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Abstract

Deriving accurate attenuation maps for PET/MRI remains a challenging problem because MRI 

voxel intensities are not related to properties of photon attenuation and bone/air interfaces have 

similarly low signal. This work presents a learning-based method to derive patient-specific 

computed tomography (CT) maps from routine T1-weighted MRI in their native space for 

attenuation correction of brain PET. We developed a machine-learning-based method using a 

sequence of alternating random forests under the framework of an iterative refinement model. 

Anatomical feature selection is included in both training and predication stages to achieve optimal 

performance. To evaluate its accuracy, we retrospectively investigated 17 patients, each of which 

has been scanned by PET/CT and MR for brain. The PET images were corrected for attenuation 

on CT images as ground truth, as well as on pseudo CT (PCT) images generated from MR images. 

The PCT images showed mean average error of 66.1 ± 8.5 HU, average correlation coefficient of 

0.974 ± 0.018 and average Dice similarity coefficient (DSC) larger than 0.85 for air, bone and soft 

tissue. The side-by-side image comparisons and joint histograms demonstrated very good 

agreement of PET images after correction by PCT and CT. The mean differences of voxel values 

in selected VOIs were less than 4%, the mean absolute difference of all active area is around 2.5%, 

and the mean linear correlation coefficient is 0.989 ± 0.017 between PET images corrected by CT 

and PCT. This work demonstrates a novel learning-based approach to automatically generate CT 

images from routine T1-weighted MR images based on a random forest regression with patch-

based anatomical signatures to effectively capture the relationship between the CT and MR 

images. Reconstructed PET images using the PCT exhibit errors well below accepted test/retest 

reliability of PET/CT indicating high quantitative equivalence.
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Introduction

Positron emission tomography (PET) has been one of the most important imaging modalities 

for diagnosis of disease by providing quantitative information on metabolic processes in 

human body. In order to reconstruct a PET image with satisfactory quality, it is essential to 

correct for the loss of annihilation photons by attenuation processes in the object. The most 

widely implemented method is to combine PET and computed tomography (CT) to perform 

both imaging exams serially on the same table. In PET/CT, the 511 keV linear attenuation 

coefficient map used to model photon attenuation is derived from the CT scan image, most 

commonly, by a piecewise linear scaling algorithm (Kinahan et al 1998, Burger et al 2002).

Recently, magnetic resonance (MR) imaging has been proposed to be incorporated with PET 

as a promising alterative to existing PET/CT system. Compared with CT, MR imaging 

allows excellent soft tissue visualization with multiple scan sequences without ionizing 

radiation. It also has functional imaging and multi-planar imaging capability. With these 

strengths of MR imaging, a combined PET/MR scan has been proposed for many potential 

clinical applications. For example, PET/MR enables local-regional assessment of cancer 

since MR imaging provides high spatial resolution definition of tumor volume and local 

disease while PET provides molecular detection and characterization of lymph nodes 

(Torigian et al 2013). Such application can be also extended to structural and functional 

assessment of neurologic disease, assessment of cardiovascular pathologies and 

measurement within cardiac chambers, and assessment of patients with musculoskeletal 

disorders (Chen et al 2008, Musiek et al 2008, Heiss 2009, Huang et al 2011, Torigian et al 
2013, Chalian et al 2016). These early PET/MR disease focused studies suggest a high 

utility for the modality.

A challenge with the introduction of PET/MR compared to PET/CT is that MR images 

cannot be directly related to electron density and cannot be directly converted to 511 keV 

attenuation coefficients for use in the attenuation correction process. The reason is that the 

MR voxel intensity is related to proton density rather than electron density, and a one-to-one 

relationship between them does not exist. To overcome this obstacle, many methods have 

been proposed in the literature. A common method is to assign piecewise constant 

attenuation coefficients on MR images based on segmentation of materials. The 

segmentation can be done by either manually-drawn contours (Goff-Rougetet et al 1994) or 

automatic classification methods (El Fakhri et al 2003, Zaidi et al 2003, Hofmann et al 2009, 

Fei et al 2012). However, these methods are limited by misclassification and inaccurate 

prediction of bone and air regions caused by their ambiguous relations in MR voxel 

intensities. Instead of segmentation, other methods use atlases of MR images labeled with 

known attenuation to warp to patient-specific MR images by deformable registration or 

pattern recognition, but their efficacy is limited by the performance of the registration. 

