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Abstract

Motivation: Big data era in genomics promises a breakthrough in medicine, but sharing data in a private manner
limit the pace of field. Widely accepted ‘genomic data sharing beacon’ protocol provides a standardized and secure
interface for querying the genomic datasets. The data are only shared if the desired information (e.g. a certain vari-
ant) exists in the dataset. Various studies showed that beacons are vulnerable to re-identification (or membership in-
ference) attacks. As beacons are generally associated with sensitive phenotype information, re-identification creates
a significant risk for the participants. Unfortunately, proposed countermeasures against such attacks have failed to
be effective, as they do not consider the utility of beacon protocol.

Results: In this study, for the first time, we analyze the mitigation effect of the kinship relationships among beacon
participants against re-identification attacks. We argue that having multiple family members in a beacon can garble
the information for attacks since a substantial number of variants are shared among kin-related people. Using family
genomes from HapMap and synthetically generated datasets, we show that having one of the parents of a victim in
the beacon causes (i) significant decrease in the power of attacks and (ii) substantial increase in the number of
queries needed to confirm an individual’s beacon membership. We also show how the protection effect attenuates
when more distant relatives, such as grandparents are included alongside the victim. Furthermore, we quantify the
utility loss due adding relatives and show that it is smaller compared with flipping based techniques.

Contact: exa208@case.edu or cicek@cs.bilkent.edu.tr

1 Introduction

In the last two decades, emerging sequencing technologies have been
providing researchers with larger genomic datasets which creates new
opportunities for understanding the genetic architectures of diseases
and have been providing insights for new therapies (Kim, 2001). This
was further fueled by the exponential growth of the personal genomics
industry in the last 5 years which attracted consumers that want to (i)
familiarize themselves with their genetic origins or (ii) take precautions
against possible health risks (Khan and Mittelman, 2018). Growing
size of genomic datasets promises new opportunities for research
through data sharing. However, data inherently contains highly sensi-
tive information and privacy preserving and secure sharing of data
comes up as a major challenge. Anonymization of the genomes is a
straightforward solution. However, the genome is the utmost personal
identifier and it can reveal the identity of an individual. Such a scenario
can dire ethical consequences, such as discrimination (e.g. on the basis
of employment or insurance; Billings et al., 1992; Kim, 2001; Lapham
et al., 1996).

Leakage of genomic information of an individual not only jeopard-
izes their privacy but also the privacy of their relatives since genomic in-
formation of an individual can be used to infer genomes (and hence
genetic predisposition to a diseases) of other family members (Humbert
et al., 2013). For instance, Deznabi et al. (2018), demonstrate that the
single-nucleotide polymorphisms (SNPs) of relatives can be recon-
structed with high confidence using (i) Mendel’s law, (ii) high-order cor-
relations between SNPs and (iii) minor allele frequencies (MAFs) of the
SNPs in a population. Thus, researchers face a trade-off between (i)
sharing data to empower genetic research, which puts the participants
under risk and legally binds them for possible repercussion and (ii) not
sharing the data, which potentially bars the advances in life sciences.

In 2016, the Global Alliance for Genomics and Health
(GA4GH) introduced the Beacon Project, a system constructed with
the aim of providing a secure and systematic way of sharing genomic
data. Beacons provide an interface, in which a user can query the ex-
istence of a specific nucleotide at a given position in a particular
chromosome. For instance, ‘is there a participant carrying nucleo-
tide C at the 100 000th position of Chromosome 1?’ is a valid query.
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The beacon responds to such a query only with a simple ‘yes’ or
‘no’. Therefore, the beacon protocol is considered safer (compared
with other statistical databases), as the query responses are binary
and they do not include any information about allele frequencies.
Moreover, a ‘yes’ answer cannot be tied to a specific individual in
the beacon.

The beacon protocol also encourages cross site collaborations
because the users do not have to go through the rigorous paperwork
unless they identify a useful dataset for their research.

Nonetheless, previous studies showed that beacons are vulner-
able to re-identification attacks (Raisaro et al., 2017; Shringarpure
and Bustamante, 2015; von Thenen et al., 2019). Shringarpure and
Bustamante (2015) showed that a likelihood ratio test (LRT) can be
used to infer the membership of an individual to a beacon by query-
ing the beacon for a couple of hundred SNPs of that individual (SB
Attack). This study clearly showed that the beacons indeed leak in-
formation which potentially leads to the disclosure of sensitive infor-
mation if the beacon is associated with a sensitive trait (e.g. SFARI
beacon which contains participants with autism). Raisaro et al.
(2017) advanced the SB Attack by assuming the attacker has infor-
mation regarding the MAFs in the population (Optimal Attack). By
asking SNPs with low MAF values first, they showed that an attack-
er actually needs only a handful of queries to achieve the same
power as the SB Attack. Finally, von Thenen et al. (2019) introduced
two new attacks. First, they showed that the attacker can infer bea-
con responses using the responses of previously asked queries
(Query Inference—QI Attack). Second, they showed that the attack-
er can still launch an attack even if the victim has concealed their
SNPs with low MAF values (Genome Inference—GI Attack). Both
attacks utilize the correlations among SNPs and they further de-
crease the number of required queries for confident inference.

