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A B S T R A C T   

In present time, the whole world is in the phase of war against the deadly pandemic COVID’19 and working on 
different interventions in this regard. Variety of strategies are taken into account from ground level to the state to 
reduce the transmission rate. For this purpose, the epidemiologists are also augmenting their contribution in 
structuring such models that could depict a scheme to diminish the basic reproduction number. These tactics also 
include the awareness campaigns initiated by the stakeholders through digital, print media and etc. Analyzing 
the cost and profit effectiveness of these tactics, we design an optimal control dynamical model to study the 
proficiency of each strategy in reducing the virulence of COVID’19. The aim is to illustrate the memory effect on 
the dynamics of COVID’19 with and without prevention measures through fractional calculus. Therefore, the 
structure of the model is in line with generalized proportional fractional derivative to assess the effects at each 
chronological change. Awareness about using medical mask, social distancing, frequent use of sanitizer or 
cleaning hand and supportive care during treatment are the strategies followed worldwide in this fight. Taking 
these into consideration, the optimal objective function proposed for the surveillance mitigation of COVID’19, is 
contemplated as the cost function. The effect analysis is supported through graphs and tabulated values. In 
addition, sensitivity inspection of basic reproduction number is also carried out with respect to different values of 
fractional index and cost function. Ultimately, social distancing and supportive care of infected are found to be 
significant in decreasing the basic reproduction number more rapidly.   

Introduction 

A deadly coronavirus that basically initiated from Wuhan city of 
China, all of a sudden incarcerated the people all around the world. This 
strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has affected more than 210 countries and territories. It has brought 
devastating consequences on public health as well as on social and 
economic activities. Governments around the world prompted surveil
lance on mitigating the global spread of COVID’19. Among many of 
these dramatic measures, majority are substantiating to be effective in 
reducing the virus transmission. Imposing curfew and locking down the 
cities in addition public awareness campaigns such as, stay-at-home, 
encouraging social distancing, cleanliness that include frequent 

washing hand, using sanitizers through digital and print media are the 
key measures in restraining this virus. On enforcing these policies and 
engaging communities in these campaigns, undoubtedly enormous so
cial and economic cost is expected. But until an effectual vaccine or 
treatment becomes available, these strategies may play important roles 
[1–6]. 

Variety of research has been conducted at an extraordinary pace to 
analyze the COVID’19 in different perspectives [7–9]. Epidemiological 
dynamical systems to control the breakout of this pandemic through 
basic reproduction number has been obtained by various researchers 
[10–12]. Clinical studies to determine therapeutic solutions through the 
findings of the biological features of this virus [13]. Perceptions on 
impact of government’s preventing strategies on other environmental, 
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social and economic activities [14]. Decision making models to consider 
an effective managing prevention strategy of COVID’19 transition [15]. 
Machine learning models to predict the high risk and efficiently triage 
the patients with high accuracy [16]. Mathematical models fit out to be 
substantial contrivances in investigating the dynamical controls of the 
infectious diseases[17]. Research articles, based on optimal control 
models can be found in the literature to a great extent in this regard 
[18–24]. In the recent times of battle against COVID’19, numerous au
thors have added their valuable contributions in this connection. Gri
gorieva et al. formulate two SEIR-type model to investigate the cost- 
effective quarantine strategies and analyzed the optimal solutions 
numerically [25]. Analysis of interventions of COVID’19 through 
transmission model and observing the most effective non- 
pharmaceutical strategies to lessen the disease nuisance in Pakistan is 
found in the literature [26]. In particular, plenty of endeavors have been 
carried out in different context of cost-effective strategy, to control the 
transmission of this deadly pandemic [27,28]. 

In this attempt, we design mathematical model that covers two major 
areas, epidemiology together with dynamical optimal control. Firstly, 
the compartmental model is taken into account with the control vari
ables and stability analysis are carried out. Secondly, optimizing cost 
functions is subjected to the compartmental model to assess the cost- 
effectiveness of the prevention strategies. As aforementioned, there 
exist significant mathematical efforts in this connection, but the nov
elties that invigorate the proposed assessment can be classified as:  

• This study is not only susceptible, exposed, quarantine, infected and 
recovery compartments, but also the isolation and precautions. Thus, 
the model is named as SEQIMRP i.e. susceptible-expose-quarantined- 
infected-isolated-recovered-protected.  

• The non-pharmaceutical control variables, awareness campaigns 
about using mask, encouraging social distancing, signifying frequent 
use of sanitizer and washing hands, supportive care during 
treatment.  

• Regulatory of basic reproduction number through these campaigns.  
• Incorporating fractional order derivative for dynamical scrutiny of 

the model with. 

This significant contribution will undoubtedly add great perspicacity 
of COVID’19 interventions. The proposed SEQIMRP model with pro
portional fractional [29] signifies the broader application of the frac
tional definition. Its expansion elegantly converts the fractional order 
derivative operator into integer order that the fractional order index 
reallocates linearly in the equations. By virtue of this, the dynamics of 
COVID’19, for instance the basic reproduction number and equilibrium 
points can be interpreted with memory effects. Subsequently, historical 
values of these parameters or the compartmental functions will enable to 
devise defensive precautionary steps, revealed from the past experi
ences. In addition, the effect of memory on the optimality of awareness 
strategies is also illustrated through the proportional fractional deriva
tive. The designed system provides a novel contribution in epidemio
logical study of epidemic and pandemic diseases. It will instruct the 
healthcare researchers a new mode of generating results and might be 
capable to investigating prior information about the risk factors or 
transmission rate for preparatory measures. The remaining paper con
tains sections of formulating the dynamical system, stability analysis of 
equilibrium points and optimality assessment. Furthermore, numerical 
discussions are also carried out to evidently establish an effective 
conclusion. 

Model formulation for COVID’19 optimal control 

Susceptible-expose-quarantined-infected-isolated-recovered-protected 
(SEQIMRP) 

Mathematical models based on disease dynamics are quite helpful in 

studying the functional behavior of any virus, which then helps to 
overcome or lessen its contaminating breakout. The destructive coro
navirus converted into a pandemic within a few months and affected 
billions of peoples around a globe. Early laboratory research and sci
entific experiments to construct a drug or vaccine could not triumph. 
Many epidemiological models also expressed significant contributions in 
this connection to determine the basic reproduction number and predict 
the dispersion, recovery and mortality rates [11,12,30]. Here, to analyze 
the dynamical behavior and impact of COVID’19 pandemic, a system of 
differential equations is designed with respect to compartmental classes 
and prevention measures on the basis of following assumptions.  

• Regardless of different risk rate of COVID’19 for different age-group 
and pre-existing disease carriers, the model assumes a homogeneous 
mixing of individuals in the population.  

• Prevention strategies: Usage of medical mask (mm), social distancing 
(sd), frequently cleaning hands(ch) and supportive care(sc) during 
treatments are taken into account as control variables of the optimal 
system.  

• The individuals in any compartment, following the operational 
prevention strategies, are assumed as will not get infected and are 
defined by means of protected compartment. 

• Susceptible is outlined in the form of logistic growth that encom
passes maximum sustainability to survive in the available resources 
in an environment.  

• Exposed are quarantined that might recover and use prevention 
measures later to insulate themselves from virus.  

• Treatment of infected COVID’19 patients is the isolation process, 
which is explained in the isolation compartment. These compart
ments with the supportive care from staff might recover and move to 
recovery compartment.  

• Treated individuals after recovery do not participate in transmitting 
the disease as they use the operational prevention strategies.  

• The assessments of basic reproduction number and stability analysis 
are carried out in fractional calculus environment. 

