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Abstract

Here we report a vertically integrated in vitro - in silico study that aims to elucidate the molecular 

initiating events involved in the induction of oxidative stress (OS) by seven diverse chemicals 

(cumene hydroperoxide, t-butyl hydroperoxide, hydroquinone, t-butyl hydroquinone, bisphenol A, 

Dinoseb, and perfluorooctanoic acid). To that end, we probe the relationship between chemical 

properties, cell viability, glutathione (GSH) depletion, and antioxidant gene expression. 

Concentration-dependent effects on cell viability were assessed by MTT assay in two Hepa-1 

derived mouse liver cell lines: a control plasmid vector transfected cell line (Hepa-V), and a cell 

line with increased glutamate-cysteine ligase (GCL) activity and GSH content (CR17). Changes to 

intracellular GSH content and mRNA expression levels for the Nrf2-driven antioxidant genes 

Gclc, Gclm, heme oxygenase-1 (Hmox1), and NADPH quinone oxidoreductase-1 (Nqo1) were 

monitored after sublethal exposure to the chemicals. In silico models of covalent and redox 

reactivity were used to rationalize differences in activity of quinones and peroxides. Our findings 

show CR17 cells were generally more resistant to chemical toxicity and showed markedly 
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attenuated induction of OS biomarkers; however, differences in viability effects between the two 

cell lines were not the same for all chemicals. The results highlight the vital role of GSH in 

protecting against oxidative stress-inducing chemicals as well as the importance of probing 

molecular initiating events in order to identify chemicals with lower potential to cause oxidative 

stress.

Graphical Abstract

INTRODUCTION

The fourth principle of green chemistry emphasizes the need to mitigate chemical toxicity 

through rational design.1–4 Computational methods, like property-activity models and design 

guidelines, provide the framework for a powerful approach for chemical assessment, design, 

and substitution.5–7 The fundamental principle that informs development of predictive 

structure-activity and property-activity relationships (SARs and PARs), as highlighted in the 

Organization for Economic Cooperation and Development (OECD) principles, calls for 

attributes used to describe chemical space to be directly relevant to toxicological 

mechanisms, or modes of action (MoA).6,8,9 To that end, it is necessary to explicitly identify 

key toxicodynamic interactions between a chemical and its potential biological targets prior 

to any model development. These interactions are termed molecular initiating events (MIE);
10–12 they initiate a cascade of key events that instigate one or more adverse outcome 

pathways (AOP).10,13 Given that classical in vivo testing approaches do not readily provide 

insights into MoAs, additional in vitro, in silico, and/or in chimico data are required to 

identify potential AOPs and MIEs.14–16 Relating MIEs to specific chemical properties and 

reactivity indices, which are preserved across species, can alleviate interspecies’ variations 

in AOPs; for example, covalent interactions between exogenous Michael acceptors and 

biological nucleophiles can be related to in silico reactivity parameters that are broadly 

applicable.6,17,18

Canonically, exposure to electrophilic stressors can upset intracellular redox homeostasis, 

creating a state of oxidative stress (OS) and initiate apoptosis and/or necrosis in cell lines.
19–30 On an organism level, OS contributes to a wide range of adverse outcomes, including 

liver disease,31–34 neurodegeneration,35–38 cancer,39–45 hypertension,46–48 atherosclerosis,49 

ischemia,50 and reperfusion injuries.51 To counter OS, cells have evolved highly conserved 

defense mechanisms; for example, small antioxidant molecules, such as glutathione (GSH) 
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and inducible antioxidant proteins, act as scavengers for electrophiles that give rise to OS. 

Both GSH and antioxidant protein induction sensors rely largely on sensory amino acids that 

are modified by electrophilic chemicals and ROS.30,52–56 In biological systems, GSH in 

conjugations with glutathione S-transferase (GST) and glutathione peroxidase (GPx) 

enzymes helps scavenge electrophiles, reduce oxidants, and is a critical contributor to 

electrophile defense systems.55,57 Diminished GSH levels are associated with decreased 

resistance to OS and potentially to the formation the oxidation product of GSH, glutathione 

disulfide (GSSG). GSSG can in turn be either exported from the cell or reduced back to 

GSH by the action of GSSG reductase. Inducible response to OS is controlled largely by the 

nuclear factor erythroid 2-like 2 transcription factor (NFE2L2, aka NRF2).52,58 Under 

oxidative conditions, electrophiles and reactive oxygen species (ROS) activate NRF2-

dependent transcription by modifying cysteine residues on KEAP1 (Kelch-like ECH 

associated protein 1), which prevents the KEAP1-CULLIN-3-dependent ubiquination and 

subsequent degradation of NRF2.52,59–63 Chemicals that activate NRF2 are generally 

characterized as being able to (1) permeate through biological membranes; (2) either retain 

electrophilic activity despite metabolic transformations or become electrophilic via phase I/

phase II metabolism; and (3) covalently modify residues on KEAP1 or oxidize KEAP1 

thiols to disulfides. Once activated, NRF2 promotes transcription of multiple stress-response 

genes by recruiting small MAF proteins to associated antioxidant response elements (ARE).
52,61,64 The upregulated mRNAs include NAD(P)H-quinone oxidoreductase (Nqo1), 

catalytic and modifier subunits of glutamate-cysteine ligase (Gclc and Gclm, respectively), 

and heme oxygenase-1 (Hmox1).65–67 The proteins encoded by the genes are essential for 

two-electron reduction of quinones, GSH syntheses, and resistance to radical damage 

(Figure 1).

While much research has been focused on understanding the biological cascades involved in 

OS response (Figure 1), mechanistic studies have yet to identify characteristic attributes of 

chemicals that can be related to their ability to participate in the aforementioned MIEs. Here 

we report a vertically integrated in vitro–in silico study of seven diverse chemicals suspected 

to cause OS (bisphenol A (BPA), t-butyl hydroperoxide, t-butyl hydroquinone (tBHQ), 

cumene hydroperoxide, Dinoseb, hydroquinone (HQ), and perfluorooctanoic acid (PFOA)) 

that elucidates and relates chemical toxicity to the effects of these chemicals on intracellular 

GSH, antioxidant gene expression, and in silico measures of reactivity.

METHODS

In these experiments, we assessed the effects of seven model compounds on cell viability, 

oxidative stress response gene expression, glutathione depletion, and in silico modeling of 

chemical reactivity. A flowchart of the experiments performed is given in Figure S1.