Several countermeasures have been proposed in the literature to
protect the privacy of the beacon participants against re-identification
attacks. Shringarpure and Bustamante considered: (i) having larger
beacon sizes, (ii) sharing only small genomic regions (e.g. genes of
interest) instead of full genome, (iii) having a uniform ancestry com-
position in the beacon and (iv) not publishing the metadata (e.g. data-
set size). However, as also stated by the authors, these techniques
reduce the utility of the beacon. Raisaro et al. (2017) proposed a
query budget per participant, which expires if many SNPs of an indi-
vidual is queried and the participant is taken out of the system (i.e.
queries including them are not answered). Yet, von Thenen et al.
(2019) showed that inference of beacon answers via SNP correlations
can get around such budget-based countermeasures. Al Aziz et al.
(2017) proposed two algorithms that randomize the beacon
responses. However, such noise-based techniques reduce the utility of
the users and substantially affect the usability of the system.

Another line of work proposes randomly flipping beacon
responses to reduce the power of re-identification attacks. Bu et al.
(2018) showed that flipping a certain amount of rare SNPs in the
beacon responses can reduce the re-identification power to an insig-
nificant level. However, flipping the responses to the queries that are
received for rare SNPs is shown to significantly reduce the utility of
beacon responses. Thus, Bu et al. (2018) proposed a real-time flip-
ping (RTF) method which aims at flipping the queries that are
received for the rare SNPs of more vulnerable individuals in the bea-
con. The difference between RTF and other flipping methods is that
it guarantees the same level of privacy by flipping fewer responses.
RTF method achieves this goal by using a P-value for each potential-
ly target individual in the beacon. P-value of a potential target is the
fraction of LRT scores in a randomly selected control group that is
equal to or smaller than that of the target individual. If the P-value
is any of an individual in the beacon is smaller than 5%, providing
the correct response of the query is assumed to significantly increase
the vulnerability of the corresponding individual for the re-
identification attack. Thus, in that case, RTF flips the response of
the query. Although RTF method performs better than other flip-
ping methods (in terms of utility), it significantly reduces the utility
for the beacon responses for rare SNPs.

In this study, we consider using the kinship of beacon participants
as a countermeasure against re-identification attacks. We show that

the power of the state-of-the-art attacks substantially decrease when
at least one of the parents of a victim is added to the beacon. The key
idea is that kinship garbles the information returned to the attacker
since family members share many SNPs and the re-identification at-
tack algorithm cannot conclude weather the ‘yes’ answer coming
from the beacon originates due to the victim or their relatives.

Using a beacon constructed from the CEU population of the
HapMap dataset, we show that the number of queries to infer bea-
con membership of a victim increase when at least one of their fam-
ily members is added to the beacon. We also show how the power
loss for the state-of-the-art re-identification attacks changes with
different degrees of relatives in the beacon.

Finally, we quantify the utility loss of the beacon due to this pro-
posed mitigation technique. We define the utility as the proportion
of the flipped beacon responses (due to the proposed mitigation
technique) and we show that the proposed mitigation technique
does not cause a significant decrease in utility (especially for SNPs
with low MAF values).

The rest of the article is organized as follows. In Section 2, we
provide technical details on methods and datasets we use. In
Sections 3 and 4, we provide and discuss the results about the effect
of kinship on re-identification attacks under various settings.
Finally, in Section 5, we conclude the article.

2 Materials and methodology

In this section, we present the technical details on the state-of-the-
art re-identification attacks against genomic data sharing beacons.
We also describe our techniques to quantify the power of the attack-
er and the family simulation procedure (for the evaluations we con-
duct using synthetic datasets).

2.1 Re-identification attacks against beacons
Shringarpure and Bustamante introduced the first re-identification
attack against beacons. The algorithm repeatedly queries for a vic-
tim’s heterozygous SNPs and a LRT is performed to choose between
a null hypothesis (H0, in which the queried genome is not in the bea-
con) and an alternative hypothesis (H1, in which the queried genome
is a member of the beacon). The log-likelihood (L) under the null
and alternate hypothesis is shown as follows:

LH0
ðRÞ ¼

Xn

i¼1

xi logð1�DNÞ þ ð1� xiÞ logðDNÞ (1)

LH1
ðRÞ ¼

Xn

i¼1

xi logð1� dDN�1Þ þ ð1� xiÞ logðdDN�1Þ; (2)

where R is the set of responses and xi is the binary response for the
ith query (xi ¼ 1 if the query response is ‘yes’ and xi ¼ 0, otherwise).
d term in the alternate hypothesis indicates a small probability that
attacker’s copy of the victim’s genome does not match the beacon’s
copy (e.g. due to differences in the sequencing pipelines). n is the
number of queried SNPs, DN is the probability that none of the N
individuals in the beacon has the corresponding allele for the queried
SNP, and DN�1 is the probability that no individual except for the
victim having the corresponding allele for the queried SNP. The
LRT statistic K is calculated as follows:

K ¼
Xn

i¼1

log
DN

dDN�1

� �
þ log

dDN�1ð1�DNÞ
DNð1� dDN�1Þ

� �
xi: (3)

H0 is rejected if it is less than a threshold and this threshold can
be found theoretically under the assumption that the queried SNPs
are i.i.d.

