single point on the dental surface may be captured by several tangent planes. The label 

with the greater number of votes is set as the final label for a specific point. A post 

processing step is applied to remove islands, i.e., if a region has less than 1000 points, the 

label of the region is set to the closest labeled region. The final output of the algorithm is a 

labeled mesh with labels 0 as gingiva, 1 as boundary and 2 as dental crown. Finally, the 

calculated boundary helps provide individual labels for each crown. The final learning 

model, the DentalModelSeg, [18] was fed with 40 × 252 images/scan = 10,080 images. The 

DentalModelSeg tool, as part of the pipelines for patient specific classification and 

prediction (PSCP) tool, has been deployed in an open web-system for Data Storage, 

Computation and Integration, the DSCI [19], for execution of the automated tasks [20].

3 Results

3.1 Automatic Root Canal Segmentation

Quantitative measurements of AUC, F1 Score, accuracy, sensitivity and specificity are 

presented in Table 1. The F1 scores of the 10 folds presented a standard deviation of 0.077. 

As can be seen, the specificity values are higher than 0.99 with the standard deviation close 

to zero. However, the sensitivity values have higher standard deviation. The reason for 

getting low performance could be because of class imbalance and having low number of 

samples. Table 1 shows the average and standard deviation measurement for the 10 trained 

models and Fig. 2 shows an example of manual and automatic root canal segmentation.

3.2 Automatic Dental Crowns Segmentation

The trained model detects a continuous boundary between the crown and the gingiva and 

segments the individual dental crowns for the 40 scans in the datasets, as shown in Fig. 3. 

The accuracy of the model is shown in a confusion matrix for random 7 scans (Table 2). The 
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confusion matrix is a matrix where the diagonal component shows the ratio between the 

predicted label and the actual label. The closer it is to one, the better label was predicted 

there are. The 2nd label presented the worst performance (0.7) due to the dilation performed 

to detect boundaries.

4 Discussion and Conclusions

Better understanding of the root canal morphology has the potential to increase the chance 

of successful root canal preparation, improve the treatment of pulpally involved teeth, and 

indicate the root position for planning both orthodontic movement and/or implant dentistry. 

In this paper we proposed automated image processing and machine learning based methods 

to segment both root canals and digital dental models automatically. The two different 

approaches presented in this paper facilitate the integration of the two imaging modalities, 

which provide complementary information to the dental clinician. The first approach uses U-

net for automated root canal segmentation from CBCT images. The second approach uses 

ResNet architecture for automatic segmentation of crowns from digital dental models. As 

the same patients imaged with the CBCT were also imaged with the intraoral scanner, the 

multi-modal registration using a validated protocol facilitated the multi-modal fusion, 

consolidating the two approaches in service of one common patient.

In the automated root canal algorithm, we performed pre-processing to deal with the 

imbalance data issue and then trained deep learning models. While image processing 

performs well for in vitro root canal segmentations [21], as shown in Fig. 2D image 

processing alone often does not segment the root apex anatomy. The first model was based 

on U-Net architecture and the second one was based on RU-Net architecture. We performed 

10-fold cross-validation and evaluated 10 models using different metrics including F1 score, 

AUC, sensitivity and specificity and achieved very high specificity. However, the sensitivity 

values need improvement. The low sensitivity performance could be due to variations in the 

CBCT scans field of view (e.g. some scans have only lower jaws and some of them have 

both jaws), class imbalance issues and small sample size. In our future work, to have more 

samples for training the models and improve the performance of the models, we will use the 

trained models to segment new scans first. Then, clinician users can interactively modify the 

segmented results, as it is easier to edit the segmented images rather than manually segment 

them from scratch.

Interestingly, the results shown in Fig. 2 reveal that the automatic segmentation can better 

identify the root canal apex compared to the manual segmentation. These segmented pixels 

on the deeper parts of the root canals increase the number of false positives, even though 

they belong to root canals. However, the manual segmentation of the root canals often fails 

to segment the root canal apex and anatomic details, and the automatic segmentation may in 

fact be more anatomically precise.

The training of the automatic dental crown segmentation in the DentalModelSeg tool was 

performed with digital dental models of permanent full dentition. All dental models were 

stored and computed in the DSCI open web-system [18] for execution of the automated 

tasks. Preliminary testing of the trained model included segmentation of dental crowns of the 
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digital dental models in the primary and mixed stages of the dentition, as well as cases with 

unerupted, missing or ectopically positioned teeth. Future work will require individual 

labelling of the primary and/or permanent teeth as the individual labeling does not follow a 

specific order, and it is done based on the internal ordering of the points. Providing specific, 

unique labels for each crown is desired for generalizability of the proposed approaches (Fig. 

4).

The automatic segmentation algorithms proposed in this study allow shape processing and 

analysis with precise learning and classification of whole tooth data. Both surface scanners 

images and grey level volumetric images can be segmented with accuracy with the methods 

presented in this paper. Analyzing and understanding 3D shapes for segmentation and 

classification remains a challenge due to various geometrical shapes of teeth, complex tooth 

arrangements, different dental model qualities, and varying degrees of crowding problems. 

Clinical applications of the proposed algorithms will benefit from future work comparing the 

performance of state-of-the-art neural networks and quantitative shape analysis of root and 

crown morphologies and position.
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Fig. 1. 
PSCP meshes segmentation. A - Sphere and tangent plane created around the dental surface 

meshes and the shape features that are extracted; B - Up-sampling block; C - RUNET neural 

network architecture.
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Fig. 2. 
A, CBCT scan gray level sagittal image at the premolar region; B, CBCT scan with 

manually labeled root canal; C, automatic segmentation combining image processing and 

machine learning approach; D, rendering of the root canals from molar to molar showing the 

initial automatic segmentation using image processing; E, manual segmentation, which often 

misses the apical portions of the root canal; and F, the combined image processing and 

machine learning segmentation that clearly identifies the root canal morphology for each 

tooth.
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Fig. 3. 
A, the identification of shape parameters segments the dental crowns; B, errors in the 

boundaries are post-processed with region growing; and C, the machine learning 

segmentation clearly identifies the dental crown morphology for each tooth.
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Fig. 4. 
The trained model was tested using in A, a mixed dentition DDM; and in B, a DDM with 

missing teeth; C shows the integration of root canal and crown morphology. Note that the 

trained model segmented the individual teeth in the mixed dentition in A properly, but 

segmentation of the DDM with missing teeth in B still requires further learning.
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Table 1.

AUC, F1 Score, accuracy, sensitivity and specificity of the proposed approach

F1 Score AUC Sensitivity Specificity Accuracy

Average 0.7324 0.9174 0.8271 0.9997 0.9996

SD 0.0774 0.0548 0.1087 0.0001 0.0001

Shape Med Imaging (2020). Author manuscript; available in PMC 2020 December 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dumont et al. Page 13

Table 2.

Confusion matrix of the true and predicted labels for random 7 scans
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