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The COVID-19, caused by a novel coronavirus, was declared as a global pandemic by WHOmore than five
months ago, and we are still experiencing a state of global emergency. More than 74.30 million confirmed
cases of the COVID-19 have been reported globally so far, with an average fatality rate of almost 3.0%.
Seven different types of coronaviruses had been detected from humans; three of them have resulted in
severe outbreaks, i.e., MERS-CoV, SARS-CoV, and SARS-CoV-2. Phylogenetic analysis of the genomes sug-
gests that the possible occurrence of recombination between SARS-like-CoVs from pangolin and bat
might have led to the origin of SARS-CoV-2 and the COVID-19 outbreak.
Coronaviruses are positive-sense, single-stranded RNA viruses and harbour a genome (30 kb) consist-

ing of two terminal untranslated regions and twelve putative functional open reading frames (ORFs),
encoding for non-structural and structural proteins. There are sixteen putative non-structural proteins,
including proteases, RNA-dependent RNA polymerase, helicase, other proteins involved in the transcrip-
tion and replication of SARS-CoV-2, and four structural proteins, including spike protein (S), envelope (E),
membrane (M), and nucleocapsid (N). SARS-CoV-2 infection, with a heavy viral load in the body, destroys
the human lungs through cytokine storm, especially in elderly persons and people with immunosup-
pressed disorders. A number of drugs have been repurposed and employed, but still, no specific antiviral
medicine has been approved by the FDA to treat this disease. This review provides a current status of the
COVID-19, epidemiology, an overview of phylogeny, mode of action, diagnosis, and possible treatment
methods and vaccines.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Coronaviruses (CoVs) belong to a large group of enveloped,
single-stranded, positive-sense RNA viruses having the capability
of infecting a wide variety of animals, including humans, birds,
rodents, carnivores, chiropters and other mammals [1,2]. Though
they have been known for many years and have been considered
as one of the viral sources responsible for respiratory diseases, they
caught the attention of thewholeworld inDecember 2019,when an
epidemic episode of cases with respiratory tract infections was
reported in Wuhan, the largest metropolitan area in the province
of Hubei, China. The outbreak was first treated as a complication
of pneumonia with unknown etiology, but then the Centre for Dis-
ease Control in China declared that the respiratory infection was
caused by a novel CoV named as 2019-nCoV, at that time [3–6].
Later, the virus spread so enormously and rapidly that the WHO
(World Health Organization) declared a global emergency amid this
pandemic and called it coronavirus disease-2019 (COVID-19) while
this novel 2019-nCoV was renamed as Severe Acute Respiratory
SyndromeCoronavirus-2 (SARS-CoV-2).When the clinical spectrum
of COVID-2019 was observed, it was noticed that few patients were
asymptomatic, and some patients have mild to severe symptoms
like severe respiratory discomfortness, fever, cough and flu [7–9].
During the past twelve months, COVID-19 has spread worldwide
hitting some countries with extreme cruelty including the USA,
India, Brazil, Russian Federation, France, the United Kingdom, Italy,
Spain, Argentina, Colombia, Germany, Mexico, Poland, Iran, Turkey,
each with more than 1 million confirmed COVID-19 cases
(https://covid19.who.int/ accessed on December 19, 2020). Death
toll has been extremely high in some countries including the USA,
Brazil, India, Mexico, Italy, the UK, France, Iran, Russian Federation
and Spain, each reporting greater than 50,000 COVID-19 related
deaths as of December 19, 2020. According to WHO, 216 countries
and territories around the world have reported more than 74.30
million confirmed COVID-19 cases with a death toll of above 1.67
million (https://covid19.who.int/ accessed on December 19, 2020).

Without any proper treatment and vaccine for COVID-19, we
are currently experiencing a worldwide emergency affecting all
societies, and it has sent billions of people into lockdown. Around
the world, desperate efforts are underway to curtail this pandemic
while it has resulted in the collapsing of health systems and has
triggered lasting geopolitical and economic changes. To date, no
approved medical treatment is available, that makes social distanc-
ing only best possible solution to stop the spread of the virus [10].
It is thought that future outbreaks of CoVs are unavoidable because
of changes in the climate and ecology and increased interaction of
humans with animals. Therefore, there is a need to develop effec-
tive therapeutics and vaccines against CoVs [11].