Raisaro et al. (2017) introduced the Optimal Attack, which
assumes that the attacker has access to the MAFs of a population
representing the beacon participants. Then, the SNPs are queried in
the ascending MAF order. The formulation is identical to the SB
Attack, but in Optimal Attack, the computations of DN�1 and DN
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depend on the query i since each query has a different effect on the

LRT statistic. Thus, in Optimal Attack, Di
N�1 and Di

N are calculated

as follows: Di
N�1 ¼ ð1� fiÞ2N�2 and Di

N ¼ ð1� fiÞ2N, where fi rep-
resents the MAF of SNP i. The LRT statistic, K is then computed as
follows:

K ¼
Xn

i¼1

log
Di

N

dDi
N�1

 !
þ log

dDi
N�1ð1�Di

NÞ
Di

Nð1� dDi
N�1Þ

 !
xi: (4)

The K threshold (ta) for rejection of the null hypothesis is deter-
mined empirically for every query since the i.i.d. assumption in
Shringarpure and Bustamante (2015) no longer holds. That is, for
every query, the distribution of K under the null hypothesis is found
using k individuals that are not in the beacon. When K value of a
victim is less than ta, the alternative hypothesis is chosen, where a
represents the false positive rate.

von Thenen et al. (2019) introduced the QI Attack, which
extends the Optimal Attack by showing that in addition to the MAF
information of population, the attacker can also utilize the correla-
tions between the SNPs. The correlation between the SNPs are cal-
culated based on their LD values and a SNP–SNP network is
generated, in which the vertices are the SNPs and the weights on
directed edges represent the LD values. When a SNP is queried, the
beacon responses of the neighboring SNPs in the SNP–SNP network
are inferred, and hence the required number of queries is significant-
ly decreased. In the QI Attack, the null and the alternative hypoth-
esis formulations (and the corresponding K definition) are changed,
so that the new calculation also reflects the information obtained
from (m) inferred queries. The inferred queries are weighted by an
inference confidence (c) and the new log-likelihoods and LRT statis-
tics are computed as follows:

LH0
ðRÞ ¼

Xn

i¼1

ðxi logð1�Di
NÞ þ ð1� xiÞ logðDi

NÞ

þ
Xs

j¼1

cxi logð1�Dj
NÞ þ cð1� xiÞ logðDj

NÞÞ
(5)

LH1
ðRÞ ¼

Xn

i¼1

ðxi logð1� dDi
N�1Þ þ ð1� xiÞ logðdDi

N�1Þ

þ
Xs

j¼1

cxi logð1� dDj
N�1Þ þ cð1� xiÞ logðdDj

N�1ÞÞ;
(6)

K ¼
Xn

i¼1

log
Di

N

dDi
N�1

 !
þ log

dDi
N�1ð1�Di

NÞ
Di

Nð1� dDi
N�1Þ

 !
xi

 

þ
Xs

j¼1

log
Dj

N

dDj
N�1

 !
þ log

dDj
N�1ð1�Dj

NÞ
Dj

Nð1� dDj
N�1Þ

 !
cxi

!
:

(7)

2.2 Power calculation
We perform a power analysis to quantify the success of a re-
identification attack (Raisaro et al., 2017; von Thenen et al., 2019).
All Optimal, QI and GI Attacks query SNPs in the ascending MAF
order. In this scheme, for every query i, a ti

a value is determined
which is the K threshold to reject the NULL hypothesis. a represents
the desired false positive rate. We pick k people (controls) who are
not in the beacon. We assume these k people have a similar popula-
tion structure as the beacon participants. For each of the k controls,
the ith query is posed and a K value set is obtained: ~K

i

control ¼
(Ki

1;K
i
2; . . . ;Ki

k). ~K
i

control is sorted (in ascending order) and the Ki

value, for which a percent of k people have smaller Kis, is picked as
the ti

a. For instance, if k is 20 and a is 0.05, then the second smallest
Ki is picked as ti

a as 1 person is below that threshold. This represents
the false positive threshold as for that person; the NULL hypothesis
would have been rejected. Given n queries, the ~ta list is generated
which contains the ta values of all n queries: ~ta ¼ ðt1

a ; t
2
a ; . . . ; tn

a Þ.
To measure the power per each query i, first, l people from the

beacon (cases) are obtained. Then, for everyone in this set, the ith

query is posed and a K value set is obtained: ~K
i

case ¼
(Ki

1;K
i
2; . . . ;Ki

l). Then, the power for the ith query is calculated as

follows: Pi ¼
P

Ki
j2

Kcasei1Ki
j < ti

a
=k. This is the fraction of the cases

who have Ki
j value that is less than ti

a. For that fraction of the l peo-

ple, the NULL hypothesis is (correctly) rejected. For instance, if l is

20 and 5 people have Ki
j that is less than ti

a, this means for the ith

query, the power of the attack is 25% at the a false positive rate.