Hence, the fractional order epidemiological model, susceptible- 
expose-quarantined-infected-isolated-recovered-protected (SEQIMRP) 
is mathematically signified as: 

PFDα
t S(t) = rs S(t)

(

1 −
S(t)
kS

)

− (mm (t) + sd (t) + ch(t) )S(t) − β S(t) I(t)

− ds S(t)

PFDα
t E(t) = β S(t)I(t) − (mm (t) + sd (t) + ch(t) )E(t) − γ E(t) − dE E(t)

PFDα
t Q(t) = γ E(t) − (mm (t) + sd (t) + ch(t) + sc(t) )Q(t) − η Q(t)

− ψQQ(t) − dQQ(t) (1)  

PFDα
t I(t) = η Q(t) − (mm (t) + sd (t) + ch(t) + sc(t) ) I(t) − σ I(t) − dII(t)

PFDα
t M(t) = σ I(t) − (mm (t) + sd (t) + ch(t) + sc(t) )M(t) − ψMM(t)

− ρ M(t)

PFDα
t R(t) = ψQ Q(t) + ψM M(t) − (mm (t) + sd (t) + ch(t) )R(t) − dRR(t)

PFDα
t P(t)=(mm(t)+sd(t)+ch(t))(S(t)+E(t)+R(t))+(mm(t)+sd(t)+ch(t)

+sc(t))Q(t)+(mm(t)+sd(t)+ch(t)+sc(t))(I(t)+M(t))− dPP 

with initial conditions, 

S(0) = O1, E(0) = O2, Q(0) = O3, I(0) = O4,

M(0) = O5, R(0) = O6, P(0) = O7.
(2) 
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where, Oi(0) ∈ R
7
+ fori = 1, 2, …, 7. Table 1 further elaborates the 

dimensions of all the variables and parameters of system (1). Moreover, 
pictorial demonstration of the compartmental system, representing the 
flow of the diseases transmission is also given in Fig. 1. AssumeN(t) is the 
total population density of individuals that can be structured as: 

N(t) = S(t)+E(t)+Q(t)+ I(t) +M(t)+R(t)+P(t) (3) 

Moreover, PFDα
t articulates proportional fractional derivative of 

orderα ∈ (0,1] [29], which can be expanded as for any continuous 
function y(t), 

PFDα
t y(t) = ℓ0(α, t)

dy(t)
dt

+ ℓ1(α, t)y(t), 0 < α⩽1 (4) 

where, ℓ0(α, t) ∕= 0 for α ∈ (0,1], with lim
α→0+

ℓ0(α, t) = 0 and lim
α→1−

ℓ0(α,

Table 1 
Variables and parameters of the SEQIMRP.  

Compart- 
mental 
functions 

Descriptions Units Initial values 
(population 
¼ in millions 
& time ¼
days) 

Source 

N(t) Total population Population / 
day 

113 Estimated 

S(t) Susceptible Population / 
day 

111 Estimated 

E(t) Exposed Population / 
day 

0 Estimated 

Q(t) Quarantined Population / 
day 

0 Estimated 

I(t) Infected Population / 
day 

2 Estimated 

M(t) Infected isolated Population / 
day 

0 Estimated 

R(t) Recovered Population / 
day 

0 Estimated 

P(t) Protected Population / 
day 

0 Estimated 

α  Order of 
fractional 
derivative 

Dimensionless 0 < α⩽1  Fitted  

Parameters Descriptions Units Value Source 
ξ  R is taking part 

in social 
distancing 

Individuals/ 
(individuals ×
day) 

14.771 Fitted 

β  Contact rate of 
susceptible with 
infected 

Individuals/ 
(individuals ×
day) 

14.781 Fitted 

γ  Rate of exposed 
individuals 
quarantined 

Individuals/ 
(individuals ×
day) 

1.887 × 10-7 Fitted 

η  Rate of treated 
infected and 
quarantined 

Individuals/ 
(area × day) 

0.13266 Fitted 

σ  Rate of 
susceptible 
exposed to 
quarantine 

Individuals/ 
(individuals ×
day) 

0.0714 Fitted 

rS  Intrinsic Growth 
rate of 
susceptible 
individuals 

Individuals/ 
(individuals ×
day) 

30  Fitted 

kS  Carrying 
capacity of 
susceptible 
individuals 

Individuals/ 
(individuals ×
day) 

100,000 Fitted 

σ  Rate of 
susceptible 
exposed to 
infection 

Individuals/ 
(individuals ×
day) 

0.1259 Fitted 

ρ  Death due to 
COVID’19 
disease 

Individuals/ 
(individuals ×
day) 

1.782 × 10-5 [35] 

ψQ  Recovery rate of 
the quarantine 
individuals 

Individuals/ 
(individuals ×
day) 

0.11624 Fitted 

ψM  Recovery rate of 
the isolated 
infected 
individuals 

Individuals/ 
(individuals ×
day) 

0.33029 Fitted 

dS  Susceptible 
death rate 

Individuals/ 
(individuals ×
day) 

0.15 Fitted 

dE  Exposed death 
rate 

Individuals/ 
(individuals ×
day) 

0.84 Fitted 

dQ  Quarantined 
death rate 

Individuals/ 
(individuals ×
day) 

0.84 Fitted 

dI  Infected death 
rate 

Individuals/ 
(individuals ×
day) 

0.9 Fitted  

Table 1 (continued ) 

Compart- 
mental 
functions 

Descriptions Units Initial values 
(population 
¼ in millions 
& time ¼
days) 

Source 

dR  Recovered death 
rate 

Individuals/ 
(individuals ×
day) 

0.11 Fitted 

dP  Precautionary 
death rate 

Individuals/ 
(individuals ×
day) 

0.84 Fitted 

mm  Rate of 
individuals 
using medical 
mask 

Individuals/ 
(individuals ×
day) 

0–1 Fitted 

sd  Rate of 
individuals 
taking part in 
social distancing 

Individuals/ 
(individuals ×
day) 

0–1 Fitted 

ch  Rate of 
individuals 
frequently 
cleaning hand 

Individuals/ 
(individuals ×
day) 

0–1 Fitted 

sc  Rate of 
individuals who 
follow step of 
supportive care 
during 
treatment. 

Individuals/ 
(individuals ×
day) 

0–1 Fitted  

Fig. 1. Pictorial illustration of SEQIMRP model.  
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t) = 1. Additionally,ℓ1(α, t) ∕= 0 for α ∈ [0, 1), with lim
α→0+

ℓ1(α, t) =

1and lim
α→1−

ℓ1(α, t) = 0. Let, ℓ0(α, t) = α andℓ1(α, t) = 1 − α, so Eq. (4) 

becomes 

PFDα
t y(t) = α dy(t)

dt
+ (1 − α)y(t) (5) 

Assume that all control functions (prevention steps) are constant 
within time, therefore, by applying expansion (5) on system (1), we get 
the system as: 

Ṡ(t) =
1
α

(

rs S(t)
(

1 −
S(t)
kS

)

− (mm + sd + ch)S(t) − β S(t) I(t) − ds S(t)

− (1 − α)S(t)
)

Ė(t) =
1
α (β S(t)I(t) − (mm + sd + ch)E(t) − γ E(t) − dE E(t) − (1 − α)E(t) )

Q̇(t) =
1
α (γ E(t) − (mm + sd + ch + sc)Q(t) − η Q(t) − ψQQ(t) − dQQ(t)

− (1 − α)Q(t) )

İ(t) =
1
α (η Q(t) − (mm + sd + ch + sc)I(t) − σ I(t) − dII(t) − (1 − α)I(t) )

(6)  

Ṁ(t) =
1
α (σ I(t) − (mm + sd + ch + sc)M(t) − ψMM(t) − ρ M(t)−

(1 − α)M(t) )

Ṙ(t) =
1
α (ψQ Q(t) + ψM M(t) − (mm + sd + ch)R(t) − dRR(t)−

(1 − α)R(t) )

Ṗ(t)=
1
α

(
(mm+sd+ch)(S(t)+E(t)+R(t))+(mm+sd+ch+sc)Q(t)− dPP

+(mm+sd+ch+sc)(I(t)+M(t))− (1− α)P(t)

)

with the same initial conditions (2). System (6) evidently depicts the 
lucidity of the proportional fractional derivative, which greatly reduces 
the manipulation complexities of system (1). 