Moreover, the atlases usually represent normal anatomy, thus its efficacy is also challenged 

by anatomic abnormality in clinical practice (Kops and Herzog 2007, Hofmann et al 2008).

With the development of machine learning in recent years, novel methods have been 

developed such that accurate CT equivalent images can be generated from MR images 

(Aouadi et al 2016, Huynh et al 2016, Han 2017, Lei et al 2018a, 2018b, Yang et al 2018a, 
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2018b, Wang et al 2018). In these algorithms, a model is trained by a large number of pairs 

of CT and MR images, each pair of which belongs to the same patient and is well-registered 

with each other. The model learns the conversion between MR image signal and Hounsfield 

units (HU) in CT images and then predicts a pseudo CT (PCT) image from the MR image 

input. Such PCT images share the same structure information with MR but in terms of HU, 

and can be directly converted to 511 keV attenuation coefficients in the PET reconstruction 

process. Current machine learning-based methods can be classified into three categories: 

dictionary-learning-based methods, random-forest-based (RF) methods and deep-learning-

based methods (Chan et al 2013, Jog et al 2014, Li et al 2014, Andreasen et al 2015, 2016a, 

2016b, Huynh et al 2016, Torrado-Carvajal et al 2016, Han 2017). These methods divide 

images into patches, and extract feature information from them to a learning model. The 

extraction process does not consider anatomic structures, thus the extracted features may 

include redundant and irrelevant information which may disturb the convergence and 

robustness of training a machine-learning-based model, and affect the accuracy of 

prediction.

In this work, we proposed a novel machine-learning based method which integrates 

anatomical feature into a learning model as the representation of image patch. Compared 

with other machine-learning based methods, the advantages include the use of discriminative 

feature selection, the joint information gain combining both MR and CT information, and 

the alternating random forest, which considers both the global loss of training model and the 

uncertainty of training data falling into child nodes. To evaluate our proposed method, we 

retrospectively investigated patient data of 18F-fluorodeoxyglucose (FDG) brain PET scans 

with both CT and MR images acquired. The PET images were corrected by the CT images 

collected as part of the PET/CT exam as ground truth, as well as by PCT images generated 

from MR images. The image accuracy of PCT images and PET images corrected by PCT 

were quantified with multiple image quality metrics by comparing with ground truth 

globally as well as with volumes of interest (VOIs) on each patient.

Methods and materials

PCT generation

As a machine learning-based method, the proposed method includes two stages: training 

stage and predicting stage, of which the flow chart is shown in figure 1. In training stage, the 

CT image served as the regression targets of its paired MR image in a random-forest-based 

(RF) model (Andreasen et al 2016b, Yang et al 2017b). Multi-level descriptors such as local 

binary pattern (LBP), which generated gradient features (Guo et al 2010), discrete cosine 

transform (DCT), which obtained texture features (Senapati et al 2016), and pairwise voxel 

difference (PVD), which created spatial frequency information (Huynh et al 2016) were 

extracted from 3D MR patches at multi-scale sensitivity, including the patches from original 

and three derived images with a sequence of down sampling factors (0.75, 0.5 and 0.25). For 

a 3D MR patch xMR, its original feature fMR was described by concatenating all the 

descriptors mentioned above. The voxel value of CT, yCT, at the same position of 3D MR 

patch’s central voxel was used as the regression target of xMR. To cope with overfitting, a set 

of training samples were built up by randomly selecting sample {xMR, fMR, yCT} based on 
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balance weights on yCT’s label lCT. lCT was classified by fuzzy C-means clustering method 

on yCT’s intensity value into three labels: lCT = 1 if yCT belonged to air, lCT = 2 if yCT 

belonged to soft-tissue, and lCT = 3 if yCT belonged to bone region. In this work, the size of 

3D MR patch was empirically set as [15, 15, 15].