The vector ~Pi ¼ ðP1;P2; . . . ;Pn) is then plotted to see the power
change with respect to increasing number of queries. An attack
which reaches to 100% power earlier than others is considered
more powerful. Our goal in using kinship as a countermeasure aims
at decreasing the power of the state-of-the-art attacks, and thus ei-
ther increasing the number of queries to reach 100% power or pre-
venting the attack to reach 100% power at all.

2.3 Generation of relatives’ genomes
The family genome data we use for our experiments (which is
obtained from HapMap as discussed in Section 3.1) contains only
trios (mother, father and the child). Thus, we also generate synthetic
parent genomes for a given victim’s (child’s) actual genome to be
able to simulate the effect of having more distant relatives in the bea-
con such as grandparents.

Flow of the relative generation algorithm is shown in Figure 1.
When creating parents’ genomes, in order to preserve haploblock
structure, we separated child’s alleles to two different strands in a
given block which has a size of 18 kb, which is the average block
size for human genome International HeapMap Consortium (2005).
Since we did not have strand information for minor allele in hetero-
zygous SNPs (i.e. phasing), we distributed minor alleles to strands
randomly in heterozygous SNPs. As a result, we obtained single
strands for both father and mother. Generation of the remaining
strand for both parents is same. For each allele in remaining strand,
we picked either a major allele or a minor allele according to the al-
lele frequency of each that SNP. After creating both strands of the
parents, we obtained SNPs of the parents by joining strands to-
gether. We used the same algorithm to generate the genomes of the

Fig. 1. Flow of family member generation algorithm. First, a haploblock for the

child (i.e. the victim) is obtained. (a) Two strands of the DNA for the child is formed

by separating the alleles. (b) The minor alleles are randomly shuffled to form the

final version of each strand (blue for Strand 1 and red for Strand 2). (c) These

strands are used to create the first strand of each parent. (d) The second strand for

each parent is constructed by randomly assigning the minor allele while taking the

MAF into account. (e) Genotypes of the parents are obtained for the corresponding

haploblock
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victim’s grandparents, using the generated parents as the child. We
also assume that generated couples (i.e. parents and grandparents)
are not related. Table 1 shows the possible genotypes of the parents
given the genotype of the child.

3 Results

In this section, we provide the results showing the decrease in the
attacker’s power once a relative (or a set of relatives) is added to the
beacon. We also quantify the utility loss in beacon responses once a
relative of the victim is added to the beacon for privacy protection.

3.1 Experimental setup
For our experiments, we obtained the genomes of the Utah residents
with northern and western European ancestry (CEU) population of
the HapMap project (International HeapMap Consortium, 2003).
The same population and similar beacon sizes are also used in all
previous re-identification attacks (Raisaro et al., 2017; Shringarpure
and Bustamante, 2015; von Thenen et al., 2019). For our experi-
ments with synthetically generated families, we created artificial
genomes for the parents and grandparents of selected victim(s) from
this population as described in Section 2.3. The original dataset also
contains 40 real families (i.e. trios) and we used this data to show
the results on actual genomes of the family members. Note that the
original dataset does not contain actual genomes of grandparents.

We calculated the MAF values (needed for the Optimal and QI
Attacks) from the HapMap dataset using 100 individuals from this
population. The QI Attack requires the LD values for the considered
SNPs to create the SNP–SNP network for QI. We used the same 100
individuals from the HapMap dataset to create these models.

To test the effect of having family members in the beacon along
with a victim, we compare two cases: (i) the victim is in the beacon
and no other relatives are, and (ii) the victim is in the beacon and
one or more relatives are in the beacon with her. Thus, we have two
power calculation settings for each of these cases. Case (i) is straight-
forward and performed as also done in Raisaro et al. (2017) and
von Thenen et al. (2019) and as detailed in Section 2.2. Case (ii)
requires the beacon to contain the family members of the victim and
it requires the following adjustments: First, 20 individuals are
selected from the CEU population of the HapMap dataset. When
these 20 people are used as controls, by definition, they are excluded
from the beacon, but their considered relative(s) for that test (e.g. 20
mothers) are in the beacon along with 40 unrelated individuals from
the same population. After determining the ti

a for every ith query,
these 20 people are now considered as the cases. Now, the beacon

contains these 20 people and their relative(s) along with 20 unre-
lated people. For the tests with synthetically generated data, synthet-
ic parents and grandparents of 20 CEU individuals are generated as
described in Section 2.3 and the above procedure is performed
similarly.