Theorem 1. ((Boundedness)) Let Π ∈ R
7
+ is the set of all feasible solu

tions of the system (6), then there exists uniformly bounded subset of R7
+ such 

that: 

Π =

{

(S,E,Q, I,M,R,P) ∈ R
7
+ ; N(t)⩽

rS

d*
NkS

}

(7)  

Proof:. By applying proportional fractional derivative and its expansion, as 
defined in the Eqs. (4)-(5), on Eq. (3), we get the expression of the form: 

N(t) =
1
α

(
Ṡ(t) + Ė(t) + Q̇(t) + İ(t) + Ṁ(t) + Ṙ(t) + Ṗ(t) − (1 − α)N(t)

)

(8) 

On simplifying by using system (6) and suppose d*
N be total propor

tion of deaths in all compartments i.e. 

d*
NN(t) = dS S(t)+ dE E(t)+ dQ Q(t)+ dI I(t) + dR R(t) + ρ M(t) + dP P(t)

(9) 

In addition, since0 < α⩽1 

Ṅ(t)⩽ rSS(t)
(

1 −
S(t)
kS

)

− d*
NN(t) (10) 

where 0 <
S(t)
kS

⩽1, so the above inequality reduces to 

Ṅ(t)⩽
rS

kS
− d*

NN(t) (11) 

On integrating 

N(t)⩽ e− t d*
N N(0)+

rS

d*
NkS

(12) 

Therefore as t→∞ , we obtained the final statement of boundedness 
as 

N(t)⩽
rS

d*
NkS

(13)  

Theorem 2. ((Existence and Uniqueness)) Assume the matrix of right 
hand side of system (6) be the real-valued functionΛ(F(t) ) : R

7
+→R

7
+, such 

that Λ(F(t) ) and ∂Λ(F(t) )
∂F(t) are continuous and 

‖Λ(F(t) ) ‖⩽
(

X
|α| − ν

)

‖F(t) ‖ , ∀F(t) ∈ R
7
+ and 0 < α⩽1 (14) 

Then, satisfying the initial conditions (2), there exists a unique, non- 
negative and bounded solution of the system (6). 

Proof:. Boundedness of system (6) can be followed from Theorem 1, now 
assume, the system (6) can be expressed as: 

Ḟ(t) = Λ(F(t) )

where, 

F(t) = [ S(t) E(t) Q(t) I(t) M(t) R(t) P(t) ]T (15) 

and 

Λ(F(t) ) =
1
α

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rs S(t)
(

1 −
S(t)
kS

)

− (mm + sd + ch)S(t) − β S(t) I(t) − ds S(t) − (1 − α)S(t)

β S(t)I(t) − (mm + sd + ch)E(t) − γ E(t) − dE E(t) − (1 − α)E(t)

γ E(t) − (mm + sd + ch + sc)Q(t) − η Q(t) − ψQQ(t) − dQQ(t) − (1 − α)Q(t)

η Q(t) − (mm + sd + ch + sc) I(t) − σ I(t) − dII(t) − (1 − α)I(t)

σ I(t) − (mm + sd + ch + sc)M(t) − ψMM(t) − ρ M(t) − (1 − α)M(t)

ψQ Q(t) + ψM M(t) − (mm + sd + ch)R(t) − dRR(t) − (1 − α)R(t)

(mm + sd + ch) (S(t) + E(t) + R(t) ) + (mm + sd + ch + sc) (Q(t) + I(t) + M(t) )

− dP P − (1 − α)P(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)   

O.A. Razzaq et al.                                                                                                                                                                                                                              



Results in Physics 20 (2021) 103715

5

Eq. (16) can be further expanded into: 

Λ(F(t) ) =
1
α (Ω1F(t) + S(t)Ω2F(t) + I(t)Ω3F(t) − (α − 1)F(t) ) (17) 

such that 

M1 = mm+ sd + ch  

M2 = mm+ sd + ch+ sc 

Ω2 = [ − rS/kS 0 ]1×7 and Ω3 = [ − β 0 β 0 ]1×7. Then, Eq. (17) 
can be rewritten as, 

‖Λ(F(t) ) ‖ =

⃦
⃦
⃦
⃦

1
α (Ω1F(t) + S(t)Ω2F(t) + I(t)Ω3F(t) − (α − 1)F(t) )

⃦
⃦
⃦
⃦

⩽
⃒
⃒
⃒
⃒
1
α

⃒
⃒
⃒
⃒((‖Ω1‖ + ‖Ω2‖ + ‖Ω3‖ + |(α − 1) | )‖F(t) ‖ )

Let X = ‖Ω1‖ + ‖Ω2‖ + ‖Ω3‖, so the final statement is achieved as 
for 0 < α⩽1 , 

‖Λ(F(t) ) ‖⩽
(

X
|α| − ν

)

‖F(t) ‖

where ν =

⃒
⃒
⃒
⃒

(
1
α − 1

) ⃒
⃒
⃒
⃒. Next, we prove the non-negativity of the so

lutions by using the positivity of initial conditions (2) i.e.,Oi > 0 for i =

1,2,…,7. Considering first equation of system (6), it can be deduced to: 

Ṡ(t)=
1
α

(

rsS(t)
(

1−
S(t)
kS

)

− (mm+sd+ch)S(t)− βS(t)I(t)− dsS(t)− (1− α)S(t)
)

⩾−
1
α(mm+sd+ch+dS+(1− α))S(t)

On manipulating, we get 

S(t)⩾O1e− ((mm+sd+ch+dS+(1− α) )/α )t (18) 

Since 0⩽e− ((mm+sd+ch+dS+(1− α) )/α )t⩽1 for t > 0, therefore Eq. (18) re
duces to, 

S(t)⩾0 

Thus, proved the non-negativity of S(t). Analogously, all the 
remaining equations of system (6) can be proved to have non-negative 
solutions with the assumption of positive initial conditions. 

Optimal control problem 

Furthermore, the dynamical model (6) of COVID’19 would be 
incomplete if the assumption of optimal control of infection and inter
vention cost is not incorporated. Therefore, we formulate optimal con
trol problem by means of the cost function type of quadratic function as: 

J(Yi,Uk) =

∫ tf

0

(
∑7

i=1
wiY2

i + φ1mm2 + φ2sd2 + φ3ch2 + φ4sc2

)

dt (19) 

where,∀Yi⩾0 for i = 1, 2, ...7are replace by S, E, Q, I, M, R, P,

respectively. Moreover, here wi , for i = 1, 2, ..., 7, are the weights of 
human population cost, whereas φK , for K = 1,2,3,4, are the weights of 
undertaken intervention cost for COVID’19. At this juncture, interven
tion cost comes from government campaigns of using mask, social 
distancing and frequently washing hand. In addition, the hospitalization 

cost for drugs, ventilators and trained medical staffs for supportive care 
of the COVID’19 infected individuals also become higher with the in
crease in number of patients. Therefore, if greater cost is implemented of 
campaigns of enforcing the people on usage of mask, social distancing 
and frequently washing hand will reduce the COVID’19 transmission, 
which on the other hand it reduces the supportive care cost. Thus, we 
assume φK > 0 , for K = 1, 2, 3, 4. Analogously, the objective of the 
present scenario is to control the spread out of COVID’19, which ulti
mately leads to minimize the infected individuals, therefore we consider 
w4 > 0and remaining equal to zero. 