An original feature fMR was often in a high dimensional domain due to its concatenation of 

multi-level descriptors and multi-scale patches, rather than computational cost. A major 

potential drawback is that fMR may contain uninformative components which could 

degenerate the regression ability of the RF. Thus, a feature selection was needed to select the 

informative components of fMR. Intuitively, the components which have superior 

discriminant power to distinguish label lCT from air, soft-tissue and bone could be regarded 

as the informative components. Since these components were determined by a CT images’ 

anatomic structure, these informative components were called an anatomic signature, f sMR, 

in this work. The subtraction of f sMR from fMR can be accomplished by enforcing the 

sparsity constraint in a binary task. Thus, a logistic least absolute shrinkage and selection 

operator (LASSO) was used to implement the subtraction (or we called this as feature 

selection). The energy function for this subtraction was introduced as follows:

∑
i = 1

n
log 1 + exp −l wT ⋅ fMR + b + μ ∑

i = 1

m
wi /βi (1)

where w is a binary sparse vector with same length of fMR, wi served as its ith vector 

coefficient with wi = 1 denoting that the fMR’s ith component was relevant to the informative 

one, and wi = 0 denoting that the fMR ‘s ith component was irrelevant to the informative one. 

m denotes the length of w and fMR, and n denotes the number of samples in the subtraction. 

μ denotes the regularization parameter. βi denotes the optimization scalar and was estimated 

by fMR’s ith component’s discriminative power, i.e. Fisher’ score (Widyaningsih et al 2017). 

Since the optimization (1) aimed to force the uninformative feature component to be 

eliminated, βi was used to sigmoid (make the wimore binary) the wi and thus to enhance this 

ability. b was the intercept scalar. The optimal setting of b and w were obtained by 

Nesterov’s method (Nesterov 2003). The operator l(·) is a binary labeling function. In this 

work, two-step subtraction (feature selection) was applied by using l(·) to label air and non-

air materials in first round and then to label bone and soft-tissue in the second round. After 

this two-round feature selection, the anatomic signature f sMR was obtained from fMR.

During training stage, RF trained a collection of decision trees from training set {f sMR, 

yCT}. Since the decision trees are often weak learners, an auto-context model (ACM) 

(Huynh et al 2016) was used in this work to enhance the learning ability iteratively by using 

additional surrounding information generated from predicted inference {yPCT} of the 

previous RF. The information fPCT was generated by concatenating DCT, LBP and PVD 

descriptors from PCT inferred by the training MR image as the same way mentioned before, 

then it was concatenated with f sMR to train the next RF. The process was repeated to train a 

series of RFs until a prediction error criterion was met. Since fPCT was generated in a 

circular version, it was called the contextual information. The schematic flow chart of ACM 

model is shown in figure 2.
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In the predicting phase, a new MR image followed the same sequence of feature generation 

and ACM to generate the corresponding PCT. Finally, its corresponding PET images were 

attenuation corrected based on the PCT image using the same algorithm as the original CT.

Data acquisition

To evaluate the performance of the proposed method, we compared the difference between 

CT and PCT as well as the PET images corrected by CT and PCT. In this retrospective 

study, we analyzed the datasets of 17 patients scanned by PET/CT and MR subsequently. 

The 17 patients were randomly selected, with median age of 50 (24–85), 9 females and 8 

males; each patient had both PET/CT and MR images acquired as part of the standard 

diagnosis pathway and rigidly registered. The cohort of 17 patients were used to evaluate our 

method using the leave-one-out cross-validation. For one test patient, the model is trained by 

the remaining 16 patients. The model is initialized and re-trained for next test patient by 

another group of 16 patients. The training datasets and testing datasets are separated and 

independent during each study. For each patient, the PCT images are generated from MR 

images by our learning model. Fourteen out of 17 patients have PET images corrected by 

both CT and PCT images since the PET images of the other three patient datasets were 

unable to be retrieved. For conciseness, we refer to the PET images corrected by CT images 

and PCT images, generated from MR images, as ‘CT-PET’ and ‘MR-PET’, respectively.