3.2 Re-identification attacks on genomic data sharing

beacons with family members
In this study, we argue that adding family members to the beacon
will improve the privacy of beacon participants, and hence it will be
a natural mitigation technique. The origin of this idea is the inherit-
ance, the fact that an individual’s genome is constructed based on
their parents genomic information. We also claim that addition of
family members to the beacon does not cause a significant utility
loss. We further discuss this in Section 3.3. To show how the results
of attacks change with the presence of family members in the bea-
con, we used the same experiment parameters as the previous re-
identification attacks (detailed information about datasets and ex-
perimental settings are in Section 3.1).

The attacker’s goal is to infer whether the targeted individual
(victim) is in the beacon or not. The attacker has the following auxil-
iary information along with the VCF of the victim: MAF of the vic-
tim’s population and LD values. We let t be an evaluation parameter
representing the threshold for the hidden SNPs of the victim (e.g. as
a countermeasure against the re-identification attack). That is, we
assume the victim hides their SNPs with MAF values less than t.

We let the attacker query the beacon for the heterozygous SNP
positions of the victim (to have the same settings with previous re-
identification attacks).

We assume that the attacker does not have access to VCF files of
victim’s family members. The attacker may or may not know the ex-
istence of victim’s family members in the beacon since this knowledge
does not provide an advantage to the attacker to infer the member-
ship of the victim. If attacker knows that (at least) a family member is
in the beacon, it cannot be sure about the reason of the ‘yes’ responses
(e.g. whether they are due to the victim or other family members). If
the attacker does not know the membership information of victim’s
family members, it will possibly come to a wrong conclusion about
the membership of the victim to the beacon. Thus, in both cases,
attacker’s inference power for the victim’s membership will be low
(due to the existence of family members in the beacon).

We performed the Optimal and QI Attacks for different scen-
arios for the individuals in the beacon: (i) the original beacon that
does not involve victim’s family members, (ii) beacon that contains
victim’s mother, (iii) beacon that contains victim’s father, (iv) bea-
con that contains victim’s both parents, (v) beacon that contains vic-
tim’s grandparents from mother’s side (only for synthetically
generated genomes) and (vi) beacon that contains victim’s grandpar-
ents from father’s side (only for synthetically generated genomes).
We show these different scenarios in Figure 2.

First, we show how the power of the attack changes for (i) the
original beacon (that does not include any family members of the
victim), (ii) the beacon that only includes the mother of the victim,
(iii) the beacon that only includes the father of the victim and (iv)
the beacon that includes both parents of the victim. Figure 2 shows
the settings we consider.

Figure 3 shows the results obtained with the synthetic parents
and Figure 4 shows the results obtained with the actual parents. We
observed that both experiments follow the same pattern while the
power loss in the experiments with synthetic data is slightly more. In
von Thenen et al. (2019), authors show that the individual’s mem-
bership to the beacon can be inferred with high power with only a
few queries. Our results for the original beacon (that does not in-
clude any family members of the victim) are also consistent with the
results of von Thenen et al. (2019). We also observed that when at
least one family member of the victim is in the beacon, the power
curves shift to right, meaning that the attacker needs more queries to
infer the membership of the victim to the beacon. For instance,
when at least one family member of the victim is in the beacon, the

Table 1. A toy example showing the possible SNPs of the parents

for three cases, in which the child’s SNP is (i) major homozygous,

(ii) minor homozygous and (iii) heterozygous

(i) Child AA Mother Father

AA AA

AA Aa

Aa AA

Aa Aa

(ii) Child aa Mother Father

aa aa

Aa aa

aa Aa

Aa Aa

(iii) Child Aa Mother Father

AA Aa

AA aa

Aa AA

Aa Aa

Aa aa

aa AA

aa Aa
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power only reaches to 0.1 after two queries (for which the QI
Attack’s power reaches to 1 for the original beacon).

We also observed that in the Optimal Attack, when t¼0, includ-
ing only the mother or father of the victim to the beacon increases

the number of queries for the attacker (to have a high power) to
hundreds.

In the QI Attack on the other hand, we observed that when at
least one family member of the victim is in the beacon, the attacker’s
power reaches to one in hundreds of queries for only smaller values
of t. Furthermore, for all attacks, when both parents of the victim
are in the beacon, attacker’s power never reaches to 1, and it is al-
ways low. This is expected since the minor alleles of the child (vic-
tim) either come from the mother or the father. Thus, when both
parents of the victim are in the beacon, there is no way for the at-
tacker to make inference about the membership of the victim. We
also observed that once the power converges to a value, it does not
change even if the attacker keeps asking for more queries.

We have shown in the above experiment that the synthetically
generated genomes of the victim’s parents provide highly correlated
and less optimistic results compared with the experiment with actual
parents’ genomes. Relying on this fact, we used synthetic genomes
of the grandparents to simulate the effect of the existence of more
distant relatives in the beacon. That is, we showed how adding
grandparents to the beacon affect the attacker’s power for the re-
identification using the Optimal Attack. As we show in Figure 6,
adding only one of the grandparents to the beacon (mother’s father
as in Fig. 6a or mother’s mother as in Fig. 6b) causes the attacker’s
power decrease less than adding the mother (Fig. 3) since degree of
kinship decreases. In other words, as expected, the decrease in
attacker’s power is inversely proportional with the distance between
the victim and their relatives. We also obtained similar results
when we added father’s mother and father’s mother separately.
Furthermore, we observe that adding mother’s both parents (i.e.