Experimental Chemicals.

Seven model electrophilic compounds (Figure 2) were selected based on their ability to elicit 

an OS response as demonstrated from previous animal in vitro and in vivo studies.68
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Cell Cultures.

The cell lines used in these experiments were derived from Hepa-1c1c7 (Hepa-1) cells as 

previously described.69 CR17 cells (hereafter referred to as CR) are Hepa-1 cells transfected 

with plasmids designed to enhance the expression of GCLC and GCLM and thus have 

increased glutamate-cysteine ligase (GCL) activity and GSH content. HepaV cells (hereafter 

referred to as HV) are Hepa-1 cells transfected with an empty plasmid vector alone and 

serve as a control with normal GCL expression and GSH levels. For MTT assays, cells were 

cultured in 96-well tissue culture plates in DMEM/F12 medium with 10% Nu-Serum IV 

(Corning, Corning NY) supplemented with penicillin (100 IU/mL) and streptomycin (100 

μg/mL) at 37 °C in a 5% CO2/95% air humidified atmosphere. For GSH level assays, RT-

qPCR analyses of gene expression, and Western immunoblotting, cells were cultured in 6-

well tissue culture dishes. Chemical exposures were carried out when cells were at 70–80% 

confluency, at varying concentrations and for varying periods of time, depending on the 

experiment (see below).

Cell Viability Monitored by MTT Assay.

After treatments, medium was removed, cells were rinsed with PBS, and 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 250 μg/mL, (MTT) was added to 

each well. Plates were incubated for 45 min at 37 °C, the solution was removed, and the 

accumulated formazan chromophore in cells was dissolved by adding 100 μL DMSO to each 

well. Absorbance was read at 570 nm on a spectrophotometric plate reader (Spectramax 190, 

Molecular Devices, San Jose, CA). Sublethal concentrations for mRNA and protein 

expression and GSH analyses were chosen based on the concentration-response curves from 

MTT assays.

Monitoring Stress-Response Gene Expression by RT-qPCR and Western Immunoblotting.

After chemical treatments, total RNA was extracted from cells using an RNeasy Kit 

(Qiagen, Valencia, CA). Reverse transcription was performed with Superscript III 

(Invitrogen, Carlsbad, CA), followed by mRNA expression analysis with TaqMan Real-Time 

PCR assays (Applied Biosystems, Foster City, CA) on an ABI 7900 analyzer (Applied 

Biosystems) using primers specific for Gclc, Gclm, Nqo1, and Hmox1 transcripts provided 

by ThermoFisher (Waltham, MA). Relative levels of mRNA expression were calculated 

using the ΔΔCt method relative to the expression of β-Actin mRNA. In order to confirm that 

CR cells have increased GCL expression relative to that of HV cells, Western immunoblots 

were done for GCLC and GCLM proteins using β-Actin protein to normalize loading. We 

also assessed the effects of HQ and PFOA treatment on GCLC and GCLM protein 

expression using slight modifications of standard methods as previously reported.69

Glutathione Depletion Assay.

After treatments, total glutathione levels in cells were analyzed using naphthalene 

dicarboxaldehyde (NDA) derivatization and spectrofluorometry as previously described.70 

Briefly, cells were lysed and sonicated, a portion of the cellular lysate was transferred to 

microcentrifuge tubes, and proteins were precipitated by sulfosalicylic acid addition and 

centrifugation. Clarified supernatants were then transferred to black flat bottom 96-well 
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microtiter plates. Triscarboxyethylphosphine (TCEP) was added to reduce any low 

molecular weight disulfides, and NDA solution was then added to derivatize GSH. The 

samples were adjusted to pH 12, and fluorescence was assessed (472 nm excitation/528 nm 

emission) using a fluorometric plate reader (SpectraMax Gemini, Molecular Devices) as 

previously described.70

Data Normalization and Statistical Analysis.

Gene expression measured by RT-qPCR and GSH concentrations was quantified with a 

standard curve and then normalized to the β-actin and total protein concentrations, 

respectively. To maintain approximately normal distributions for significance testing, the 

normalized values were log transformed, producing relative expression (ΔE) values, as is 

common in qPCR analysis methodologies. The change in relative expression for a treatment 

condition (ΔΔE) is calculated by normalizing each (ΔE) to the (ΔE) for control samples 

analyzed on the same day. ΔΔE estimates were used for all follow-up inference and 

significance testing. Statistical differences in mRNA expression and GSH levels between 

treatments were determined with Student’s t test. The p-values were corrected for false-

discovery using family wise error rates. MTT readouts were normalized to corresponding 

negative control and media-only readouts. Concentration-response curves (CRCs) were fit 

and absolute concentrations predicting 50% loss of viability (half maximal activity, 

designated as AC50) were estimated from the CRCs.71 The relationship between end points 

was investigated with hierarchical clustering using correlation-based distances and Ward’s 

partitioning method. Cluster stability was evaluated with bootstrap. All analyses were 

performed in the R statistical environment.72 Multivariate differences in chemical-induced 

responses across time points or cell lines were assessed using multivariate analysis of 

variance (MANOVA) with Pillai’s trace statistic that is most appropriate for small samples.
73 The MANOVA analysis was performed with base R functions.

Computational Methods.

The energetics of chemical mechanisms contributing to the biological effects of peroxides 

(chemicals 1 and 2) and hydroquinones (chemicals 3 and 4) were investigated 

computationally. For peroxides, the O–O bond cleavage is thought to represent the frequent 

MIE that yields the corresponding tertiary alcohol, which can either undergo β-scission to 

generate a reactive aromatic ketone in the case of cumene hydroperoxide or enzymatic 

dehydration to an alkene, which can be subsequently be oxidized by cytochrome P450s or 

other monooxygenases (e.g., flavin monooxygenases) to a reactive epoxide (Figure 3).74 In 

this study, O–O bond dissociation energies were computed at the M06-HF/6–31+G(d) level 

of theory. The M06-HF functional is a special case of hybrid meta GGA with full Hartree-

Fock exchange term that is well-suited to handle systems where self-interaction is 

pathological, for example, delocalized systems with odd number of electrons. The kinetics 

of 1,1-dimethyl- vs 1-methyl,1-phenyl-substituted epoxides (9 and 8, Figure 3) with methyl 

thiolate as a model soft nucleophile were briefly considered using the PDDG/PM3 

semiempirical method. This method has shown to yield reasonably accurate energetics for 

oxiranes-opening reactions at low computational cost.75 Free energy barriers were calculated 

using transition states optimized with the Berny algorithm; all transition structures were 

verified to have only one negative eigenvalue in their diagonalized force-constant matrices, 
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and their associated eigenvectors were confirmed to correspond to motion along the reaction 

coordinate.