The PET/CT data were acquired (Discovery 690, General Electric, Waukesha, WI) 

employing a clinical brain [18F]flourodeoxyglucose ([18F]FDG) protocol beginning with a 

370 MBq intravenous administration of [18F]FDG, followed by a 45 min uptake period, and 

10 min emission scan. PET data were reconstructed with an ordered-subset expectation 

maximization (OSEM) algorithm that incorporated modeling of the system point spread 

function and corrections for randoms, scatter and attenuation (Burger et al 2002). The 

reconstructed matrix size was 192 × 192 × 47 pixels with a pixel size of 1.56 × 1.56 × 3.27 

mm. CT images were reconstructed using filtered backprojection to a matrix size of 512 × 

512 × 47 and a pixel size of 0.98 × 0.98 × 3.27 mm. The MR images were acquired using a 

standard whole-brain 3D T1-weighted MPRAGE sequence reconstructed to a matrix size of 

120 × 128 × 160 and pixel size of 1.33 × 1.33 × 1.20 mm (Mugler 1999). Note that all 

patients were scanned by MR after their PET/CT scan within one week. MR images are 

converted to PCT, resliced to the CT matrix size and pixel spacing, and used for attenuation 

and scatter correction of the PET emission data employing the same algorithms.

Image quality metrics

In this study, we evaluated the accuracy of both PCT images and its corresponding MR-PET 

images. For each patient, we visually checked the similarity between CT and PCT images, 

as well as CT-PET and MR-PET images. For PCT images, we quantitatively characterized 

its accuracy by three widely-used metrics: correlation coefficient, mean absolute error 

(MAE) and Dice similarity coefficient (DSC). The correlation coefficient is calculated from 

the joint histogram between CT and PCT inside body contour, which can be described as
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Correlation Coefficient  = Cov IPCT, ICT
σPCTσCT

, (2)

where IPCT and ICT are vectorized image of PCT and CT, and Cov(·, ·) is the covariance 

between two vectors. A correlation coefficient closer to 1 indicates higher accuracy of PCT 

images. To quantify the accuracy on high and low density materials, we calculated the MAE 

on VOIs of air, bone, soft tissue and whole brain (i.e. the combination of bone and soft 

tissue). The segmentation among air, bone and soft tissue VOIs were achieved by setting 

thresholds (>300 HU for bone, < −400 HU for air, and otherwise soft tissue) on CT and 

PCT, respectively. Note that the segmented VOIs for same material are different in CT and 

PCT. The MAE for VOI of a certain material was calculated as the average of the absolute 

HU difference in the overlapping region of VOIs of that material in CT and PCT, i.e.

MAE = 1
N ∑

i ∈ VOIPCT ∩ VOICT
IPCT(i) − ICT(i) , (3)

where I(i) indicates the ith pixel in image volume and N is the total number of pixels in the 

overlapping region of VOIs in CT and PCT. With the segmentations of air, bone and soft 

tissue, the DSC was calculated to characterize the overlapping of VOIs of the same tissue 

composition between CT and PCT, which can be described as

DSC = 2 ×  Volume of VOI (PCT) ∩ VOI(CT)
 Volume of VOI (PCT) +  Volume of VOI(CT) . (4)

For MR-PET images, we similarly analyzed the joint histogram between CT-PET and MR-

PET images in active areas, and calculated its correlation coefficient for each patient data. 

VOI analysis was then performed by aligning an anatomically standardized template with 

clinically relevant VOIs to CT-PET/MR-PET images for comparison of PET signals 

(Mazziotta et al 1995, 2001). Eleven VOIs were defined on the template MR, including 

thalamus, frontal lobe, occipital lobe, parietal lobe, brainstem, temporal lobe, cerebellum, 

hippocampus, hypothalamus, pons, and cerebrospinal fluid (CSF). The relative difference of 

the PET signals at each VOI between CT-PET and MR-PET was calculated as:

Diff  = ∣ IMR‐PET ( VOI ) − ICT‐PET ( VOI ) ∣
ICT‐PET  (VOI)  , (5)

where I(VOI) is the mean voxel value in that VOI. The mean voxel-wise absolute difference 

was also calculated on active area in brain for each patient to quantify the global difference.

Results

In figure 3, the image quality of PCT is shown using a side-by-side comparison with CT in 

the same window level from one of the 17 patients as an example. It is seen that the PCT 

images feature good image quality, and maintain very similar contrast and most of the 

details as the CT. Image errors can be observed in some small volumes around air and bones. 