Basic reproduction number R0 

In this sequel, we utilize the next generation method, to structure the 
R0 for the governing model (6). For this purpose, a sub-model of the 
SEQIMRP is considered that includes the four infected classes i.e. 
exposed, quarantine, infected and isolated individuals. Therefore, the 
equation: 

d X→

dt
= F

(
X→
)
− V

(
X→
)

(20) 

will have X→ as a vector of theE(t),Q(t), I(t), and M(t), which is out
lined as, 

X→= [E Q I M ]
t 

with, F
(

X→
)

expressed as, 

F
(

X→
)
= [ β S I/α 0 0 0]t 

On the other hand,V
(

X→
)

, can be further split down as, 

V
(

X→
)
=

⎡

⎢
⎣

(mm + sd + ch + γ + dE + (1 − α) )E(t)/α
(mm + sd + ch + sc + η + ψQ + dQ + (1 − α) )Q(t)/α

(mm + sd + ch + sc + σ + dI + (1 − α) ) I(t)/α
(mm + sd + ch + sc + ψM + ρ + (1 − α) )M(t)/α

⎤

⎥
⎦

−

⎡

⎢
⎣

0
γ E(t)/α
η Q(t)/α
σ I(t)/α

⎤

⎥
⎦

Taking Jacobian matrix of Eq. (20) at disease free equilibrium 
point,Π1( − kS(1 + dS − rS + mm + sd + ch − α)/rS, 0,0, 0,0, 0,0 ), we 
get, 

J

[
d X→

dt

]

= F − V =

⎛

⎜
⎜
⎝

0 0 H13 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

Δ11 0 0 0
Δ21 Δ22 0 0
0 Δ32 Δ33 0
0 0 Δ43 Δ44

⎞

⎟
⎟
⎠ (21) 

where, 

Ω1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rS − M1 − dS 0 0 0 0 0 0
0 − M1 − γ − dE 0 0 0 0 0
0 0 − M2 − η − ψQ − dQ 0 0 0 0
0 0 η − M2 − σ − dI 0 0 0
0 0 0 σ − M2 − ψM − ρ 0 0
0 0 ψQ 0 ψM − M1 − dR 0

M1 M1 M2 M2 M2 M1 − dP

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7   

O.A. Razzaq et al.                                                                                                                                                                                                                              



Results in Physics 20 (2021) 103715

6

H13 = − β k S(1 + dS − rS + mm + sd + ch − α)/α rS 
Δ11 = (mm + sd + ch + γ + dE + (1 − α) ) /α 
Δ21 = − γ/α, Δ22 = (mm + sd + ch + sc + η + ψQ + dQ + (1 − α) ) /α, 
Δ32 = − η/α, Δ33 = (mm + sd + ch + sc + σ + dI + (1 − α) ) /α,
Δ43 = − σ/α,Δ44 = (mm + sd + ch + sc + ψM + ρ + (1 − α) )/α 
From Eq. (21), we can extract and manipulate, 

K = F V− 1 

The spectral radius Λ(K) is the required basic reproduction number, 
so after some simplification we get 

R0 = − kS β γ η (1 + dS − rS + mm + sd + ch − α)/r S(1 + dE + mm + sd

+ ch − α + γ) (1 + dI + mm + sd + ch + sc − α + σ)(1 + dQ + mm

+ sd + ch + sc − α + η + ψQ)

(22) 

Consequently, the generated R0 contains the fractional derivative 
index α as well, which advantageously enables to inspect R0. The health 
care researchers will be capable to investigate the trajectory of basic 
reproduction number for the COVID’19 at small change. 

Dynamical anatomization 

In this section, on the strength of proportional fractional derivative, 
dynamical analysis of equilibrium points and optimality conditions are 
discussed in fractional environment as follows: 

Systematic stability analysis 

Theorem 3. ((Trivial Equilibrium Point)) The trivial equilibrium solu
tion, Π0(0,0, 0, 0,0, 0,0) ∈ R

7
+, of system (6), is asymptotically unstable, 

for 0 < α⩽1. 

Proof:. It can be easily proved by eigenvalues of J at 
Π0(0, 0,0, 0,0, 0,0) ∈ R

7
+, for all 0 < α⩽1, 

λ1 = − 1− dP+α
α ,λ2 = − 1− dR − mm− sd− ch+α

α ,λ3 = − 1− dS+rS − mm− sd− ch+α
α , 

λ4 =
− 1− dE − mm− sd− ch+α− γ

α , 
λ5 = − 1− dI − mm− sd− ch− sc+α− σ

α , λ6 =
− 1− mm− sd− ch− sc+α− ρ− ψM

α , 

λ7 =
− 1− dQ − mm− sd− ch− sc+α− η− ψQ

α . 
SincerS > 1 + dS + mm + sd + ch − α, it is clear thatλ 3 > 0, 

for0 < α⩽1. Thus, Π0 ∈ R
7
+ is unstable. 

Theorem 4. ((Disease Free Equilibrium Point)) The disease-free equi
librium of the system (6) 

Π1( − kS(1 + dS − rS + mm + sd + ch − α)/rS, 0, 0, 0, 0, 0, 0 ) ∈ R
7
+

For rS > 1 + dS +mm + sd + ch − α, is locally asymptotically stable if 
R0 < 1 and unstable when R0 > 1, for 0⩽α < 1. 

Proof:. On manipulating Jacobian at 
Π1( − kS(1 + dS − rS + mm + sd + ch − α)/rS, 0,0, 0,0, 0,0 ) ∈ R

7
+, the 

negative eigenvalues i.e. λi ∈ R
7
− for i = 1,2,3,4, are attained as: 

λ1 = 1+dS − rS+mm+sd+ch− α
α ,λ2 = − 1− dP+α

α ,λ3 = − 1− dR − mm− sd− ch+α
α , 

λ4 =
− 1− mm− sd− ch− sc+α− ρ− ψM

α , 
with the equation, 

P(λ) = λ3 + b2λ2 + b1λ+ b0(1 − R0) = 0 (23) 

where 

b2 =
1
α (3+ dE + dI + dQ + 3mm+ 3sd+ 3ch+ 2sc − 3α+ γ+ η+ σ +ψQ),

where 

Z =(1+dE +mm + sd + ch − α+ γ)(1+dI +mm + sd +ch+ sc − α+σ)
(1+dQ +mm + sd + ch+ sc − α+η+ψQ)

On applying Routh-Hurwitz criteria [31–34] i.e. if b2 > 0, b0(1 −
R0)>0 and b1b2 > b0(1 − R0), then polynomial (23) is greater than zero 
and thus all the real part of the eigenvalues must be negative. It can be 
evidently seen that bi >0for i = 0,1,2, now the thing which left to prove 
is (1 − R0)> 0. Hence, Π1 ∈R

7
+is locally asymptotically stable if R0 <1 

and if R0 >1, (1 − R0)<0 impliesP(λ)<0 that is Eq. (23) must have a 
nonnegative real part, thus Π1 ∈R

7
+ becomes unstable. 

Theorem 5. ((Endemic Equilibrium Point)) The endemic equilibrium 

Π2

(
Ŝ, Ê, Q̂, Î, M̂, R̂, P̂

)
∈ R

7
+ is locally asymptotically stable if and only if, 

R0 > 1 , for 0⩽α < 1. 