In this review, we briefly highlight the history, phylogeny, geno-
mics, epidemiology, mode of action, disease symptoms, diagnosis,
and possible treatment methods of COVID-19 and the research
progress in the development of vaccines against SARS-Cov-2.
2. History of CoV-related diseases in humans

Human coronaviruses (HCoVs) were first reported in the mid-
1960s when two species were isolated from persons with the com-
mon cold: HCoV-229E [12] and HCoV-OC43 [13]. Since then, seven
different types of CoVs had been detected from humans, three of
them happened to be highly pathogenic, and all suggested to be
originated from bats: the Middle East respiratory syndrome coron-
avirus (MERS-CoV), severe acute respiratory syndrome coronavirus
(SARS-CoV), and SARS-CoV-2 [14].

First time, CoV wreaked global havoc in 2002 when SARS-CoV
caused a severe acute respiratory syndrome and emerged as highly
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pandemic disease. SARS-CoV was thought to be an animal virus
with the genetic ability to cross the species barrier that spreads
to humans through an unknown intermediate host(s) [4]. It first
appeared as a human pathogen in the Guangdong province of
southern China in 2002. Later, it spread to 26 countries and
resulted in more than 8000 cases and 774 deaths in 2003 (http://
www.who.int/csr/sars/country/table2004_04_21/en/). World
Health Organization declared the end of this outbreak in July 2003.

Another respiratory syndrome outbreak similar to that of SARS-
CoV emerged in June 2012 in Saudi Arabia and was named as
MERS-CoV [15]. MERS-CoV outbreak infected 2494 individuals
exclusively travelling through the Middle East and caused 858
deaths [16]. This virus originated from bats and possibly camels
as its intermediate host, got passed genetic recombinations across
different species to infect human beings [14].

A few months ago, a novel CoV emerged and caused a serious
disaster across the whole world. During the last two months of
2019, several cases of ‘viral pneumonia’ in Wuhan, People’s Repub-
lic of China, were reported [17,18]. The cause of this infectious dis-
ease was identified as a natural virus of an animal origin with
spillover infection potential [19]. It was traced that the geograph-
ical source of this virus was Huanan South China Seafood Market,
but the actual animal source of this CoV was not known. It is
now thought that this virus came from bats as their primary hosts,
then it passed through one or multiple intermediate hosts, possibly
including pangolins, to infect human beings [20]. International
Committee on Taxonomy of Viruses (ICTV) announced SARS-CoV-
2 as the name of the new virus on February 11, 2020, because of
the genetic resemblance of the virus to the CoV responsible for
the outbreak of 2003. Following guiding principles previously
developed with the World Organization for Animal Health (OIE)
and the Food and Agriculture Organization (FAO) of the United
Nations, WHO named the disease ‘‘COVID-19” and announced it
as a global pandemic on March 11, 2020.
3. Epidemiology

Since the first confirmed diagnosis of SARS-CoV-2 in China,
more than 74.30 million people have been affected, from which
more than 1.67 million lives have been claimed (https://covid19.
who.int/, assessed on December 19, 2020). Although more than
52 million people have defeated COVID-19 and recovered from
the disease, yet the battle between SARS-CoV-2 and humans is con-
tinued, and still, no specific therapeutics are available. The United
States of America (USA) shares 22.7% of total infection cases, fol-
lowed by India and Brazil, sharing 13.5% and 9.6% of cases, respec-
tively (https://covid19.who.int/, assessed on December 19, 2020)
(Fig. 1). Although a decrease in death rate is observed (September
10, 3.22; July 20, 6.65%; April 10, 22.36% and Feb 2, 41.80%), there
is no substantial reduction in active COVID-19 cases (>700,000-
daily cases on December 19, 2020). The cumulative incidences
for COVID-19 vary by a multitude of factors, including comorbidi-
ties, age, gender, health and living conditions [21,22]. The disease
severity was found to increase in diabetes, cardiovascular, lung,
kidney, and renal diseases [23]. Upon infection, one in five persons,
with developed comorbidities, is at increased risk of severe COVID-
19 infection [24]. Case studies from China show that COVID-19 is
more severe in older adults aged 50–60 years [25], while it became
more fatal in people above 70 years old regardless of any chronic
disease complications. In a gender-based meta-analysis study of
European countries, it is observed that COVID-19 was significantly
fatal in men compared to women [26].