For hydroquinones, the molecular mechanisms considered were (1) reaction between GSH 

and semiquinone radicals and (2) enzymatic and nonenzymatic redox cycling (Figure 4). 

Free energies of conjugation between GSH and phenoxy radicals for HQ vs tBHQ were 

contrasted with M06-HF/6–31+G(d); supporting frontier molecular orbital energy 

calculations were carried out using the mPW1PW91 density functional with the MIDIX+ 

basis set. In order to gauge electrostatics of enzyme-ligand interactions in cytochrome P450 

oxidoreductase (POR)-assisted redox cycling,76 the binding poses of tert-butylbenzoquinone 

(tBQ) and unsubstituted 1,4-benzoquinone (BQ) were evaluated using Autodock Vina.77 

Binding affinities were computed using the AMBER force field based on the 5URD X-ray 

structure of POR.

In all ground-state electronic structure calculations, geometries were fully optimized, and all 

minima were verified to have no imaginary vibrational frequencies. Enthalpies and free 

energies were evaluated in gas phase at 298 K, including changes in vibrational energy. 

Calculations were performed using Gaussian g09 software.78

RESULTS

The effects of the seven chemicals tested on cell viability, GSH levels, and changes in the 

expression of Gclc, Gclm, Hmox1, and Nqo1 mRNAs were evaluated in the two Hepa-1 

derived liver cell lines. Gclm and Gclc transfected CR cells have increased glutamate-

cysteine ligase (GCL) activity and thus enhanced GSH synthesis compared to the standard 

HV cells.69 We confirmed that CR cells have increased GCLC and GCLM mRNA (below) 

and protein expression relative to that of HV cells (Figure S2). The assays performed on the 

test chemical set (Figure 2) are summarized in Table 1. Antioxidant gene expression for 

Gclc, Glcm, Hmox1, and Nqo1 mRNAs was measured by RT-qPCR for all chemicals at 24 

h. The mRNA-induction effects of peroxides and hydroquinones (chemicals 1–4) were also 

measured at 6 h. Similarly, GSH assays were performed for all chemicals at 24 h and for 

select chemicals at 6 h. The MTT cell viability assay (based on the activity of mitochondrial 

dehydrogenases) was performed for all chemicals.

Cell Viability.

All seven chemicals showed dose-dependent changes in cell viability in both control HV 

cells and CR cells (Figure 5), with large concentration-response differences between the cell 

lines’ chemical viability thresholds (as defined by their AC50) summarized in Table 2. In 

order from lowest to highest AC50, the chemicals conformed to the following trend: 6 > 4 > 

5 > 7 > 3 > 1 > 2 (Figure 6). The trend was identical in both cell lines (rank correlation = 1). 

Overall, CR cells were more resistant to adverse effects on viability, as indicated by higher 

AC50 values. If we define ΔAC50 as the difference of MTT AC50 between the HV cell line 

and the CR cell line, the ΔAC50 observed for each chemical from highest to lowest follows 

the trend: 2 > 3 > 1 = 4 > 5 > 7 > 6 (Figure 7). This trend is generally consistent with the 

more potent chemicals (smallest AC50) exhibiting larger differences in AC50 between the 

two cell lines.

Melnikov et al. Page 6

Chem Res Toxicol. Author manuscript; available in PMC 2020 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Antioxidant Gene mRNA Expression.

The mRNA expression for Nqo1, Hmox1, Gclc, and Gclm was assessed by RT-qPCR in 

response to sublethal chemical exposure (40% of LC50). Twenty-4 h after exposure to 

chemicals 1, 3, 4, and 6, significant upregulation was observed in Nqo1, Hmox1, and Gclm 
in both cell lines (Figure 8). In addition, Nqo1 expression was upregulated 24 h after 

exposure to BPA (5), but only for HV cells (Figure 8A). Chemicals 1, 3, and 4 induced Gclc 
expression in the HV cell line only. Dinoseb (6) was the only chemical to significantly 

upregulate Gclc in both cell lines (Figure 8C). GCLC and GCLM protein expression was 

greater in CR cells than HV cells when treated with vehicle only, and HQ treatment 

increased GCLM protein expression in HV cells (Figure S2). There was also a correlation 

between Gclc and Gclm mRNA expression and their respective protein levels among 

control, HQ, and PFOA treatments in both HV and CR cell lines (Figure S3). While there 

were also correlations between GSH content and GCLC and GCLM protein levels, 

especially in the case of HV cells and GCLC protein expression (R2 = 0.87; Figure S4A), 

there are many other factors that determine GSH content in addition to GCL expression and 

activity, including cysteine/cystine import, GSH synthetase levels, GSSG reductase activity, 

GSH and GSSG export pumps, and other factors associated with oxidative stress and GSH 

conjugation reactions.91

The four chemicals tested at 6 h (1–4) showed upregulation of Nqo1, Hmox1, and Gclm 
mRNA expression compared to vehicle-treated controls. With the exception of induction of 

Gclm in the CR line by CHP (1), the upregulation of genes by the test chemicals relative to 

controls was statistically significant (p < 0.05) (Figure 8A,B,D). In contrast, all chemicals 

except for the two hydroquinones (3 and 4) failed to significantly upregulate Gclc expression 

(Figure 8C).

Modified ToxPi charts79 visually summarize the expression profiles for each chemical 

(Figure 9) and demonstrated that, in concordance with the statistical results, CHP (1) and 

hydroquinones (3 and 4) exhibited the most drastic effects, while PFOA (7) and BPA (5) had 

minor effects on antioxidant gene mRNA expression. MANOVA analysis was used to 

quantify the differences in chemical effects on the relative antioxidant gene mRNA 

expression between the HV and the CR cells and showed that mRNA expression profiles 

differed significantly for 3 (p = 0.0005), 4 (p = 0.023), and 5 (p = 0.028) (Table S1). 

Specifically, HQ-induced Gclc (6 h) and Hmox1 (6 and 24 h) mRNA levels were 

significantly higher in the HV cells, as were tBHQ-induced Gclc (6 h), Gclm and Hmox1 (6 

and 24 h), and Nqo1 (24 h) mRNA levels (Table S2). In contrast, PFOA (7) and dinoseb (6) 

induced a similar mRNA expression in the two cell lines, with Pillai’s trace <0.3 (Table S2).