Proof:. The Jacobian at Π2

(
Ŝ, Ê, Q̂, Î, M̂, R̂, P̂

)
∈ R

7
+, generates the 

negative real eigenvalues, 

λ1 =
− 1 − dP + α

α λ2 =
− 1 − dR − mm − sd − ch + α

α

λ3 =
− 1 − mm − sd − ch − sc + α − ρ − ψM

α 

with the polynomial equation, 

b1 =
1
α2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 + 2dQ + 6 mm + 2 mm dQ + 3mm2 + 6sd + 2 sd dQ + 6 mm sd + 3sd2

+6 ch + 2 ch dQ + 6mm ch + 6 sd ch + 3ch2 + 4 sc + sc dQ + 4mm sc + 4sd sc

+4 ch sc + sc2 − α(6 + 2dQ + 6mm + 6sd + 6ch + 4sc − 3α)

+γ(2 + dQ + 2mm + 2sd + 2ch + 2sc − 2α)

+η(2 + 2mm + 2sd + 2ch + 2sc − 2α + γ)

+σ(2 + dQ + 2mm + 2sd + 2ch + sc − 2α + γ + η)

+(2 + 2mm + 2sd + 2ch + sc − 2α + γ + σ)ψQ

+dI(2 + dQ + 2mm + 2sd + 2ch + sc − 2α + γ + η + ψQ)

+dE(2 + dI + dQ + 2mm + 2sd + 2ch + 2sc − 2α + η + σ + ψQ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

b0 =
Z
α3   
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D(λ) = λ4 +K3λ3 +K2λ2 +K1λ+K0 = 0 (24) 

where, 

K3 =
− (1 + dS − rS + mm + sd + ch − α)

α R0
+ b2  

K2 = (K3 − b2)b2 +
B
α2  

K1 =

(
B(K3 − b2)

α2

)

K0=
(1+dS − rS+mm+sd+ch− α)

α4R0

(
kS(1+dS − rS+mm+sd+ch− α)βγη

rS
+A
)

where,   

and 

B = 3 + 2dQ + 6mm + 2dQmm + 3mm2 + 6sd + 2dQsd + 6mm sd + 3sd2

+ 6ch + 2dQch + 6mm ch + 6sd ch + 3ch2 + 4sc ++dQsc + 4mm sc

+ 4sd sc + 4sc ch + sc2 − 6α − 2dQα − 6mmα − 6sdα − 6chα − 4scα
+ 3α2 + 2γ + dQγ + 2mmγ + 2sdγ + 2chγ + 2scγ − 2αγ + 2η + 2mmη
+ 2sdη + 2chη + scη − 2αη + γη + 2σ + dQσ + 2mmσ + 2sdσ + 2chσ
+ scσ − 2ασ + γσ + ησ + (2 + 2mm + 2sd + 2ch + sc − 2α + γ + σ)ψQ

+ dI(2 + dQ + 2mm + 2sd + 2ch + sc − 2α + γ + η + ψQ) + (2 + dI

+ dQ + 2mm + 2sd + 2ch + 2sc − 2α + η + σ + ψQ) .

The factor 
(

kS(1+dS − rS+mm+sd+ch− α)βγη
rS

+ A
)

< 0, if the magnitude of 

kS(1+dS − rS+mm+sd+ch− α)βγη
rS

> A, which implies that K0 becomes positive if and 

only if R0 > 1. Thus with reference to Lemma 5.1 of [20], the positive 

constant of the polynomial D(λ) implies Π2

(
Ŝ, Ê, Q̂, Î, M̂, R̂, P̂

)
∈ R

7
+ is 

locally asymptotically stable if R0 > 1. 

Characterization of optimal control 

It is evidently clear from Theorem 1 that there exist a unique solution 
of system (6). Now to optimize the solution, we define the Lagrangian by 

L(Yi) =
∑7

i=1
wiY2

i +φ1mm2 +φ2sd2 +φ3ch2 +φ4sc2 (25) 

In addition, describing the Hamiltonian Has the inner product of the 
right hand side of the state system (6) and the adjoint variables Ω =

(ω1,ω2,ω3,ω4,ω5,ω6,ω7), we get 

H(S,E,Q, I,M,R,P,Ω, t) = L(Yi) + ω1(t)Ṡ(t) + ω2(t)Ė(t) + ω3(t)Q̇(t)

+ ω4(t)İ(t) + ω5(t)Ṁ(t) + ω6(t)Ṙ(t)

+ ω7(t)Ṗ(t)
(26) 

where Ω is to be determined. Now, utilizing the Pontryagin’s 
maximum principle for the Hamiltonian H, following theorem is ob
tained to determine the adjoint variables. 

Theorem 6. ((Existence of adjoint variable)) For the controlling func
tions mm∗, sd*, ch∗ and sc* together with the solution (S*(t),E*(t), I*(t),
Q*(t),M*(t),R*(t),P*(t) ) of the corresponding system (6), there exists 
adjoint variables Ω = (ω1,ω2,ω3,ω4,ω5,ω6,ω7) that satisfy,  

dω2(t)
dt

=
− ( − 1 − dE − mm − sd − ch + α − γ)ω2(t)

α −
γ ω3(t)

α

−
(mm + sd + ch)ω7(t)

α   

A = 1 + dQ + 3mm + 2dQmm + 3mm2 + dQmm2 + mm3 + 3sd + 2dQsd + 6mm sd
+2dQmm sd + 3mm2sd + 3sd2 + dQsd2 + 3mm sd2 + sd3 + 3ch + 2dQch
+6mm ch + 2dQmm ch + 3mm2ch + 6sd ch + 2dQsd ch + 6mm sd ch
+3sd2ch + 3ch2 + dQch2 + 3mm ch2 + 3sd ch2 + ch3 + 2sc + dQsc

+4mm sc + dQmm sc + 2mm2sc + 4sd sc + dQsd sc + 4mm sd sc + 2sd2sc
+4ch sc + dQch sc + 4mm ch sc + 4sd ch sc + 24ch2 sc + sc2 + mm sc2 + sd sc2 + ch sc2

− α

⎛

⎝
3 + 2dQ + 6mm + 2dQmm + 3mm2 + 6sd + 2dQsd + 6mm sd + 3sd2 + 6ch + 2dQch

+6mm ch + 6sd ch + 3ch2 + 4sc + dQsc + 4mm sc + 4sd sc + 4ch sc
+sc2 − 3α − dQα − 3mmα − 3sdα − 3chα − 2scα − α2

⎞

⎠

+γ

⎛

⎝
1 + dQ + 2mm + dQmm + mm2 + 2sd + dQsd + 2mm sd + sd2 + 2ch
+dQu3ch + 2mm ch + 2sd ch + ch2 + 2sc + dQsc + 2mm sc + 2sd sc

+2ch sc + sc2 − 2α − 2mm α − 2sd α − 2ch α − 2sc α + α2

⎞

⎠

+η
(

1 + 2mm + mm2 + 2sd + 2mm sd + sd2 + 2ch + 2mm ch + 2sd ch + sd2 + sc
+mm sc + sd sc + ch sc − 2α − 2mmα − 2sdα − 2chα − scα + α2

)

+σ

⎛

⎝
1 + dQ + 2mm + dQmm + mm2 + 2sd + dQsd + 2mm sd + sd2

+2ch + dQch + 2mm ch + 2sd ch + ch2 + sc + mm sc + sd sc
+ch sc − 2α − dQα − 2mmα − 2sdα − 2chα − scα + a2

⎞

⎠

+γσ(1 + dQ + mm + sd + ch + sc − α) + ησ (1 + mm + sd + ch − α + γ)
+(1 + mm + sd + ch − α + γ)(1 + mm + sd + ch + sc − α + σ)ψQ + γη(1 + mm + sd + ch + sc − α − kSβ)

+dI(1 + mm + sd + ch − α + γ)(1 + dQ + mm + sd + ch + sc − α + η + ψQ)

+dE(1 + dI + mm + sd + ch + sc − α + σ)(1 + dQ + mm + sd + ch + sc − α + η + ψQ)
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dω3(t)
dt

=
− ( − 1 − dQ − mm − sd − ch − sc+α − η − ψQ)ω3(t)

α

−
ηω4(t)

α −
ψQ ω6(t)

α −
(mm+ sd+ ch+ sc)ω7(t)

α   

dω4(t)
dt

= − 2I*(t)w4 +
S*(t)βω1(t)

α −
S*(t)βω2(t)