In the USA, the situation is still aggravating, where COVID-19
death toll is over 300,000 and the rate is still rising as 95 deaths
per 100,000 since January 2020, across the country (https://
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Fig. 1. Total number of confirmed cases and deaths due to Coronavirus disease-2019 (COVID-19). Adapted from COVID-19 dashboard by WHO (https://covid19.who.int/)
accessed on December 19, 2020.
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www.cdc.gov/coronavirus/2019-ncov, accessed December 20,
2020). Amongst the countries reporting at least 50,000 COVID-19
cases, Singapore has the lowest COVID-19 fatality count with just
27 deaths with more than 57,000 persons who tested positive for
COVID-19, with a death rate of below 0.05% compared to the global
average of 3%. Singapore’s COVID-19 pandemic response that
includes, mass testing, contact tracing of COVID-19 positive
patient, rapid response public health preparedness clinics across
the country, public awareness and countrywide lockdown [27]
can be adapted as a successful model framework for other coun-
tries. In case no viable vaccine is available for low income coun-
tries, Africa, South Asia and South America can become
unfortunate regions severely affected by SARS-CoV-2. A recent esti-
mate put 23 million African population at the risk of severe COVID-
19, whereas the current infection rate is exponentially increasing
by 0.22 per day [28,29]. Overloading poorly established health sys-
tems in underdeveloped countries may lead to numerous
causalities.

4. Taxonomy and phylogeny of SARS-CoV-2

CoVs are positive-sense, single-stranded RNA viruses belonging
to the order Nidovirales, suborder Cornidovirineae, family Coron-
aviridae and subfamily Orthocoronavirinae [16,30]. The subfamily
Orthocoronavirinae is further divided into Alpha-, Beta-, Gamma-
and Delta- CoVs [31]. Alpha- and Beta- CoVs are pathogenic to
mammals, including human beings, bats, pigs, mice, and cats.
Gamma- and Delta- CoVs are usually pathogenic to birds but rarely
infectious to mammals [32]. Phylogenetic analysis of SARS-CoV-2,
SARS-CoV, and MERS-CoV suggests that it is more closely related to
bat-CoVs of the Sarbecovirus subgenus isolated from bats (Fig. 2). A
SARS related (SARSr) bat-CoV strain named SARSr-CoV-RaTG13
detected in an Intermediate Horseshoe bat (Rhinolophus affinis)
[33,34], was found very similar to SARS-CoV-2. The comparison
of genome sequences revealed that SARSr-CoV-RaTG13 and
SARS-CoV-2 sequences shared a similarity of more than 96% over
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a large part of the genome. However, the genomic region spanning
the 30-end of ORF1a, ORF1b and almost half of the spike (S) protein
region of SARS-CoV-2 is divergent to SARSr-CoV-RaTG13 [35] but
more closely related to pangolin CoV [36]. Considering that bats
were in hibernation when the outbreak occurred [37], and the phy-
logenetic resemblance of Pangolin CoV strain to SARS-CoV-2, sug-
gest that the virus is more likely to have been transmitted via
other species. This also suggests that the possible occurrence of
recombination between SARS-like-CoVs from pangolin and bats
might have led to the origin of SARS-CoV-2 [36] and the COVID-
19 outbreak. Dorp et al., (2020) analyzed the emergence of geno-
mic diversity over time and reported that all CoV sequences share
a common ancestor towards the end of 2019, supporting this as the
period when SARS-CoV-2 jumped into its human host. They further
identified several recurrent mutations producing non-synonymous
changes in the virus at the protein level, suggesting possible ongo-
ing adaptation of SARS-CoV-2 to the human host [38]. Various
sequencing projects and phylogenetic studies involving SARS-
CoV-2 genomes from COVID-19 patients during this pandemic
have revealed that how fast the virus is mutating and adapting
to its novel human host, providing information to direct drug
and vaccine design [39–41].