These findings are consistent with the measured MAE, DSC and correlation coefficients 
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between PCT and CT among all 17 patients shown in figure 4 and summarized in table 1. 

Here the whole brain means the image region within the body surface.

Figure 5 compares the reconstructed PET images at select axial, sagittal and coronal planes 

of two patients. The CT-PET and MR-PET (columns (1) and (2) in figure 5) qualitatively 

appear to be very similar. The image difference map in column 3 of figure 5 shows that the 

differences between the dose distributions are very low for the majority of the volume, with 

most differences occurring at the outer boundary between brain and skull. The comparison 

of image profiles and joint histograms between CT-PET and MR-PET are shown in figure 6. 

The image profiles of CT-PET and MR-PET in figures 6(a1) and (b1) match each other very 

well. The joint histograms of active area between CT-PET and MR-PET in figures 6(a2) and 

(b2) are very close to the identity lines. Note that we present the results of two patients in 

figures as examples, but similar results can also be seen on the other patients. The 

correlation coefficients between MR-PCT and CT-PCT of all patients are shown in figure 7, 

with an average correlation coefficient of 0.989 ± 0.017.

The differences in VOIs between CT-PET and MR-PET among all 14 patients are shown by 

the box plots in figure 8. The central mark of each box indicates the median, and the bottom 

and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers 

extend to the most extreme data points not considered outliers, and the outliers are plotted 

individually using the ‘+’ symbol. The statistics of VOI differences and absolute differences 

among all 14 patients are summarized in table 2 (STD stands for standard deviation). The 

mean differences among 14 patients are less than 4% for all VOIs, and the mean absolute 

difference of all active areas is around 2.5%, both of which demonstrate the high accuracy of 

PET image correction based on MR images.

Discussion

In this study, we proposed a novel machine-learning based method to predict PCT image 

from T1-weighted MR images for attenuation correction of PET. We evaluated the accuracy 

of PET attenuation correction using our method in the context of FDG PET/CT brain scans. 

The PCT images showed an average MAE of 66.1 ± 8.5 HU, average correlation coefficient 

of 0.974 ± 0.018 and average DCS larger than 0.85 for air, bone and soft tissue. The side-by-

side image comparisons and joint histograms between CT-PET and MR-PET images 

demonstrated very good agreement of voxel values after correction by PCT and CT. The 

mean linear correlation coefficient was 0.989 ± 0.017. Based on the statistical analysis of 

comparative VOIs between CT-PET and MR-PET among 14 patients, we showed that the 

mean differences of voxel values in selected VOIs were less than 4%, and the mean absolute 

difference of all active areas was around 2.5%. Compared with the general agreement that 

quantification errors of 10% or less typically do not affect diagnosis (Hofmann et al 2008), 

these results strongly indicate that the PCT images created from MR images using our 

machine-learning-based method are accurate enough to replace current CT images for PET 

attenuation correction in brain.

Compared with other machine-learning based methods, the PCT image accuracy by our 

method is competitive to others. For example, Han et al proposed to use existing deep 
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learning and convolutional neural networks from the computer vision literature to learn a 

direct image-to-image mapping between MR images and their corresponding PCTs (Han 

2017). They reported overall average MAE in whole brain region of generated PCT was 84.8 

± 17.3 HU among 18 patients. Huynh et al proposed to train a set of binary decision trees, 

each of which learns to separate a set of paired MRI and CT patches into smaller and smaller 

subsets to predict the CT intensity (Huynh et al 2016). PCT intensity was estimated as the 

combination of the predicted results of all decision trees when a new MRI patch was put into 

the model. They reported 99.9 ± 14.2 HU among 16 patients. The corresponding result in 

our method is 66.1 ± 8.5 HU, which is lower in both mean value and standard deviation. The 

higher accuracy achieve by our method stems from our innovative use of discriminative 

feature selection, which considers anatomic structures and avoids redundant and irrelevant 

information disturbing the accuracy and robustness of model training.