Temporal Changes in Antioxidant Gene mRNA Expression.

We further investigated the changes in antioxidant gene mRNA expression over time for 

compounds 1–4 with MANOVA Pillai’s trace for significance. Gclc mRNA response to 

chemicals 1–4 in the HV cell line decreases significantly from 6 to 24 h (p = 0.036). 

Similarly, Gclm and Hmox1 mRNA induction decreased significantly from 6 to 24 h in the 

CR cell line (p = 0.046 and 0.006). In contrast, Nqo1 mRNA expression increased 

significantly (p = 0.002) from 6 to 24 h for both cell lines after exposure to all seven 
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chemicals (Table S3). The pattern can be attributed to HQ and tBHQ, as these chemicals 

significantly increased Nqo1 induction from 6 to 24 h (based on two-sample t tests, Table 

S4).

Glutathione Levels.

HQ and tBHQ had significant effects on GSH levels at 6 h (Figure 10). At 40% of the LC50, 

HQ decreased GSH levels in both HV and CR cell lines (p = 0.068 and 0.040, respectively), 

while tBHQ upregulated GSH levels in the CR cell line at 6 h (p = 0.009). Twenty-4 h after 

HQ and tBHQ treatment, the intracellular GSH levels were increased in both CR and HV 

cell lines (Figure 10).

Given the observed dependence between GSH and antioxidant gene induction, we further 

investigated the effect of Gclm mRNA expression on the difference in intracellular GSH 

concentration from 6 to 24 h. Figure 11 shows the approximately quadratic relationship 

between Gclm mRNA induction at 6 h and differences in GSH expression over time. 

Chemicals that upregulated Gclm mRNA at 6 h above 3-fold also upregulated intracellular 

GSH at 24 h, regardless of the cell line. An induction GCLC and GCLM proteins in HV 

cells following treatment with PFOA and HQ (Figure S2) was associated with higher GSH 

levels in HV cells (R2 = 0.87 for GCLC; R2 = 0.28 for GCLM), but this association was 

weaker in CR cells (R2 = 0.24 for GCLC; R2 = 0.07 for GCLM).

Intracellular Glutathione and viability.

Next, we investigated the relationship between the chemicals’ effects on intracellular GSH 

and the associated differences in cytotoxicity between HV and CR cell lines. Overall, the 

difference in cytotoxicity between cell lines is inversely correlated with GSH levels in the 

CR cell line at 24 h (Figure 12). Peroxides, particularly low-molecular weight tBHP (2) 

behave as an outlier, likely due to rapid metabolism80 and decreased antioxidant effects at 24 

h (Table S4).

Gene Co-expression.

Transcriptional responses 24 h after exposure to compounds 1–7 and 6 h after exposure to 

compounds 1–4 were highly correlated in both HV and CR cell lines (Figure 13A,C). 

Clustering analysis based on pairwise complete correlation showed that mRNA expression 

was significantly grouped by time in the HV cell line (Figure 13B). In the CR cell line, 

mRNA expression was correlated across time points. However, Nqo1 (6 h) formed a distinct 

sub cluster with Gclc (6 h) with a highly significant positive correlation (Figure 13C–D, R = 

1, p < 0.001). MTT AC50 and the concentration-response slope (Slope) were highly 

correlated with mRNA expression at 6 h (R > 0.76) in the HV cell line (Figure 13A); a 

particularly strong association was seen with Nqo1 mRNA expression (R = −0.99, p < 0.01). 

MTT LC50 or Slope did not significantly correlate with the expression of any of these 

mRNAs in the CR cell line (Figure 13C). The difference in hydroquinone toxicity between 

HV and CR cells corresponds to the significantly lower level of induction of these mRNAs 

in the CR cell line (Table S1). It is also notable that GSH content at 24 h is significantly 

correlated with Gclc, Gclm, and Hmox1 mRNA levels at 6 h for chemicals 1–4 (R = 0.83–

0.98, Figure 13A,C).
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Computational Studies.

In contrasting the toxicities of peroxides via computational determination of the O–O bond 

cleavage, we found the bond dissociation energy was lower for 1 over 2 by ca. 2.1 kcal/mol. 

Furthermore, computed free energy barriers for 8 and 9 (peroxide metabolites of 1 and 2, 

respectively, Figure 3) with model thiolate (methyl thiolate) indicated marginally faster rates 

for opening the 8 (from 1) based on ca. 0.3 kcal/mol lower free energy barrier.

In computing free energies of reaction between the resonance-stabilized semiquinone and 

GSH (modeled as methyl thiolate), HQ-GSH adduct was thermodynamically favored over 

corresponding tBHQ-GSH adduct by ca. 3.3 kcal/mol. The difference is attributed to the 

well-documented electron-donating effect of t-butyl group, which decreases the acidity of 

the substituted quinone,81 and the steric bulk of the substituent that adds a minor entropic 

penalty of R ln 2, that is, ca. 0.0014 kcal/mol. This result is consistent with our calculations 

of the band gap (ΔE) between semiquinone singly occupied molecular orbital (SOMO) and 

GSH SOMO as well as between the quinone lowest unoccupied orbital (LUMO) and highest 

occupied molecular orbital (HOMO) of glutathione anion (GS−), which indicated smaller 

gaps for HQ by 0.26 and 0.43 eV, respectively.

In considering redox cycling, hydroquinone oxidation to semiquinones and quinones by 

molecular oxygen and subsequent reduction of quinones to semiquinones by POR were 

evaluated computationally. Oxidation of tBHQ to semiquinone and quinone species was 2.5 

and 2.7 kcal/mol lower in free energy than for HQ (Figure 14). When docking into the 

NADP+ active site of the reduced-form of POR (5URD), tBQ was found to have ca. 2 

kcal/mol greater affinity for the POR than unsubstituted benzoquinone due to a hydrophobic 

interaction between the t-butyl group and nearby leucine residue in the enzyme’s active site 

(Figure 15). This result is consistent with our general understanding that methylation makes 

a molecule more hydrophobic and thus more prone to binding biomolecules; a single sp3 

carbon on a ligand surface has been estimated to contribute ca. 0.7–0.8 kcal/mol to the free 

energy of protein-ligand binding.82

DISCUSSION

The Protective Role of GSH.