α −
(mm+ sd+ ch+ sc)ω7(t)

α

−
( − 1 − dI − mm∗ − sd − ch − sc+α − σ)ω4(t)

α −
σω5(t)

α   

dω5(t)
dt

=
− ( − 1 − mm − sd − ch − sc+α − ρ − ψM)ω5(t)

α

−
ψM ω6(t)

α −
(mm+ sd+ ch+ sc)ω7(t)

α  

dω6(t)
dt

=
− ( − 1 − dR − mm − sd − ch + α)ω6(t)

α −
(mm + sd + ch)ω7(t)

α  

dω7(t)
dt

= −
( − 1 − dP + α)ω7(t)

α (27)  

withtransversality ωi(T) = 0, i = 1, 2, ..., 7 where T = tfinal (28) 

Furthermore, the optimal control pairs are descripted as:   

B0 = S*(t)ω1(t) + E*(t)ω2(t) + Q*(t)ω3(t) + I*(t)ω4(t) + M*(t)ω5(t)

+ R*(t)ω6(t) − ω7(t)(E*(t) + I*(t) + M*(t) + Q*(t) + R*(t) + S*(t) )

Proof:. By using Pontryagin’s maximum principle in state, the adjoint 
equations with transversality conditions is stated as:  

dω2(t)
dt

=
− ∂H
∂E

=
− ( − 1 − dE − mm − sd − ch + α − γ)ω2(t)

α

−
γ ω3(t)

α −
(mm + sd + ch)ω7(t)

α   

dω3(t)
dt

=
− ∂H
∂Q

=
− ( − 1 − dQ − mm − sd − ch − sc+α − η − ψQ)ω3(t)

α

−
ηω4(t)

α −
ψQ ω6(t)

α −
(mm+ sd+ ch+ sc)ω7(t)

α     

dω1(t)
dt

=

−

(

− 1 − dS −
rSS*(t)

kS
+ rS

(

1 −
S*(t)

kS

)

− mm − sd − ch + α − I*(t) β
)

ω1(t)

α

−
I*(t) β ω2(t)

α −
(mm + sd + ch)ω7(t)

α   

mm∗ = max
(

min
(

B0

2αφ1
,mmmax

)

, 0
)

,

sd∗ = max
(

min
(

B0

2αφ2
, sdmax

)

, 0
)

,

ch∗ = max
(

min
(

B0

2αφ3
, chmax

)

, 0
)

,

sc∗ = max
(

min
(

Q*(t)ω3(t) + I*(t)ω4(t) + M*(t)ω5(t) − ω7(t)(I*(t) + M*(t) + Q*(t) )
2αφ4

, scmax
)

, 0
)

,

dω1(t)
dt

=
− ∂H

∂S
=

−

(

− 1 − dS −
rSS*(t)

kS
+ rS

(

1 −
S*(t)

kS

)

− mm − sd − ch + α − I*(t) β
)

ω1(t)

α

−
I*(t) β ω2(t)

α −
(mm + sd + ch)ω7(t)

α   
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dω5(t)
dt

=
− ∂H
∂M

=
− ( − 1 − mm − sd − ch − sc+α − ρ − ψM)ω5(t)

α

−
ψM ω6(t)

α −
(mm+ sd+ ch+ sc)ω7(t)

α  

dω6(t)
dt

=
− ∂H
∂R

=
− ( − 1 − dR − mm − sd − ch + α)ω6(t)

α

−
(mm + sd + ch)ω7(t)

α  

dω7(t)
dt

=
− ∂H
∂P

= −
( − 1 − dP + α)ω7(t)

α 

with transversality ωi(T) = 0, i = 1,2, ...,7where T = tfinal. By using 
optimality condition, we deduce the optimal control pairs as: 

∂H
∂mm

= 0 ⇒ mm* =
B0

2αφ1  

∂H
∂sd

= 0 ⇒ sd∗ =
B0

2αφ2  

∂H
∂ch

= 0 ⇒ ch∗ =
B0

2αφ3  

∂H
∂sc

= 0 ⇒ sc*

=
Q*(t)ω3(t) + I*(t)ω4(t) + M*(t)ω5(t) − ω7(t)(I*(t) + M*(t) + Q*(t) )

2αφ4 

Further, taking into account the property of the control space, we 
achieve, 

mm*(t) =

⎧
⎨

⎩

0 if X1⩽0
X1 if 0⩽X1⩽mmmax

mmmax if X1⩾mmmax
, sd*(t)=

⎧
⎨

⎩

0 if X2⩽0
X2 if 0⩽X2⩽sdmax

sdmax if X2⩾sdmax 

ch*(t) =

⎧
⎨

⎩

0 if X3⩽0
X3 if 0⩽X3⩽chmax

chmax if X3⩾chmax
, sc*(t) =

⎧
⎨

⎩

0 if X4⩽0
X4 if 0⩽X4⩽scmax

scmax if X4⩾scmax
.

where, 

X1 =
B0

2αφ1  

X2 =
B0

2αφ2  

X3 =
B0

2αφ3  

X4 =
Q*(t)ω3(t) + I*(t)ω4(t) + M*(t)ω5(t) − ω7(t)(I*(t) + M*(t) + Q*(t) )

2αφ4 

Ultimately, the control pair and state variables are found by using the 
following composed systems: 

Ṡ(t) =
1
α

(

rsS(t)
(

1 −
S(t)
kS

)

− (mm∗(t) + sd∗(t) + ch∗(t) )S(t) − β S(t) I(t)

− ds S(t) − (1 − α)S(t)
)

Ė(t) =
1
α (β S(t)I(t) − (mm∗(t) + sd∗(t) + ch∗(t) )E(t) − γ E(t) − dE E(t)

− (1 − α)E(t) )

Q̇(t) =
1
α (γ E(t) − (mm∗(t) + sd∗(t) + ch∗(t) + sc∗(t) )Q(t) − η Q(t)

− ψQQ(t) − dQQ(t) − (1 − α)Q(t) )

İ(t) =
1
α (η Q(t) − (mm∗(t) + sd∗(t) + ch∗(t) + sc∗(t) )I(t) − σ I(t)

− dII(t) − (1 − α)I(t) ),

Ṁ(t) =
1
α (σ I(t) − (mm∗(t) + sd∗(t) + ch∗(t) + sc∗(t) )M(t)

− ψMM(t) − ρ M(t) − (1 − α)M(t) )

Ṙ(t) =
1
α (ψQ Q(t) + ψM M(t) − (mm∗(t) + sd∗(t) + ch∗(t) )R(t) − dRR(t)

− (1 − α)R(t) )

and 

Ṗ(t) =
1
α

(
(mm∗(t) + sd∗(t) + ch∗(t) ) (S(t) + E(t) + R(t) ) + (mm∗(t) + sd∗(t) + ch∗(t) + sc∗(t) )Q(t)

+(mm∗(t) + sd∗(t) + ch∗(t) + sc∗(t) ) ( I(t) + M(t) ) − dP P − (1 − α)P(t)

)

dω1(t)
dt

=

−

(

− 1 − dS −
rSS*(t)

kS
+ rS

(

1 −
S*(t)

kS

)

− (mm∗(t) + sd∗(t) + ch∗(t) ) + α − I*(t) β
)

ω1(t)

α

−
I*(t) β ω2(t)

α −
(mm∗(t) + sd∗(t) + ch∗(t) )ω7(t)

α   

dω4(t)
dt

=
− ∂H

∂I
= − 2I*(t)w4 +

S*(t)βω1(t)
α −

S*(t)βω2(t)
α −

(mm + sd + ch + sc)ω7(t)
α

−
( − 1 − dI − mm∗ − sd − ch − sc + α − σ)ω4(t)

α −
σω5(t)