The reconstructed PET image quality of the proposed method can be further examined by 

comparing with existing conventional methods. Fei et al proposed an MR-based PET 

attenuation correction method using segmentation and classification (Fei et al 2012). They 

evaluated this method in the context of brain scan with ten patients datasets on 17 VOIs, 

which is similar to the study in our paper. It showed that among all the ten patients, the 

average difference between MR-based-corrected PET and ground truth can be up to 7.6% in 

some of the VOIs, and such difference averaged among all VOIs is 4.2%. Keereman et al 
reported 5.0 % error on entire brain in their proposed segmentation-based method among 

five patients (Keereman et al 2010). The corresponding errors in our study are up to 3.7% in 

VOIs and 2.4% on entire brain, which is more than 40% lower than the two segmentation 

based methods. Similarly, Hofmann et al and Yang et al reported atlas-based PET 

attenuation correction methods using MRI (Hofmann et al 2008, Yang et al 2017a). Their 

results showed overall error of 3.2% and 4.0% respectively on entire brain in their corrected 

PET images, which is more than 30% higher than the 2.4% reported in our study. Thus, the 

proposed machine-learning based method in this study has advantages over the above 

conventional methods in accuracy.

MR-based PET attenuation correction is challenged by the artifacts in MR images 

(Blomqvist et al 2013). In addition to potential non-identical patient setup, discrepancy of 

patient anatomy between MR and PET images may happen due to magnetic field 

inhomogeneity and patient-specific distortion in MR imaging, which would lead to 

mismatch between generated PCT and PET images. In our study, all MRI images were pre-

processed using an N3 Algorithm to effectively reduce distortion before training or 

synthesizing (Tustison et al 2010). Other novel methods such as a real-time image distortion 

correction method have been reported to have excellent performance, and combining these 

preprocessing methods with our method could increase the accuracy of the PCTs (Crijns et 
al 2011).

In the presented study, we found that the difference of PET images in column (3) of figure 5 

was very minimal for the majority of the volume, even in small areas with minor error on the 

PCT images. It indicates that the PET attenuation correction on PCT is not sensitive to 

image errors of soft tissue inside the volume. Slightly larger errors were observed close to 

skull; this could be because the skull absorbed far less radiopharmaceuticals than brain 
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which led to higher relative error. Another reason could be that the attenuation correction is 

more sensitive to the error of PCT on skull which is much denser than soft tissue. Such error 

could be attributable to the residual mismatch between MR and PET images during both 

training and predicting stages.

In addition, computational cost for training a model is a challenge for machine learning-

based PCT synthesis methods. We implemented the proposed algorithm with Python 3.5.2 as 

in-house software on a Intel Xeon® CPU ES-2623 v3 @ 3.00 Ghz × 8. In the present study, 

the training stage requires ~17 GB and ~21 h for the training datasets of 16 patients. 

Recently, since the development of graphical processing unit (GPU)-based parallel 

computing, a GPU-based parallelized algorithm has been proposed to accelerate 

classification random forests (Jayaraj et al 2016). In future work, we hope to modify the 

proposed algorithm to run on a GPU framework to decrease computational time.

In this study, we included a limited number of patient datasets to test the feasibility of our 

method. A large number of datasets including a variety of anatomical variation and 

pathology abnormalities would further reduce bias during the model training. Future studies 

should involve a comprehensive evaluation with a larger population of patients with diverse 

demographics and pathological abnormalities. Different testing and training datasets 

(including normal and abnormal cases) from different institutes would also be valuable to 

evaluate the clinical utility of our method. Moreover, this study validated the proposed 

method by quantifying the image accuracy of corrected PET images. Small differences from 

ground truth are observed, and its potential clinical impact (e.g. on diagnosis sensitivity and 

specificity) needs to be better understood. Thus, investigation of the diagnostic accuracy of 

the proposed method in detection and localization of disease would be of great interest for 

expanding this work to the clinic.

In this feasibility study, we evaluated our method on FDG brain PET scans. Future work will 

extend the proposed method to whole-body applications. Compared with brain scans, whole-

body scans feature higher anatomical heterogeneities in patient body and anatomical 

variability among patients, which may lead to degraded performance of the existing 

segmentation-based methods and atlas-based methods respectively (Hofmann et al 2008). 