Glutathione has long been recognized as an important endogenous antioxidant that is 

important for redox homeostasis and for being protective against a number of oxidative 

stress-inducing conditions, including chemical exposures. Here we report the effects of 

seven chemicals on cell survival, antioxidant gene mRNA expression, and GSH levels in two 

Hepa-1 mouse hepatocyte derived cell lines. Chemicals with direct electrophilic 

functionalities, reactive metabolites, or redox cycling capacity can deplete intracellular GSH 

reserves leading to loss of viability (Figure 1).5,18,83,84 The CR cell line was designed to 

have increased glutamate-cysteine ligase (GCL) activity and GSH content compared to the 

control HV cells.69 Thus, CR cells were expected to have higher electrophile clearance and 

exhibit higher resistance to chemical-induced toxicity, particularly for chemicals capable of 

reacting as electrophiles.85 Indeed, CR cells were more resistant to cytotoxic effects of all 

seven chemicals as indicated by higher AC50 values (Table 2), and right concentration-
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response shifts in CR cells compared to HV cells (Figure 5). The ΔAC50 (the ratio MTT 

AC50 in HV cell line to the AC50 in the CR cell line) was consistently <1 across all 

chemicals, suggesting a protective effect of increased intracellular GSH on cell viability 

(Table 2). Furthermore, the differences in MTT LC50 between HV and CR cell lines are 

inversely correlated with GSH levels in the CR cells (Figure 12). That is, the excess GSH 

produced by CR cells (relative to HV cells) appears to help metabolize xenobiotics and 

endow CR cells with increased resistance to chemical toxicity. This increased GSH level in 

CR cells is likely due to the increased levels of GCLC and GCLM mRNA and protein 

present in these cells (Figures S2 and S3). Together, these relationships underscore the 

importance of GSH and its synthesis in protecting against electrophile-induced toxicity.

In additional to the intrinsic scavenger-mediated defense, cells have developed a highly 

conserved system of inducible stress response, which is largely dependent on the activity of 

the Nrf2 transcription factor.58,83,86–89 When challenged, cells aim to restore homeostasis, in 

part, by increasing antioxidant gene transcription regulated by the ARE. Thus, exposure to 

electrophilic or pro-electrophilic substances induces antioxidant gene expression by reacting 

with or oxidizing Keap1 thiols and releasing Nrf2, which, in turn, binds to AREs and 

induces antioxidant gene transcription (Figure 1).58,89 As expected, several chemicals 

upregulated Gclc, Gclm, Nqo1, and Hmox1 mRNA expression (Figures 8–9) at 6 and 24 h 

after exposure. However, the higher GSH content in CR cells was expected to provide a 

more robust threshold for Keap1 oxidation and antioxidant mRNA induction when 

compared to HV cells. Accordingly, antioxidant mRNA induction in HV cells was 

consistently equal to or higher than the CR equivalent, further supporting the role of GCL 

activity and GSH content in oxidative homeostasis and antioxidant gene response (Figures 

8–9; Table S2; Figures S3 and S4). A more intuitive comparison of chemicals’ effects on 

gene induction in the HV and CR cell lines is given by radial plots (Figure 16).

Multivariate Chemical Effects and Modes of Toxic Action.

The differences in chemicals’ effects on mRNA expression and intracellular GSH levels 

were hypothesized to relate to the modes of chemical toxicity. More specifically, chemicals 

thought to be detoxified in GSH-dependent manner exhibited larger differences in MTT 

potency (1–5), while chemicals with large contributions from other modes of action (6–7) 

showed the smallest differences in viability between the cell lines (Table 2). Furthermore, 

we expected GSH depletion and mRNA induction responses to chemicals capable of acting 

as direct electrophiles to be faster than for those working though secondary metabolites or 

redox cycling. Increased redox cycling was expected to produce a more graded antioxidant 

mRNA response, as the time needed for metabolic activation or ROS cycling may delay 

GSH depletion. In this section, we examine experimental and computational evidence for 

modes of toxicity in the context of existing literature.

As a class, peroxides (1 and 2) showed the largest differences in toxicity between HV and 

CR cell lines (Table 2). Previous work showed that peroxides can be rapidly metabolized by 

cellular peroxidases in vitro.80 Since many peroxidases function in a GSH-dependent 

manner,86,90,91 the increased GSH concentrations in CR cells should render them more 

resistant to peroxide toxicity. Specifically, tBHP showed 2.3-fold increase in AC50 values in 
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CR vs HV cell lines, while CHP exhibited a more modest 1.5-fold increase (Table 2). 

However, neither CHP nor tBHP affected intracellular GSH levels at 6 or 24 h after exposure 

(Figure 10). The results could be explained by the rapid kinetics of peroxidase activity 

leading to GSH oxidation and peroxide reduction, followed by GSR-mediated reduction of 

GSSG back to GSH (Figure 1). Liddell et al. (2006) showed that sublethal exposure to CHP 

induces rapid GSH depletion and repletion within 3 h of exposure.80 The in vitro GSH 

effects were consistent with previous studies in zebrafish.68 Both peroxides induced Gclm, 

Hmox, and Nqo1 mRNA expression at 6 h (Figure 8), but the effects of tBHP (2) on Hmox 
and Nqo1 mRNA expression decreased significantly by 24 h (Table S4). Computational 

studies indicated that O–O bond in 1 is more reactive compared to 2 and that epoxide 

metabolites of 1 are more reactive toward GSH (Figure 3). Considered together, the data 

suggest that assuming O–O cleavage as the MIE for peroxide toxicity, the higher CHP 

reactivity accounts for increased toxicity in both cell lines and prolonged gene expression 

effects, compared to tBHP.

Hydroquinones, 3 and 4, and their quinone metabolites can arylate proteins by Michael 

addition or increase intracellular ROS through redox cycling.92 Arylating quinones and 

hydroquinones have been shown to form GSH adducts, deplete GSH, and reduce cell 

viability at high concentration but can act as antioxidants at lower concentrations in 

experimental and computational studies.92–98 Such antioxidant function was thought to be 

largely adduct- and Nrf2-dependent and was shown to induce transcription of ARE-

dependent genes 1–24 h after exposure in different cell lines.94,99–101 Indeed, 3 and 4 were 

the most potent inducers of antioxidant gene expression (Figures 8 and 9) and were the only 

chemicals to significantly affect intracellular GSH at 6 and 24 h, with the effects 

approximately two times higher in the HV than CR cells (Figure 10). CR cells were 

substantially more resistant to 3 and 4 than HV cells (ΔAC50 = 0.54 and 0.66, respectively; 

Table 2). In distinguishing the two hydroquinones, 4 resulted in 4.0- and 3.2-times lower 

AC50 than 3 in HV and CR cells, respectively (Table 2). Furthermore, 3 and 4 exhibited 

markedly different kinetics on GSH levels; with 4 upregulating intracellular GSH at the 

earlier 6 h time point (Figure 10). Finally, qPCR data showed that tBHQ had the largest 

effect on Nqo1 expression in HV cell line, but the response was attenuated in the CR cells 

relative to other chemicals studied (Figure 8).