Fig. 2. (a) Family tree of the victim (child in the figure). (b) Experimental setup for

different scenarios for the individuals in the beacon

Fig. 3. The power curves of the Optimal Attack and QI Attack with different beacon setups with synthetic family members. For all attacks: (i) the first plot is when the beacon

does not include any family members of the victim, (ii) the second plot is when only the mother of the victim is in the beacon, (iii) the third plot is when only the father of the

victim is in the beacon and (iv) the fourth plot is when both parents of the victim are in the beacon. SNPs of the victim with MAF values smaller than t are hidden from the

attacker

Fig. 4. The power curves of the Optimal Attack and QI Attack with different beacon setups with actual family members. For all attacks: (i) the first plot is when the beacon

does not include any family members of the victim, (ii) the second plot is when only the mother of the victim is in the beacon, (iii) the third plot is when only the father of the

victim is in the beacon and (iv) the fourth plot is when both parents of the victim are in the beacon. SNPs of the victim with MAF values smaller than t are hidden from the

attacker
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victims grandparents from mother’s side as in Fig. 6c) to the beacon
is almost equivalent to adding the mother. Similarly, adding father’s
parents to the beacon (Fig. 6d) is almost equivalent to adding the
father. Note however that ad ding mother’s (or father’s) both
parents provide a slightly stronger mitigation compared with adding
only the mother (or father). This is because adding mother’s both
parents introduce more diversity to the beacon compared with add-
ing just the mother. For instance, comparing the beacon including
only victim’s mother and mother’s parents, the beacon including vic-
tim’s grandparents may include more ‘yes’ responses (due to hetero-
zygous SNPs of the grandparents that may not occur in the mother).

3.3 Utility analysis of the proposed mitigation technique
We showed that adding victim’s family members to the beacon signifi-
cantly increases the number of queries needed for the attacker to have a
high power. However, as discussed, beacons are typically associated
with a particular phenotype (i.e. all participants of the beacon has the
corresponding phenotype). Thus, adding a family member of the victim
to the beacon may result in a utility decrease in beacon’s responses since
(i) the added family member(s) may not have the corresponding pheno-
type of the beacon and (ii) the added family member(s) may result in a
change in beacon’s original responses.

In particular, if the original beacon response (before adding any fam-
ily members as a mitigation technique) is ‘no’ for a query and adding a
family member changes that beacon response to ‘yes’ (due to heterozy-
gous SNPs of the added family member), utility of beacon decreases.

Therefore, we define the utility loss of the beacon as the fraction of
additional ‘yes’ responses that arise due to the addition of one or more
extra individuals (family members of the victim) as a result of the pro-
posed mitigation technique. In Tables 2 and 3, we show the decrease in

utility of beacon’s responses for both case and control groups (that we
used in our experiments) due to the addition of the family member(s) as
a mitigation technique. Note that corresponding family members are
added together at the same time for all 20 cases and 20 controls, re-
spectively. That is, we observe that the utility loss is <10% even when
both parents of the victim are included in the beacon using the synthetic
dataset and,<8% using the actual family members.

SNPs with a lower MAF values are particularly important for the
researchers since there is an inverse relationship between the a var-
iant’s disease odds ratio and its frequency (Bomba et al., 2017). Thus,
we also quantified the utility loss of the beacon responses considering
the SNPs with low MAF values. One-by-one, we added the mothers
of 20 case individuals to the beacon and observed the utility loss for
various MAF thresholds. For the synthetically generated mothers,
Figure 6 shows the utility loss in beacon responses (y-axis) for all
SNPs with an MAF value less than a threshold (x-axis; cumulative).
We observed that utility loss is substantially smaller for SNPs with
lower MAF values. For instance, for SNPs with an MAF <0.01, the
utility loss is <0.05%. We observed a similar trend in Figure 7, which
shows the results when actual mothers are added to the beacon in the
same manner. Similar to before, we observed that the results obtained
in the synthetic genomes is overly conservative and when actual moth-
ers are used, the utility loss is roughly 4-fold less, which shows that
the utility is mostly preserved despite a substantial power loss of the
attacker as shown in Figure 4. In other words, adding a family mem-
ber of the victim to the beacon does not cause much change in the
results of queries that involve low-MAF SNPs, which is expected as
such SNPs are rare and are not frequently observed.