5. Genomic features and life cycle of SARS-CoV-2

Several genome sequences of SARS-CoV-2 retrieved from the
COVID-19 patients have been reported by researchers from various
countries. According to the NCBI database, there are more than
28,000 (full length) SARS-CoV-2 genome sequences from human
hosts and more than 113,000 Sequence Read Archive (SRA) high
throughput sequence submissions through multiple cloud provi-
ders and NCBI servers (December 20, 2020). The single-stranded
positive-sense RNA genome of SARS-CoV-2 is around ~ 30 kb that
starts with a 50-cap structure and ends with a 30-poly-A tail. Chan
et al. (2020) [42] reported detailed genomic characterization of
SARS-CoV-2, which consists of two terminal untranslated regions
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Fig. 2. Phylogenetic tree of representative species of SARS-CoV-2, SARS-CoV, and MERS-CoV. Red text highlights zoonotic viruses with pathogenicity in humans and green
text highlights common respiratory viruses that circulate in humans. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1,000 replicates) was shown next to the branches. Figure adapted from Gorbalenya et al., [30]. The tree was drawn based on the sequence information of following species:
Severe acute respiratory syndrome related Bat Hp-betacoronavirus Zhejiang2013 (SARSr-CoV Ratg13), Rousettus bat coronavirus GCCDC1 (RO-Bat-CoV GCCDC1), Rousettus
bat coronavirus HKU9 (RO-Bat-CoV HKU9), Eidolon bat coronavirus C704 (Ei-Bat-CoV C704), Pipistrellus bat coronavirus HKU5 (Pi-Bat-CoV HKU5), Tylonycteris bat
coronavirus HKU4 (Ty-Bat-CoV HKU4), Middle East respiratory syndrome-related coronavirus (MERS-CoV), Hedgehog coronavirus OC43 (HCoV OC43), Murine coronavirus
(MHV), Human coronavirus HKU1 (HCoV HKU1), China Rattus coronavirus HKU24 (ChRCoV HKU24), Pangolin Beta-coronavirus (GD-beta-CoV1), Bat Betacoronavirus 1 (Bat
Hp-beta-CoV1), Myodes coronavirus 2JL14 (MrufCoV 2JL14), Human coronavirus NL63 (HCoV NL63), Human coronavirus 229E (HCoV 229E). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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(50- and 30- UTRs) and twelve putative functional open reading
frames (ORFs) (Fig. 3A). ORFs 1a and 1b, spanning over two-
thirds of the genome, encode the large replicase polyproteins
(pp1a and pp1ab), which are post-translationally cleaved into 16
putative non-structural proteins (nsps) involving proteases, RNA
polymerase, helicase, and other proteins involved in the transcrip-
tion and replication of SARS-CoV-2 [4,11,42]. There are four struc-
tural proteins, including S protein, envelope (E), membrane (M),
and nucleocapsid (N) (Fig. 3B) [43]. Most of the nonstructural pro-
teins are known to have a role in the replication of the viral gen-
ome, whereas these four structural proteins are essential for the
assembly and release of SARS-CoV-2 [43]. S protein is responsible
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for the binding of virion on the cell surface [44]. M protein has
three transmembrane domains, whereas E protein plays its role
in the assembly and release of viral particles from the cell. It is also
involved in viral pathogenesis [45]. N protein has two domains,
both of which can attach to the viral RNA in order to assist replica-
tion, and it also acts as a repressor of the RNAi system of the host
cell, hence supporting the viral replication [46]

The initial attachment of the virus to the host cell is mediated
by S protein, which has two subunits, S1 (specific receptor binding
domain known as RBD) and S2 (CoV S2 glycoprotein). S protein,
through its specific RBD, binds to its receptor on the host cell
[47]. Wan et al. [48] reported that SARS-CoV-2 is optimized to bind



Fig. 3. Genomic features and structure of SARS-CoV-2. (A) Genomic organization of SARS-CoV-2 reference genome (isolate Wuhan-Hu-1) from NCBI (accession number
NC_045512.2). All genomic regions or open-reading frames (ORFs) are presented i.e. untranslated regions at both 50 and 30 ends (50-UTR, 30-UTR), polyproteins (pp1ab),
structural proteins including spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins. (B) Structure (created with BioRender.com) of SARS-CoV-2 showing its
major structural proteins.
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on angiotensin-converting enzyme II (ACE2) human receptors. RBD
in the S protein is the most variable part, and it differs for each type
of CoV. After binding to the receptor, the host protease cleaves the
S protein, which causes the release of the spike fusion peptide,
facilitating the entry of the virus into the host cell [49]. S protein
cleavage takes place at two sites. The first cleavage causes the sep-
aration of RBD and fusion peptide, whereas the second cleavage
exposes the fusion peptide that inserts into the cell membrane
[50], which ultimately causes the formation of a six-helix bundle.
The formation of this bundle allows the fusion of virus cell mem-
616
brane and host cell membrane, causing the release of the viral gen-
ome into the cytoplasm [51].