We hypothesized that the differences in GSH kinetics, cytotoxicity, and NQO1 effects in 

combination with computational approaches could further elucidate the contributions of 

MIEs to chemical toxicity. The computational analysis indicated that HQ is more reactive 

toward GSH, reactive protein residues, and other intracellular nucleophiles than tBHQ. 

However, tBHQ oxidation to semiquinones and quinones was found to be more favorable 

(Figure 14). If hydroquinones are fully oxidized by cytochrome P450s or cyclooxygenases 

to their quinone forms (t-butylbenzoquinone and 1,4-benzoquinone, respectively), one 

electron reduction by POR, cytochrome b5, or nitric oxide synthases may regenerate 

semiquinone intermediates, perpetuating redox cycling.102 To this end, tBQ was found to 

have ca. 2 kcal/mol greater affinity for POR (5URD) than BQ, consistent with increased 

redox cycling potential of tBHQ, which is thought to be associated with higher tBHQ 

toxicity in both cell lines and a more robust effect on Nqo1 induction in the HV cells. The 

Melnikov et al. Page 11

Chem Res Toxicol. Author manuscript; available in PMC 2020 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rapid increase in GSH level following tBHQ exposure could be attributed to its ROS 

production or direct post-transcriptional GCL modification, irrespective of changes in 

mRNA expression.103 Finally, NQO1 is a key protein that carries out a two-electron 

reduction of quinones and is a major NRF2 target gene. The higher Nqo1 mRNA induction 

by tBHQ in HV cells further supports the role of tBHQ as a redox cycling compound. 

Increased GSH levels in the CR cell line attenuated tBHQ-mediated Nqo1 mRNA 

expression (Figure 8). This observation suggests that in these cells, the excess GSH likely 

favors tBHQ conjugation by gutathione S-transferases (GSTs) and thus diminishes the role 

of redox cycling in its toxicity. The differences in gene expression underscore the protective 

role of GSH against cell toxicity, as NQO1 is known to induce a mixture of cytoprotective 

and cytotoxic effects by either two-electron reduction/detoxification or by contributing to 

activation of certain quinone-based cancer chemotherapeutics.104,105 Thus, lower NQO1 

levels may further reduce chemical toxicity, as indicated by the smaller difference between 

tBHQ and HQ toxicities in CR compared to HV cells (3.2 vs 4.0-fold difference). In 

previous in vitro studies, HQ and BQ were repeatedly shown to be less cytotoxic but more 

reactive toward GSH than more substituted quinones.95,106 The work suggested that excess 

nonspecific reactivity, such as that of HQ, does not always lead to increased toxicity as 

reactive chemicals do not reach the site of toxic action.94 And unlike BQ and HQ, 

substituted benzoquinones and hydroquinones, like tBHQ, may be more toxic due to their 

ability to reach target sites in the endoplasmic reticulum93–95,107 or mitochondria.108 This 

analysis did not assess internal chemical concentration and compartment-specific ROS 

effects. Future work in the area could help distinguish ROS-mediated toxicity from that 

associated with nonspecific reactivity or increased bioavail-ability at target sites.

BPA (5) is widely studied and reported to exhibit an array of biological effects including 

nuclear receptor- and oxidative stress-mediated toxicities.109 Scavenger conjugation and 

excretion is the major pathway of BPA detoxification.98,110 Like 3 and 4, BPA can be 

oxidized by P450 enzymes to catechol metabolites and o-quinones, with BPA-3,4-quinone 

(BPAQ) as the major reactive metabolite.98,110–112 Computational studies demonstrated that 

GSH conjugation of BPAQ is more favorable than DNA adduct formation.96 Thus, an 

increased level of GSH is expected to provide protection against BPA toxicity. The ΔAC50 

for BPA was 0.78 (Table 2), suggesting a mild protective effect of GSH against BPA toxicity. 

Just like 3 and 4, excess GSH in CR cells line was associated with an overall decrease in 

mRNA expression in response to BPA exposure (Table S1). More specifically, BPA did not 

upregulate Gclc, Hmox, or Gclm mRNA at 24 h, but increased Nqo1 mRNA in the HV cell 

line only (Figure 8). As discussed in the context of HQ toxicity, upregulation of Nqo1 
mRNA may indicate a mild increase in the BPAQ metabolite. But the effects of excess GSH 

in the CR cells on BPA toxicity are mild compared to 1–4, probably because the complex 

mixture of mechanisms involved in BPA toxicity. The 75 μM BPA exposure chosen for this 

study was likely on the verge of cytotoxic response previously reported in vitro. High micro-

molar BPA exposure has been shown to deplete intracellular GSH and induced pro-oxidative 

conditions.109,113 However, the lower levels of exposure we used upregulated GSH synthesis 

which could have produced a reducing intracellular environment through Nrf2-mediated 

antioxidant gene induction.114–116
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Excess GSH was not expected to substantially attenuate toxicity of 6 and 7 due to MIEs 

distinct from electrophilic protein heptanation. Accordingly, the ΔAC50 for BPA was 0.95 

(Table 2). DNSB (6) is a known oxidative phosphorylation uncoupler.117 qPCR data 

indicated that DNSB slightly upregulated antioxidant gene expression in both cell lines 

studied here (Figure 8), likely due to its effect on redox homeostasis. PFOA (7) has been 

shown to induce toxicity through reversible electrostatic interactions with protein.118,119 

While PFOA may induce apoptosis in a ROS-dependent manner,120 it is not expected to be 

readily metabolized through GSH conjugation or activate antioxidant gene transcription 

through covalent interactions with reactive protein thiols. Indeed, our data showed that the 

increased GSH content in the CR cell line had mild effects on PFOA toxicity (ΔAC50 = 0.87, 

Table 2) and PFOA did not affect antioxidant mRNA expression (Figure 8), GCLC or 

GCLM protein expression (Figure S2), and intracellular GSH levels (Figure 10).