4 Discussion

Genomic data sharing beacon protocol has been widely accepted by
the community as the golden standard for secure and privacy

Fig. 5. The power curves of the Optimal Attack when the beacon includes (top-left) victim’s mother’s father, (top-right) victim’s mother’s mother, (bottom-left) victim’s both

grandparents from mother’s side, and (bottom-right) victim’s both grandparents from father’s side

Fig. 6. The utility loss of the beacon responses considering the SNPs with low MAF

values. The box plots show the fraction of additional ‘yes’ responses that arise due

to the addition of synthetically generated family members for 20 cases when the

mother of each victim is added to the beacon one-by-one independently. The x-axis

shows various MAF thresholds. For each x value, all SNPs with an MAF value less

than that threshold are considered

Table 2. The fraction of additional ‘yes’ responses that arise due to

the addition of family members (synthetic) of the victim (as a result

of the proposed mitigation technique) is shown as a measure of

utility loss for the case and control groups

Mother in beacon Father in beacon Both parents

in beacon

Control group 4.50% 7.52% 9.78%

Case group 2.67% 6.78% 9.13%

Note: Each individual in the case and control groups are selected as the vic-

tim and are added to the CEU beacon with 65 individuals (note that cases are

already in the beacon). The utility loss is calculated when all parents are

added to the beacon at the same time.
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preserving data sharing. The Beacon Network (https://beacon-net
work.org/), providing a central querying mechanism to 80 beacons,
lit all over the world for various phenotypes ranging from autism to
cancer (accessed on January 28, 2020). However, the information
leaks identified by several re-identification attack algorithms and by
a recently introduced genome reconstruction attack (Ayoz et al.,
2020) questions the usability of the system. Currently, setting up a
beacon is a risk for all parties including genome donors, data own-
ers, and even for the beacon system operators due to possible ethical,
legal and monetary repercussions.

A correspondence published in 2019 by the GA4GH acknowl-
edges possible re-identification risks and offers possible mitigation
strategies (Fiume et al., 2019). One strategy is using aggregate bea-
cons. Aggregation process involves querying multiple beacons and
joining their responses. A ‘yes’ answer means at least one beacon
contains the queried variant; a ‘no’ answer means none has the
desired allele. Such an approach leads to having more data points
than the individual beacons, which, as also suggested by
Shringarpure and Bustamante (2015), makes it harder for the attack-
er to pinpoint the origin of a ‘yes’ answer. One example of such is
the Conglomerate Beacon. However, this strategy also results in a
substantial utility loss for the users (researchers) as they might have
to apply for access to all individual datasets if they find out that at
least one of the beacons have the variant they are interested in. The
second suggestion is the usage of participant budgets as suggested by
Raisaro et al. (2017). This strategy assigns a personal budget to each
participant and if many rare SNPs (i.e. relatively more informative
and identifying SNPs) of a participant are queried, the algorithm
takes them out of the system (i.e. it does not provide a ‘yes’ response
if that person is the only carrier of that SNP in the beacon). This
seems sensible, yet, in von Thenen et al. (2019), authors show that
an attacker, by inferring the responses of a beacon via linkage

disequilibrium between the SNPs in a population, can get around
these budgets. Considering the individual NA12272 from the
HapMap project in a beacon of 65 CEU individuals (constructed
from the HapMap project), they show that while the Optimal
Attack requires seven queries for re-identification, the QI attack can
identify this person with only five queries, before the budget expires.

Shringarpure and Bustamante (2015) suggested inclusion of con-
trol samples in a beacon. Similar to the aggregate beacon strategy,
this decreases the usability and utility of the system since controls,
who do not carry the phenotype which the beacon is associated with
and who are not relatives of the people in the beacon, would result
in flipping of many irrelevant ‘no’ answers to ‘yes’. In this work, we
investigate the feasibility of adding relatives of individuals to a bea-
con as a countermeasure. Adding relatives still results in a utility
loss; however, as shown in Section 3 the loss is not significant given
the fact that most SNPs are shared between the victim and their rela-
tives. Moreover, in beacons of heritable diseases, a relative is more
likely to be related to the trait than a random control individual.
Thus, the utility loss caused by the proposed approach will be less
compared with adding random controls. Yet, we show that this cre-
ates a major confusion for the attacker. As clearly shown in various
settings, the power curves for the state-of-the-art attacks shift right,
which indicates that the number of required queries substantially in-
crease to achieve the same re-identification power. In many cases,
the power does not even reach to 100%, which means the attacker
cannot have high confidence about the success of the attack.