α   
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dω2(t)
dt

=
− ( − 1 − dE − (mm∗(t)+ sd∗(t)+ch∗(t))+α − γ )ω2(t)

α −
γω3(t)

α

−
(mm∗(t)+ sd∗(t)+ch∗(t))ω7(t)

α   

dω3(t)
dt

=
− (− 1 − dQ − (mm∗(t)+sd∗(t)+ch∗(t)+sc∗(t))+α − η − ψQ )ω3(t)

α

−
ηω4(t)

α −
ψQ ω6(t)

α −
(mm∗(t)+sd∗(t)+ch∗(t)+sc∗(t))ω7(t)

α     

dω5(t)
dt

=
− ( − 1 − (mm∗(t)+ sd∗(t)+ ch∗(t)+ sc∗(t))+α − ρ − ψM )ω5(t)

α

−
ψM ω6(t)

α −
(mm∗(t)+ sd∗(t)+ ch∗(t)+ sc∗(t))ω7(t)

α   

dω6(t)
dt

=
− ( − 1 − dR − (mm∗(t)+ sd∗(t)+ch∗(t))+α)ω6(t)

α

−
(mm∗(t)+ sd∗(t)+ ch∗(t))ω7(t)

α  

dω7(t)
dt

= −
( − 1 − dP + α)ω7(t)

α  

Numerical simulation and deliberation 

In this segment, numerical investigations of the aforementioned 
system are carried out by considering some numerical values of the 
parameters, as shown in Table 1. The graphical predisposition analysis 

of R0 with respect to the strategies are also added in the discussion. 
Moreover, the simulations of all compartmental class, with prevention 
and without prevention campaign cases are plotted and tabulated by 
using Mathematica 11.0. 

Sensitivity analysis of parameters with optimality 

The sensitivity analysis of R0 by means of control variables are 
described in Table 2 and Figs. 2-7 for the parameters mentioned in 
Table 1 and at different values of α. These control variables define the 
strategic campaigns utilized to prevent the deadly transmission of the 
COVID’19. It can be clearly seen from the Figs. 2-7 that at each value of 
α, the influential strength of each campaign together minimizes the 
significance of R0. The generation of colorized output in these figures, 
ranging from light to dark, indicates the gradual decrease in R0 from 
largest to lowest value. The obtained value of R0 without any awareness 

campaign is greater than 1, which gradually reduces to less than 1 on 
increasing awareness campaigns that can be seen from the Table 2 and 
Figs. 2-7. Furthermore, the lines of R0 on the Fig. 2, which are attained 
by fixing ch = 0.1and sc = 0.1and varying mm and sd represent decrease 
in value starting from 1.4 to 0.4. In the same way, Figs. 3 and 5 plotted 
for mm = 0.1, sc = 0.1 and mm = 0.1, sd = 0.1, respectively which 
demonstrate the same pattern of decrease in R0. On the other hand, 
Fig. 4 exhibit the decrease in R0 starting from 1.8 to 0.4, for mm = 0.1,
sd = 0.1. Similarly, same sketches are found in Figs. 6 and 7, which are 
produced by fixing mm = 0.1, ch = 0.1 and sd = 0.1, ch = 0.1, accord
ingly. Besides, Table 2 explains the sensitivity of R0 with some different 
values of intervention strategies, which elucidates that for mm = 0.3,
sd = 0.7,ch = 0.5,sc = 0.9, the value of R0 decreases more rapidly than 

Table 2 
Sensitivity inspection of R0 and optimal surveillance J based on prevention 
strategies for weights w4 = 200, φ1 = 100, φ2 = 20, φ3 = 150 , φ4 = 300, 
t ∈ [0, 30]and at different values of α.  

α  Intervention Strategies R0  J 

0.8 mm = 0, sd = 0, ch = 0, sc = 0   2.08323  6171.69 
mm = 0.3,sd = 0.5,ch = 0.65,sc = 0.9   0.236717  9702.47 
mm = 0.3, sd = 0.7, ch = 0.5, sc = 0.9   0.227723  9068.92 
mm = 0.6, sd = 0.5, ch = 0.3, sc = 0.9   0.246215  9017.57 

0.95 mm = 0, sd = 0, ch = 0, sc = 0   2.83546  9622.94 
mm = 0.3,sd = 0.5,ch = 0.65,sc = 0.9   0.266884  9724.52 
mm = 0.3, sd = 0.7, ch = 0.5, sc = 0.9   0.252657  9090.57 
mm = 0.6, sd = 0.5, ch = 0.3, sc = 0.9   0.278141  9040.02 

1 mm = 0, sd = 0, ch = 0, sc = 0   3.17529  10815.9 
mm = 0.3,sd = 0.5,ch = 0.65,sc = 0.9   0.278141  9732.32 
mm = 0.3, sd = 0.7, ch = 0.5, sc = 0.9   0.266884  9098.23 
mm = 0.6, sd = 0.5, ch = 0.3, sc = 0.9   0.290079  9047.98  

dω4(t)
dt

= − 2I*(t)w4 +
S*(t)βω1(t)

α −
S*(t)βω2(t)

α
− ( − 1 − dI − (mm∗(t) + sd∗(t) + ch∗(t) + sc∗(t) ) + α − σ )ω4(t)

α

−
σω5(t)

α −
(mm∗(t) + sd∗(t) + ch∗(t) + sc∗(t) )ω7(t)

α   

Fig. 2. Sensitivity inspection of R0 with respect to mm and sd for ch = 0.1,sc =

0.1, at α = 0.95. 
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the other combinations, at each value of α. In addition, the last column 
of Table 2 also elaborates the minimum cost function J against each 
mitigation strategy for weights w4 = 200, φ1 = 100, φ2 = 20, φ3 =

150 and φ4 = 300. Evidently, the optimal values of J for the cost efforts 
of surveillance mitigations, mm = 0.3, sd = 0.7, ch = 0.5, sc = 0.9, 
which greatly reduce R0 are 9068.92, 9090.57 and 9098.23 for α = 0.8,
0.95, 1, respectively and t ∈ [0,30]. According to these values, 
increasing the awareness about social distancing and supportive care of 
the infected individuals will significantly affect the transmission of 
COVID’19 with optimal cost efforts, comparative to other combinations 
of mitigations. 

Equilibrium states and optimality 

Moreover, solving SEQIMRP system different plots are attained that 
define the stability of Π1 and Π2. In the current scenario, evaluations of 
these equilibrium points are produced on the basis of the prevention 
campaigns. Commencing from Table 3, the values are generated for 
mm = 0, sd = 0, ch = 0 and sc = 0, at α ∈ (0, 1]and t ∈ [0,30]. Mani
festly, it can be seen when no prevention measures are taken R0 in
creases gradually and endemic state of the pandemic becomes stable. 
Additionally, Figs. 8-14 also plotted for mm = 0, sd = 0, ch = 0 and 
sc = 0, at α = 0.8, 0.95, 1 and t ∈ [0,30] represent the stability of the 
deadly endemic state of COIVD’19 for the current rate of transmission, 

Fig. 3. Sensitivity inspection of R0 with respect to ch and sd for mm = 0.1,sc =

0.1, at α = 0.95. 

Fig. 4. Sensitivity inspection of R0 with respect to ch and sc for mm = 0.1,sd =

0.1, at α = 0.95. 

Fig. 5. Sensitivity inspection of R0 with respect to ch and mm for sd = 0.1,sc =

0.1, at α = 0.95. 

Fig. 6. Sensitivity inspection of R0 with respect to sd and sc for mm = 0.1,ch =

0.1, at α = 0.95. 
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recovery and mortality. Since, no prevention measures are taken at 
initial spread stage of COVID’19, therefore the curve of protected pop
ulation yields a constant straight line on zero. This further elaborates the 
circumstances where everyone is at high risk of being infected that the 
pandemic situation becomes worst. 

