Skip to main content
. 2020 Dec 30;15(12):e0244179. doi: 10.1371/journal.pone.0244179

Table 1. Selected examples of NLP tasks that can be covered by the method.

Task T F T Y
Sentiment classification (model 1) “Great music!” Nt = 2 A feature set for each token, Nf = 2 No = 0 ‘YES’ Ny = 1
Sentiment classification (model 2) “Great music!” Nt = 2 A feature set for the whole sentence, Nf = 1 No = 0 ‘YES’ Ny = 1
Word sense disambiguation “We bought gas for the car.” Nt = 6 A feature set for each token, Nf = 6 No = 0 Sense = automobile Ny = 1
Named Entity Recognition (in Turkish) “Henüz Ali Sami Yen Stadyumu taşınmamıştı.”, Nt = 6 A feature set for each token, Nf = 6 No = 0 “O B-LOC I-LOC I-LOC E-LOC O” Ny = Nt = 6
Machine translation (from Turkish to English) “Henüz Ali Sami Yen Stadyumu taşınmamıştı.”, Nt = 6 A feature set for each token, Nf = 6 “Ali Sami Yen Stadium was not relocated yet.” No = 8 Ny = 0
Morphological disambiguation (in Turkish) “Henüz Ali Sami Yen Stadyumu taşınmamıştı.”, Nt = 6 A feature set for each token, Nf = 6 “Henüz Ali Sami Yen Stadyum+u taşın+ma+mış+tı” No = 6 “Henüz Ali Sami Yen Stadyum+Acc taşın+Neg+PastPart+Past”, Ny = 6