As discussed, in RTF method, Bu et al. (2018) propose flipping
some ‘yes’ responses into ‘no’ after checking a condition for all bea-
con participants. In our proposed mitigation mechanism, we do the
opposite: due to the added relatives on the target individual, our
proposed mechanism results in some accuracy loss by flipping some
originally ‘no’ responses to ‘yes’. Thus, we compared our approach
with Bu et al. (2018) in terms of accuracy of beacon responses, espe-
cially for queries that are received form rare SNPs. For the compari-
son, we used the following settings: for Bu et al. (2018), beacon size
is 40 and beacon considers all 40 individuals as potential targets (as
also suggested in the original work). In our scheme, original beacon
size is 40 and we add both parents of all these 40 individuals (to pro-
tect privacy of all beacon participants against the re-identification
attacks). Bu et al. (2018) show that RTF approach reduces the re-
identification power of the attacker to an insignificant level. We also
show (Section 3) that adding both parents of a potential target pro-
vides a comparable privacy for beacon participants. Thus, we com-
pared these approaches only based on their utility loss in beacon
responses. Our results show that considering responses of the bea-
con for rare SNPs (for SNPs with MAF value smaller than 0.07), ac-
curacy loss in Bu et al. (2018) is 25%, whereas accuracy loss of our
proposed mechanism is 16%. Furthermore, considering the main
functionality of a genomic data sharing beacon (that it informs a re-
searcher about the existence of a genome in a database), changing
‘yes’ responses into ‘no’ (as in the RTF method) will cause the re-
searcher falsely eliminate the corresponding beacon. However,
changing ‘no’ responses into ‘yes’ (as in our proposed technique)
will only cause false which will lead to an unnecessary acquisition of
the dataset. These results also show that our proposed mitigation
mechanism protects beacon participants against re-identification
attacks while also preserving the utility of beacon responses.

We also investigated the scenario, in which the attacker also has
knowledge about the genomes of the victim’s relatives. For example,
we assumed that the attacker has the SNPs of both victim and their
mother (and/or father). The initial idea is, if the attacker applies the
attacks by using the SNPs that differentiate between relatives and
the victim, the power of the attack will reach to 100%. So, the
power decrease we achieve by existence of a relative in the beacon
will be ineffective. However, in practice, launching the QI attack by
using these differentiated SNPs will not be effective since these SNPs
are sparse and are less likely to be in linkage disequilibrium. Thus,
they are less likely to be correlated to enable inference of the beacon
answers To evaluate the power of this new scenario, a new power
calculation approach is needed which we will consider as a future
work.

Table 3. The fraction of additional ‘yes’ responses that arise due to

the addition of family members (actual) of the victim (as a result of

the proposed mitigation technique) is shown as a measure of utility

loss for the case and control groups

Mother in beacon Father in beacon Both Parents

in beacon

Control group 5.05% 4.89% 7.96%

Case group 3.24% 3.36% 5.75%

Note: Each individual in the case and control groups are selected as the vic-

tim and are added to the CEU beacon with 60 individuals (note that cases are

already in the beacon). The utility loss is calculated when all parents are

added to the beacon at the same time.

Fig. 7. The utility loss of the beacon responses considering the SNPs with low MAF

values. The box plots show the fraction of additional ‘yes’ responses that arise due

to the addition of actual family members for 20 cases when the mother of each vic-

tim is added to the beacon one-by-one independently. The x-axis shows various

MAF thresholds. For each x value, all SNPs with an MAF value less than that

threshold are considered
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We show that the membership inference risk of a person
decreases when her relatives are added to the beacon. one might
question the risk for the relatives. The membership inference risk for

relatives is expected to be similar to the child’s since the protection
works two ways, symmetrically. That is, the shared SNPs that causes

confusing ‘Yes’ responses for the attacker protects both the victim
and the relative. Then, the risk for both of them should be on par
assuming (and likely) they are from the same population.

One drawback of this mitigation strategy is the additional
sequencing cost of the relatives. Moreover, the technique depends

on relatives giving consent to sharing their data, which also puts
them under re-identification risk. However, the protection effect is

symmetric for the victim and the relatives. To circumvent these
problems, one can opt for simulating relative data, as we did in this
work. We observe that our results are consistent among synthetic

and real datasets we used, but the magnitude differs. That is, overall
the utility loss and the power of the attacker tend to be smaller on
the real dataset. This difference might stem from several assump-

tions the family generation algorithm make which lead to noisy sim-
ulations, such as: (i) random assignment of minor alleles to strands

with respect to haploblock estimates, and (ii) random generation of
the second strand of each parent with respect MAF values. This is
actually a favorable result as the synthetic data results can be

regarded as an upper bound as they are pessimistic results. Actual
family genotype data have more overlaps than our simulations

which makes it harder for the attacker to infer membership
information.

5 Conclusion

In this article, we have proposed a mitigation technique against re-
identification attacks for genomic data sharing beacons. The exist-

ing countermeasures to prevent re-identification attacks in beacons
are shown to be ineffective since they either proved to be vulnerable
against the attacks or they cause a significant decrease in beacon’s

utility. Our proposed technique relies on inheritance and it is based
on adding genomes of a victim’s family members to the beacon in

order to mitigate the re-identification attacks. We have shown via
experiments that adding at least one family member of the victim to
the beacon results in a significant decrease in the power of the re-

identification attacks. We have also shown the effect of adding dif-
ferent family members to the beacon to the power of the attacker.
Furthermore, the proposed technique does not cause a substantial

utility loss in beacon’s responses. In particular, we have shown that
the utility loss is significantly smaller for SNPs with low MAF values

(which are of high importance for the researchers due to their associ-
ations with complex diseases).
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