As the genome of CoV consists of positive-sense single-stranded
RNA, it is used as a template directly to translate pp1a and pp1b,
which are processed further to proteins essential for the formation
of replication transcription complex (RTC) present in double-
membrane vesicles [52]. Subsequently, RTC synthesizes a set of
sub-genomic RNAs (sgRNAs) in a discontinuous manner [53]. The
positive sgRNA serves as an mRNA for all structural and accessory
genes, whereas the negative-sense strand of sgRNA serves as a



Fig. 4. Common symptoms and complication related to the patients of coronavirus disease-2019 (COVID-19). (Figure created with BioRender.com).
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template for the production of sub genomic and genomic positive-
sense mRNAs [54]. Following the replication and synthesis of
mRNAs, structural proteins get transcribed [55]. These structural
proteins are inserted into the endoplasmic reticulum and trans-
ferred to endoplasmic reticulum-Golgi intermediate compart-
ments [56]. Here, the genomes are encapsulated by N proteins
and budded into membranes of ERGIC containing viral structural
proteins, ultimately causing the release of the mature virion. This
causes an increase in the viral load in the body.
6. Pathogenesis of SARS-CoV-2

SARS-CoV-2 manipulates host’s receptor ACE-2 and a serine
protease TMPRSS2, to activate viral S protein and entry inside the
host cell [57–59]. SARS-CoV-2 infection, with heavy viral load in
the body, destroys the human lungs through cytokine storm that
refers to the overreaction of the body’s immune system [60].
Cytokines released by different types of cells in the body, are sig-
nals to attract immune cells to the site of infection, which allows
the immune cells to coordinate their response against the virus.
During a viral infection, the body produces large amounts of
cytokines, causing a significant burden on the immune system,
referred to as cytokine storm syndrome [61]. This burden forces
the immune system to send more and more immune cells to the
site of infection, leading to hyper-inflammation (Fig. 4). CoVs, after
entering into the lungs, reaches the lower respiratory tract where
alveoli are present and start to replicate there [62]. As a result,
the cytokine storm causes the destruction of alveoli by the immune
system. More and more immune cells are recruited to the site of
infection that leads to the thickening of the lung lining and ulti-
mately causes pneumonia with shortness of breath, the main
symptom of COVID-19 [62]. Moreover, this cytokine storm forces
the immune cells to destroy the healthy cell lining of the lungs that
may leads to secondary bacterial pneumonia, causing the lungs to
become less functional. Owing to the malfunctioning of lungs,
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other organs such as the brain, kidney, and liver become deprived
of oxygen. Eventually, patients require ventilators to receive
enough oxygen [63].
7. Symptoms

The effect of COVID-19 may vary from person to person, and it
may be from mild to moderate with an incubation period of 6 to
41 days (median of 14 days) [64]. The manifestation of multiple
COVID-19 symptoms, as well as the duration of incubation time,
depends on age groups, health conditions, and exposure times
[65]. Old age people and patients with immunosuppressed disor-
ders are the most susceptible to the infection. On average, symp-
toms appear in 5 days after exposure [66]. These symptoms may
range from headache, fatigue with pain and aches, cough, sore
throat to high fever, GI distress, diarrhea, nausea, myalgia, dyspnea,
lymphopenia, difficulty in breathing and pneumonia [67–70].
Unfortunately, COVID-19 symptoms, at the initial stage cannot
make the basis for diagnosis as they mimic many respiratory and
common infections (Table 1). Moreover, SARS-CoV-2 infected per-
sons might also be asymptomatic carriers.