Gene Co-Regulation.

The expression of antioxidant gene mRNAs was highly correlated (Figure 13), suggesting a 

common regulatory mechanism, typically associated with Nrf2 activation, and upregulation 

of transcription at AREs in these genes. In the HV cell line, the antioxidant mRNA and GSH 

levels at 24 h (chemicals 1–7) clustered together, while antioxidant mRNA and GSH at 6 h 

clustered together (chemicals 1–4) (Figure 13B). However, the pattern differed in the CR 

cells, indicating differences in antioxidant mRNA upregulation in the GSH-overexpressing 

line. The high association between Gclc and Nqo1 induction in the CR but not the HV cell 

line (Figure 13A, 13C) suggests co-induction of the mRNA at high GSH concentrations and 

additional regulatory mechanism at low GSH levels.

Across chemicals 1–4, Hmox, Gclc, and Gclm mRNA were upregulated most by 6 h, and in 

many cases their expression was significantly attenuated by 24 h after exposure (Figure 8, 

Table S3). However, the expression of Nqo1 significantly increased over time (Figure 8, 

Table S3). The differences in expression patterns suggested that Nqo1 regulation operated on 

a different time scale and was particularly sensitive to chemicals that may affect ROS 

homeostasis (6) or produce redox cycling metabolites (3–4). The delayed response may 

indicate an increase in intracellular benzoquinone over time after hydroquinone exposure.

Finally, we investigated the relationship between Gclm expression at 6 h and GSH levels at 

24 h and found these effects to be highly correlated with quadratic dependence (Figure 11). 

Such correlations are consistent with the fact that Gclc and Gclm encode the catalytic and 

modifier subunits of GCL which is the rate-limiting enzyme in GSH synthesis.121 Thus, 

induction of these GSH-synthesis genes at 6 h is associated with an increased GCLC and 

GCLM protein and GSH level by 24 h.

CONCLUSION

The analysis of Gclm and Gclc transfected (CR) and control (HV) Hepa-1 cell line indicated 

that CR cells were more resistant to chemical toxicity and showed marked attenuation of OS 

biomarkers. The difference in antioxidant response can be largely attributed to the 

chemicals’ ability to act as biological electrophiles or produce redox cycling metabolites. As 

in previous work, exposure to electrophilic chemicals at low concentrations has been shown 
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to deplete GSH initially and induce an antioxidant defense system over time. Hmox, Gclc, 

and Gclm mRNA exhibited common expression supporting of a common regulatory 

mechanism, while Nqo1 mRNA regulation in Hepa-1 cells may be more complex and 

respond specifically to redox cycling or oxidative phosphorylation-uncoupling substances. 

Computational results quantified the contribution of chemical mechanisms and reactivity 

models to toxicity and GSH depletion. Our analysis highlighted the power of computational 

tools in assessing chemical toxicity and the contribution of chemical reactivity and MIE 

models to understanding chemical modes of actions. Future in vitro studies can further 

elucidate the chemical functionalities important for biological effects and help enable safer 

chemical design by modeling chemical distributions inside the studied cells.

Finally, the translational implications of this work include a consideration of the role of GSH 

in human health and disease. Because of its importance in maintaining thiol redox status and 

antioxidant protection, there has been interest in delivering GSH as a therapy for a number 

of diseases including various lung diseases, cardiovascular disease, and in certain chronic 

neurological diseases. When given orally, GSH is not very bioavailable since it is 

metabolized to its constituent amino acids in the gut and the liver via the actions of γ-
glutamyltransferase and dipeptidases. Nonetheless, there is recent evidence that sublingual 

GSH formulations may be able to bypass this effect to increase plasma GSH levels.122 GSH 

has been proposed as a potential therapeutic agent delivered intranasally in the context of 

Parkinson’s disease.123 Providing GSH to the brain via intravenous route may be somewhat 

difficult as the levels required may be quite high, given that in rats the Km for transport is 

approximately 5.8 mM.124 Alternatively, N-acetylcysteine is a well described precursor for 

GSH synthesis and has been used in a number of clinical situations including protecting 

against acetaminophen overdose, as an ancillary treatment for cystic fibrosis (where it is also 

a mucolytic), certain psychiatric illnesses, cardiovascular disease and diabetes, and in several 

other conditions.125–129 Future studies might be done to determine if any of these 

interventions are protective in vivo against these oxidative stress-inducing chemicals using 

genetically modified mice deficient in GSH synthesis, as we have previously shown that 

GCL expression is an important determinant of acetaminophen-induced liver injury.130,131
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Figure 1. 
Mechanisms of GSH depletion and antioxidant response through KEAP1 oxidation and 

NRF2-induced transcriptional response.
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Figure 2. 
Structures of the seven chemicals that were analyzed in this study.
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Figure 3. 
Peroxide cleavage yields the corresponding tertiary alcohol, which can either undergo 

enzymatic dehydration to an alkene and subsequently be oxidized by cytochrome P450 to 

reactive epoxides (8 and 9).
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Figure 4. 
Schematic representational of hydroquinone mechanisms of toxicity and detoxification. R1 

group represents a hydrogen or a tert-butyl group for HQ (3) and tBHQ (4), respectively. 

Hydroquinones can be oxidized to quinones by one electron processes producing reactive 

oxygen species. The process can continue indefinitely if quinones are reduced back to 

semiquinones or hydroquinones by cellular enzymes leading to redox cycling. Alternatively, 

hydroquinones and their metabolites can be conjugated with GSH and exported. However, 

the same electrophilic properties that allow hydroquinones to react with GSH can lead to 

formation of covalent protein adducts.
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Figure 5. 
Concentration response curves for HV and CR cells exposed to (A) BPA, (B) CHP, (C) 

DNSB, (D) HQ, (E) PFOA, (F) tBHP, and (G) tBHQ. Note that the X-axis scale is consistent 

for all chemical except dinoseb (6) due to its high potency. Error bars indicate standard error 

of the mean.
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Figure 6. 
Seven chemicals and their structures in order of AC50 estimates from the MTT assay, from 

most to least potent.