Contrarily Table 4 depicts the values, which are generated for mm =

0.2, sd = 0.3, ch = 0.35 and sc = 0.65, at α ∈ (0,1] and t ∈ [0,30]. 
Evidently from Table 4, when prevention measures are taken into ac
count to some extent, we attain the disease-free state of the dynamics at 
each value of α. In addition, it also shows the value of R0 to be less than 
one, which is proved in Theorem 4. Figs. 15-21 graphically demonstrate 
the stability of Π1 for mm = 0.2, sd = 0.3, ch = 0.35 and sc = 0.65, at 
α = 0.8, 0.95, 1 and t ∈ [0,30]. Contrary to endemic, in disease free 
case the infected cells become zero whereas susceptible and protected 
individuals remain at a population level other than zero. Running 
awareness campaigns about using mask, social distancing, hand wash 
and also invigorating supportive care of the patients will decrease the 
basic reproduction number and eventually the deadly spread of 
COVID’19. 

Conclusion 

The declaration of PHEIC by the WHO about the COVID’19 outbreak, 
agitate the scientific community and the healthcare professionals of the 
countries. After the failure of several experiments on the inoculations, 
the only operational plan of action to decelerate the spread of COVID’19 
is to adopt non-pharmaceutical restrictions. For this purpose, different 

unprecedented measures are taken into account such as lockdown, 
closure of institutions and initiating different awareness campaigns. 
Here, we discussed the cost and public effectiveness of the awareness 
campaigns taken into consideration by the stakeholders. These maneu
vers include the strict imposition of using medical mask in public places, 
social distancing of 6 feet, frequent use of hand wash and sanitizers, 
training medical staffs and officers for extraordinary supportive care of 
COVID’19 patients in hospitals. The optimal control function was 
designed with the epidemic dynamical system SEQIMRP to mutually 

Fig. 7. Sensitivity inspection of R0 with respect to mm and sc for sd = 0.1,ch =

0.1, at α = 0.95. 

Table 3 
Basic reproduction number R0 and endemic equilibrium points Π2, for parameters describe in Table 1, for mm = 0, sd = 0, ch = 0 and sc = 0, at different values of 
αand t ∈ [0, 30].  

α  R0  S(t) E(t) Q(t) I(t) M(t) R(t) P(t)

0.4  1.07658 90564.3 130,860  0.0166747  0.14077  0.0108021  0.00775503 0 
0.5  1.2482 78379.6 341,367  0.0437936  0.394839  0.0339465  0.0267258 0 
0.6  1.46208 67141.9 503,966  0.0650954  0.629689  0.0615493  0.0546976 0 
0.7  1.73309 56834.8 623,165  0.0810462  0.84565  0.0957691  0.100128 0 
0.8  2.08323 47,442 703,299  0.0921023  1.04305  0.140393  0.184117 0 
0.9  2.54613 38947.9 748,529  0.0987099  1.22222  0.202724  0.373485 0 
1.  3.17529 31335.7 762,847  0.101305  1.38348  0.298912  1.00458 0  

Fig. 8. Dynamics of S(t) ∈ Π2 of SEQIMRP, for parameters described in Table 1 
and mm = 0, sd = 0, ch = 0 and sc = 0, at α = 0.8, 0.95, 1and t ∈ [0, 30]. 

Fig. 9. Dynamics of E(t) ∈ Π2 of SEQIMRP, for parameters described in Table 1 
and mm = 0, sd = 0, ch = 0 and sc = 0, at α = 0.8, 0.95, 1and t ∈ [0, 30]. 

Fig. 10. Dynamics of Q(t) ∈ Π2 of SEQIMRP, for parameters described in 
Table 1 and mm = 0, sd = 0, ch = 0 and sc = 0, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 
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study its dynamical stability and the feasibility of the prevention tactics. 
The system was formulated with the proportional fractional derivative, 
in order to analyze the basic reproduction number at each chronological 
change. Ultimately, through the aforementioned analytical and nu
merical illustrations, the following propitious facts can be extracted:  

• The strategies of using medical mask, social distancing, frequently 
sanitizing hands and supportive care of COVID’19 for speedy 

Fig. 12. Dynamics of M(t) ∈ Π2 of SEQIMRP, for parameters described in 
Table 1 and mm = 0, sd = 0, ch = 0 and sc = 0, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 

Fig. 13. Dynamics of R(t) ∈ Π2 of SEQIMRP, for parameters described in 
Table 1 and mm = 0, sd = 0, ch = 0 and sc = 0, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 

Fig. 14. Dynamics of P(t) ∈ Π2 of SEQIMRP, for parameters described in 
Table 1 and mm = 0, sd = 0, ch = 0 and sc = 0, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 

Table 4 
Basic reproduction number R0 and disease free equilibrium points Π1, for pa
rameters describe in Table 1, for mm = 0.2, sd = 0.3, ch = 0.35 and sc = 0.65, 
at different values of αand t ∈ [0, 30].  

α  R0  S(t) E(t) Q(t) I(t) M(t) R(t) P(t)

0.4  0.297661 94566.7 0 0 0 0 0 97904.3 
0.5  0.324551 94,900 0 0 0 0 0 111,349 
0.6  0.354992 95233.3 0 0 0 0 0 128,931 
0.7  0.389628 95566.7 0 0 0 0 0 152,907 
0.8  0.429253 95,900 0 0 0 0 0 187,538 
0.9  0.474857 96233.3 0 0 0 0 0 241,958 
1.  0.527691 96566.7 0 0 0 0 0 339,915  

Fig. 15. Dynamics of S(t) ∈ Π1 of SEQIMRP, for parameters described in 
Table 1 and mm = 0.2, sd = 0.3, ch = 0.35 and sc = 0.65, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 

Fig. 11. Dynamics of I(t) ∈ Π2 of SEQIMRP, for parameters described in 
Table 1 for mm = 0, sd = 0, ch = 0 and sc = 0, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 

Fig. 16. Dynamics of E(t) ∈ Π1 of SEQIMRP, for parameters described in 
Table 1 and mm = 0.2, sd = 0.3, ch = 0.35 and sc = 0.65, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 

Fig. 17. Dynamics of Q(t) ∈ Π1 of SEQIMRP, for parameters described in 
Table 1 and mm = 0.2, sd = 0.3, ch = 0.35 and sc = 0.65, at α = 0.8, 0.95,
1and t ∈ [0, 30]. 
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recovery are significant attempts to win this battle against this 
pandemic.  

• The awareness and necessitating of these lines of attacks may change 
the state of pandemic into a stable disease-free environment.  

• These can greatly lesser the basic reproduction number from R0 > 1 
to R0 < 1. 

• The optimal surveillance mitigation with respect to cost effective
ness, social distancing and supportive care may reduce the diffusion 
of COVID’19 more hastily.  

• Illustrations at different fractional derivative index show systematic 
reading in the susceptible, expose, quarantined, infected, isolated, 
recovered and protected population.  

• Without precautions, as the fractional derivative approaches the 
whole change, the readings represent step by step increase in sus
ceptible, expose, quarantined, infected, isolated and recovered 
population.  

• Following precautions, as the fractional derivative approaches the 
whole change, the number individuals in protection increases grad
ually, while expose, quarantined, infected, isolated and recovered 
remain zero. 

• Competency in prior recognition of the track of COVID’19 trans
mission risk through the proportional fractional derivative model. 

• Proficiently trace the basic reproduction number and take prepara
tory measures before becoming a deadly pandemic. 

In the current phase, understanding the epidemiological character
istics is a serious bone of contention question for researchers and health 
professionals. The successful investigations may significantly help out 
the stakeholders in making effective standard operational procedures of 
interventions. The designed model SEQIMRP will categorically aid a 
great contribution in dynamically scrutinizing and exhibiting the 
optimal strategy to control the deadly escalation of COVID’19. 
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