COVID-19 may progress with cytokine storm leading to acute
pneumonia, acute respiratory distress syndrome (ARDS) (Fig. 4),
respiratory failure and even death [71]. Acute lung and kidney
injuries, shock and heart failure have also been observed as com-
plications of the disease [69–71]. Some individuals fail to respire
in the fulminant disease that causes septic shock, multiple organ
dysfunction (MOD), multiple organs failure (MOF), and its fre-
quency is 5% patients [69–71]. Chest radiographs from COVID-19
patients indicate pneumonia with peripheral and subpleural
ground-glass lung opacities [72,73]. The proinflammation state
with cytokine storm and an imbalance expression of ACE receptors
are associated with the progression of COVID-19 [74]. SARS-CoV-2
interacts with sialic acids present at the surface of ACE2 receptors



Table 1
Characteristics, symptoms and epidemiology of respiratory viruses.
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[74], reduces their expression, and triggers proinflammatory medi-
ators, including IL-6, IL2, NF-jB, and TNF-alpha [75,76].
8. Diagnostics

Unbiased next-generation sequencing tools were used for the
confirmed diagnosis of earlier cases after initial screening for com-
mon causes of respiratory infections of patients with atypical
pneumonia due to an unidentified microbial agent gave negative
results [77,78]. Next-generation sequencing of bronchoalveolar
lavage was performed, and a novel CoV later named SARS-CoV-2
was subsequently identified as the causative pathogen [78,79].
Few weeks following the preliminary characterization of COVID-
19, molecular assays for detection of the virus in clinical samples
were rapidly developed using the sequenced genomic information.
Corman et al., developed a diagnostic qRT-PCR-based protocol for
COVID-19 using swabbed samples from a patient’s nose and throat
that has since been selected by the World Health Organization
(https://www.who.int/docs/default-source/coronaviruse/protocol-
v2-1.pdf?sfvrsn = a9ef618c_2). The Chinese and American Centers
for Disease Control and Prevention and other research groups also
described the development of real-time PCR methods to diagnose
COVID-19, mainly targeting various combinations of the ORF1ab,
E, N, and RNA-dependent RNA polymerase (RdRp) genes [80–83].
Few cases of the COVID-19 reinfection have also been reported
based on re-positive PCR test [84]. Though few studies have sug-
gested short lived immunity to be a reason of reinfection [85],
while some reports suggests the involvement of false positives,
wrong sampling and medical diagnosis [86].

Although qRT-PCR has been a gold standard for the diagnostic of
COVID-19 and the detection of SARS-CoV-2, several other methods
618
have also been developed. A new molecular approach for the diag-
nosis of COVID-19 is Loop-mediated isothermal amplification
(LAMP) being emerged as a great alternative to the qRT-PCRmethod.
Amplification at a constant temperature (60 to 65 ͦC), exclusion of
fancy lab instruments, rapid test results, naked-eye visible results,
and potentially a numerically large diagnostic capacity, whilemain-
taining similar sensitivity and specificity [87] are the advantages
LAMP assay possesses thus making it more suitable than the RT-
PCR during a pandemic period. LAMP assay is relatively a newer
technique and therefore, there is less evidence on its use, but several
studies have reported the development of LAMP assays for the
detection of SARS-CoV-2 in clinical [88–91] as well as environmen-
tal samples (Farhan Ul Haque et al., unpublished). Triggering the
neutralizing antibody response to CoV infections [68] also allowed
the development of serological testing. Several serodiagnostic
methods have been developed for the rapid detection of COVID-19
[92–97], but some of thesemethods have been reported inadequate
in clinical settings due to very low sensitivity [98].
9. Treatments and vaccines

A number of drugs have been repurposed and employed (Fig. 5)
for COVID-19 treatment [99] but still, no specific and effective drug
has been approved to treat this disease. By 3rd September 2020,
321 vaccine candidates had been proposed and 33 of them were
in clinical trials [100]. Along with traditional therapeutics, mono-
clonal antibodies, [101–103] convalescent blood plasma,
[104,105] peptide-based [106] and oligonucleotide medicines,
[107] and interferon therapies (Inhaled interferon beta) [108,109]
have been used to treat COVID-19. As 80% of the COVID-19 victims
suffer from mild symptoms, they do not need any special medical
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Fig. 5. Development of repurposed drugs and vaccines against COVID-19. (1) Inhibition of RNA-dependent RNA polymerase by Favipiravir, Remdesivir and GS-441524.
Inhibition of the enzyme halts genomic replication and stops viral dissemination (2) Several drugs have been proposed against helicase but none of them is approved yet (3)
Ivermectin dissociates IMP a/b1 (importins) heterodimer, which is responsible for nuclear transport of viral protein cargos, so viral proteins cannot enter into the nucleus to
continue vital processes like replication (4) Lopinavir, Ritonavir, Darunavir and Oseltamivir inhibit Main Protease (MPro) enzyme which is involved in maturation of viral
proteins (5) Inactive and attenuated SARS-CoV-2 can be used for vaccine production (6) Use of spike protein for development of vaccine candidates by different labs and
pharma companies. (Figure created with BioRender.com).
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care. The best treatment for those people is to self-isolate them-
selves along with a healthy diet. Old-age and patients with comor-
bidities are required to be admitted to the hospital and sometimes
may need oxygen and ventilator support [9].