Melnikov et al. Page 27

Chem Res Toxicol. Author manuscript; available in PMC 2020 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Seven analyzed chemicals and their structures in order of decreasing differences in AC50 

between HV and CR cell lines. Largest AC50 differences correspond to smallest ΔAC50 ratio 

values (see Table 2 for details).
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Figure 8. 
Antioxidant mRNA expression 6 or 24 h after HV or CR HeLa cell cultures were treated 

with 100 μM HQ, 50 μM tBHQ, 200 μM CHP, 200 μM tBHP, 10 μM DNSB 75 μM, BPA, or 

100 μM PFOA. Asterisks denote significant difference from control at the following levels: * 

p < 0.05, ** p < 0.01, *** p < 0.001. Chemical effects on mRNA expression of four genes 

were measured for (A) Nqo1, (B) Hmox, (C) Gclc, (D) Gclm. ΔΔE is the log-scale fold 

change from negative control.
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Figure 9. 
Antioxidant mRNA expression profiles expressed as radial plots. Radial plot end points 

show relative mRNA expression (normalized to highest ΔΔE) at 6 or 24 h in HV or CR 

HeLa cell cultures on the same plot.
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Figure 10. 
Relative changes in GSH levels at 6 or 24 h after HV or CR cell cultures were treated with 

100 μM HQ, 50 μM tBHQ, 200 μM CHP, 200 μM tBHP, 10 μM DNSB 75 μM, BPA, or 100 

μM PFOA. Asterisks denote significant difference from control at the following levels: * p < 

0.05, ** p < 0.01, *** p < 0.001. ΔΔE is the log-scale fold change from control normalized 

to total protein content.
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Figure 11. 
Change in chemically induced GSH levels from 6 to 24 h vs Gclm mRNA expression at 6 h 

for chemicals 1–4, labeled according to the plot, across HV and CR cell lines. Observations 

on the plot are presented as numbers that correspond to chemical IDs. ΔΔE is the log-scale 

fold change from control normalized negative controls. P-value for a single predictor model 

indicates that Gclm expression squared is a significant predictor of the change in GSH 

expression.
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Figure 12. 
Difference in AC50 thresholds between HV and CR cell lines vs GSH induction in the CR 

cell line at 24 h. The chemical numbers indicate corresponding structures as described in 

Figure 2. Line fit and fit parameters are given for data without tBHP (chemical 2). ΔΔE is 

the log-scale fold change from control normalized to total protein content. Chemicals are 

labeled according to Figure 2.
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Figure 13. 
Correlation and cluster analyses for antioxidant mRNA expression, GSH levels, and 

cytotoxicity estimates in HV (A, B) and CR (C, D) cell lines. (A, C) Correlation between the 

chemicals’ effects on every end point studied at 24 or 6 h. The lower triangular portions of 

(A and C) give the Pearson correlation coefficients (R) for the pairwise relationship between 

end points. The upper-triangular portions of these figures provide intuitive visualizations for 

the correlations with blue and red colors indicating positive and negative correlations, 

respectively, while narrower ovals indicate higher absolute values of the correlation. For 

example, the first cell in the second row in (A) shows that, for the 7 chemicals analyzed, the 

effects on GSH levels at 24 h and on Hmox mRNA expression at 24 h have a R = 0.95. The 

R = 0.95 corresponds to a narrow blue oval in the second cell of the first row of the figure, 
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indicating a high positive correlation. Correlations insignificant (p > 0.05) are crossed out. 

(B, D) End point cluster analysis using absolute correlation distance metric and Ward 

clustering method. The end points with branches connected lower on the cluster tree are 

affected more similarly by the seven chemicals studied. For example, in HV cells (panel B), 

the chemicals affect Gclc and Gclm mRNA expression at 6 h similarly, while the effects on 

Nqo1 and Gclm mRNA expression at 6 and 24 h, respectively, are not very similar. Cluster 

stability was assessed with 1000-fold bootstrap. Clusters stable at p < 0.01 level are 

highlighted in red. Thus, the end points grouped together by red boxes can be viewed as 

related or affected similarly by the seven studied chemicals.
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Figure 14. 
Relative stability of HQ vs tBHQ oxidation species. Differences in free energies of 

nonenzymatic oxidation are calculated as ΔΔG’s in kcal/mol at the M06-HF/6–31+G(d) 

level of theory. Both oxygens are considered for the asymmetric tBHQ as major and minor 

pathways.
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Figure 15. 
tert-Butyl benzoquinone (tBQ, cyan color) and benzoquinone (Q, magenta color) docked in 

their respective lowest-energy poses in the NADP+ active site of cytochrome P450 

oxidoreductase (POR; 5URD). Favorable hydrophobic interaction between t-butyl group of 

tBQ and isobutyl group of proximal leucine residue (3.6 Å in closest C–C distance) is 

proposed to account for the ca. 2 kcal/mol higher binding affinity for tBQ. Side chains of 

active-site residues sampled during docking are identified in cyan (tBQ) and magenta (Q) 

colors, respectively; flavin mononucleotide (FMN) is shown in gray color.
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Figure 16. 
Antioxidant mRNA and GSH expression profiles by cell line expressed as radial plots. 

Radial plot end points show relative gene expression (normalized to highest ΔΔE) at 6 or 24 

h in HV or CR HeLa cell cultures.
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Table 1.

Summary of assays on chemicals depicted in Figure 2

assay end point time (h) chemical screened

mRNA expression as measured by RT-qPCR

Gclc 6 1–4

Gclc 24 1–7

Glcm 6 1–4

Gclm 24 1–7

Hmox 6 1–4

Hmox 24 1–7

Nqol 6 1–4

Nqol 24 1–7

GSH depletion assay
nmol GSH/mg protein

6 1–6

24 1–7

MTT cell viability assay AC50 24 1–7

slope
a 24 1–7

a
The slope of concentration-response curve derived from four parameter log-logistic model;132 higher values indicate rapid change in viability in 

response to concentration increase.
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Table 2.

Effects of Seven Chemical Exposures on Cell Viability in HV (Control) and CR (GCL Transgenic) Cell Lines 

(Dose-Response Curves in Figure 5)

AC50 (μM)

chemical name (ID) CR HV AC50
HV/AC50

CR

dinoseb (6) 20 19 0.95

tert-butylhydroquinone (4) 191 126 0.66

bisphenol A (5) 200 155 0.78

perfluorooctanoic acid (7) 309 269 0.87

hydroquinone (3) 759 407 0.54

cumene hydroperoxide (1) 1259 813 0.65

tert-butyl hydroperoxide (2) 2630 1148 0.44
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