The proposed learning-based method would be affected less by these two factors, while the 

complexity in whole body would demands higher accuracy on PCT to predict bone thickness 

and air-tissue interfaces. Moreover, as mentioned above, geometric distortion could be 

significant in whole-body MRI scanning. Novel methods such as real-time image distortion 

correction methods have been reported to have excellent performance, and its combination 

with our method would definitely aid in MR-based PET attenuation correction (Crijns et al 
2011). For such cases, a phantom or clinical study on the effect of geometric distortion on 

PCT generation and PET attenuation correction may be necessary.

Conclusion

We proposed a learning-based method to generate PCT images from MR images for brain 

PET attenuation correction. This work demonstrates a novel learning-based approach based 

on a random forest regression with patch-based anatomical signatures to effectively capture 
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the relationship between the CT and MR images. Reconstructed PET images for brain scan 

using the PCT exhibit errors well below accepted test/retest reliability of PET/CT indicating 

high quantitative equivalence.
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Figure 1. 
The flow chart of the proposed learning-based PET/MRI attenuation correction.
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Figure 2. 
Schematic flow chart of the ACM used in our proposed algorithm for MRI-based PCT 

generation. The left part of this figure shows the training stage of our proposed method, 

which consisted of k random forests training and context information fPCT extraction. The 

right part of this figure shows the prediction stage. In the prediction stage, a new MR image 

follows the similar sequence of the left part to generate a PCT image.
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Figure 3. 
The axial views of one patient at different slices. Rows (a)–(c) show MR, CT and PCT, 

respectively. Note the head holder visible in the CT images was added to the PCT data prior 

to reconstruction of MR-PET data.
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Figure 4. 
MAE (a), DSC (b) and correlation coefficient (c) between PCT and CT images among all 17 

patients.
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Figure 5. 
PET images after correction on the axial (a) and (d), sagittal (b) and (e) and coronal (c) and 

(f) planes. Left (a)–(c) and right (d)–(f) demonstrate images from two patients. CT-PET and 

MR-PET images are shown in column (1) and (2), respectively. The relative difference maps 

between (1) and (2) are shown in (3). The yellow dotted lines on (a1) and (d1) indicate the 

positions of profiles displayed in figure 6.
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Figure 6. 
Comparison of PET image profiles and joint histograms between CT-PET and MR-PET. 

Upper (a) and bottom (b) correspond to the results from two patients (i.e. left (a)–(c) and 

right (d)–(f) in figure 5), respectively. The positions of profiles (a1) and (b1) are indicated by 

yellow dotted lines in figure 5. In (a2) and (b2), the blue scattered dots are joint histograms 

with the identity line in red for reference.
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Figure 7. 
Correlation coefficients between MR-PCT and CT-PCT images among all 14 patients.
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Figure 8. 
Percentage differences within VOIs between CT-PET and MR-PET among 14 patients. The 

central mark indicates the median, and the bottom and top edges of the box indicate the 25th 

and 75th percentiles, respectively. The whiskers extend to the most extreme data points not 

considered outliers, and the outliers are plotted individually using the ‘+’ symbol. The 

indices of VOIs are indicated in table 2.
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Table 1.

Mean ± STD of MAE, DSC and correlation coefficient between PCT and CT images among all 17 patients.

Metrics Whole brain (within brain mask) Bone Soft tissue Air

MAE (HU) 66.1 ± 8.5 154.6 ± 18.9 53.8 ± 9.7 43.8 ± 11.1

DSC N/A 0.850 ± 0.057 0.953 ± 0.023 0.968 ± 0.023

Correlation coefficient 0.974 ±0.018 N/A N/A N/A

Phys Med Biol. Author manuscript; available in PMC 2020 December 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 22

Table 2.

Mean and STD of percentage differences between CT-PCT and MR-PCT images within VOIs and overall 

voxel-wise absolute difference within active area among all 14 patients.

VOI# Region Mean (%) STD (%)

#1 Thalamus −1.61 1.36

#2 Frontal lobe −0.80 2.12

#3 Occipital lobe 3.67 3.20

#4 Parietal lobe 1.46 1.67

#5 Brainstem −1.47 1.68

#6 Temporal lobe 1.47 1.17

#7 Cerebellum 0.73 2.53

#8 Hippocampus −0.64 1.33

#9 Hypo thalamus −0.16 1.53

#10 Pons −1.58 2.45

#11 CSF 0.22 1.70

Overall absolute difference 2.41 1.34
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