During the early days of the COVID-19 pandemic, synthetic
forms of quinine, chloroquine (CQ), and hydroxychloroquine
(HCQ) were proposed as medicine of choice against COVID-19. In
contrast, HCQ was previously found potent against several viral
diseases including avian influenza A H5N1, HIV-1/AIDS, hepatitis
C virus, Dengue virus, Zika virus, Ebola virus and SARS [110–
117]. These drugs have been proposed to inhibit posttranslational
modifications in ACE2 receptors in humans and interfere with
SARS-CoV-2 interactions with cells. HCQ, in combination with a
macrolide antibiotic, azithromycin, was widely proposed as
COVID-19 treatment, but the recent metanalyses show the combi-
nation of two medicines increased the mortality rate in the treated
patients [118,119]. Later, a debate was started for CQ and HCQ use
against SARS-CoV-2 as some clinical trials reported adverse events
during the treatment, including arrhythmia, heart failure and
increased death rate [120,121]. World Health Organization
(WHO) and the National Institute of Health (NIH) stopped many
trials using HCQ treatments afterwards and FDA revoked the use
of HCQ and CQ for COVID-19 treatment [122]. Moreover, the ‘‘Ran-
domised Evaluation of COVid-19 thERapY (RECOVERY)” trial con-
clusively showed that hydroxychloroquine is not an effective
treatment in patients hospitalized with COVID-19. The RECOVERY
trial was established during March 2020 as a randomized clinical
trial in the UK to test a range of potential drugs for COVID-19 cure
(https://www.recoverytrial.net/). The trial is still going on and sev-
eral drugs or treatments including Colchicine, Dexamethasone,
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Lopinavir-Ritonavir, Azithromycin, Tocilizumab, Convalescent
plasma (collected from donors who have recovered from COVID-
19 and contain antibodies against SARS-CoV-2) and Aspirin, have
been repurposed in an attempt to find an effective cure for
COVID-19 patients. Montelukast, a cysteinyl leukotriene receptor
antagonist used to treat asthmatic attacks, has been found better
than HCQ in a randomized observational study, where it not only
tames the cytokine storm in severe COVID-19 patients but also
decreases the duration of the disease (Rehman et al., unpublished).

Antiviral drugs, including Galidesivir, Favipiravir, Remdesivir,
Lopinavir/Ritonavir, Umifenovir (Arbidol), Ostalmovir have also
been foundactive against SARS-CoV-2 [123,124]. Galidesivir, Favipi-
ravir and Remdesivir are nucleoside analogues and inhibit viral
RNA-dependent RNA polymerase [123,124]. Galidesivir has been
previously used against the Ebola virus, HCV and Marburg virus
[125]. Favipiravir is an antiviral effective against the influenza virus
and in recent clinical trials, Favipiravir was found useful for COVID-
19 [126]. Remdesivir, a non-FDA-approved antiviral was previously
found active against SARS-CoV and MERS-CoV. It has also shown
promising effects against SARS-CoV-2, and the FDA has allowed
the emergency use of the drug to treat severe COVID-19 patients
on 1 May 2020. Lopinavir/Ritonavir is a protease enzyme inhibitor,
Ostalmovir is a Neuraminidase inhibitor, and Umifenovir interferes
with virus interactions with host cells [123]. All of these antivirals
have been employed in many clinical trials and found effective
against COVID-19 to some extent [127–129].

Nutraceuticals, food supplements and phytochemicals have
shown great potential to fight against many deadly viral diseases
including SARS-CoV, HIV, HBV, HCV and Dengue fever [130–132].
Several plant-derived constituents including the polyphenols, alka-
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loids, terpenoids have been studied as potential inhibitors of SARS-
CoV-2 surface protein (S protein) [133,134] and key enzymes i.e.,
proteases, helicase, and polymerase [135–137]. In silico approaches
have found more than 100 phytoconstituents including hesperidin,
rhodiolin, baicalin, glycyrrhizin, and 18, ß-Glycyrrhetinic acid to
interact with SARS-CoV-2 enzymes/proteins with high binding
affinity [137,138] (Rehman et al., unpublished) where as these
phytochemical have already been experimentally found active
against many viral enzymes [139–141]. Some traditional Chinese
medicines (TCM) and phytoextracts are also being used in clinical
trials against SARS-CoV-2 [142,143].

A number of monoclonal antibodies act against inflammatory
cytokines. Tocilizumab, a recombinant humanisedmonoclonal anti-
body (Anti IL-6), is conventionally used to treat rheumatoid arthritis
and has shown promising effects in taming the cytokine storm in
severe COVID-19 patients [79,144]. Sarilumab is another antagonist
to the IL-6 receptor that is undergoing phase 2/3 trials for the treat-
ment of COVID-19 [145]. Camostat mesylate is usually used for the
treatment of pancreatitis, is approved to be effective against SARS-
CoV-2 by preventing its entry into the host cell [146]. For the treat-
ment of COVID-19, a, and b- interferon therapywas found very use-
ful, especially when used in combination with other drugs like
lopinavir or ribavirin. But like the number of other factors, delay in
treatment reduces the effectiveness of interferon [147]. The use of
interferons is not recommended for the treatment of COVID-19.
Treatment of severe COVID-19 patients using convalescent plasma
or immunoglobulins from the recovered patients has also been
found successful against SARS-CoV-2 [148,149]. Corticosteroids
can help in alleviating lung inflammation, but their uses may lead
to other complications like hyperglycemia, avascular necrosis, and
psychosis [150]. The use of dexamethasone has been found safer
to lower down the mortality rate in COVID-19 patients [151].

According to WHO, till the end of November 2020, almost a year
into this on-going pandemic, there was no FDA-approved vaccine
available against COVID-19. Considering the severity of the current
public health emergency worldwide, FDA has issued an emergency
use authorization for two vaccines: mRNA-1273 vaccine from
Moderna and BNT162b2 from Pfizer – BioNtech. Apart from these
two vaccines, currently 172 countries are working on the develop-
ment of an efficient and safe vaccine [152]. S protein of SARS-CoV-
2 has been targeted for the development of the majority of vacci-
nes [153,154]. Microneedle array delivered recombinant CoV vac-
cine, PittCoVacc, has been proposed to develop immunity in mice
against the CoV within just two weeks of microneedle pricks
[155]. Lab mice produced specific antibodies in amounts sufficient
to neutralize the virus. The vaccine was delivered via a fingertip-
sized patch of 400 tiny needles, which are designed to provide
the S protein pieces directly into the skin, where the immune sys-
tem is strongest. Bacillus Calmette-Guerin (BCG) is also another
potential candidate to fight against COVID-19 that offers a boarder
protection against various respiratory infections [156]. Countries
that have a late start of universal BCG vaccine policy also had a
high mortality rate, supporting the idea that BCG protects the vac-
cinated population from SARS-CoV-2 [156,157].

Inovio, a Pennsylvania-based biotech company, is using DNA
instead of RNA for making the candidate vaccine (INO-4800)
against the COVID-19 [158]. Zydus Cadlia, an India-based pharma-
ceutical company, is using two approaches for the development of
the COVID-19 vaccine [18]. First, is the use of DNA to produce CoV
protein in the human body and second deals with the genetically
manipulating an attenuated measles virus to boost the immune
response against COVID-19. Novavax, a Maryland-based company,
announced that they had generated a candidate vaccine using
recombinant proteins nanoparticles derived from the S proteins
of SARS-CoV-2 in February [159]. Altimmune is developing a can-
didate vaccine that gets sprayed into patient’s noses instead of
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injecting them into their arms [160]. Vaxart is developing an oral
vaccine against COVID-19, whereas another company, Expression,
is using insect cells from fruit fly to produce viral antigens [161].
Many other pharmaceutical companies are using different
approaches to develop candidate vaccines, but Codagenix is the
only company to attenuate a live SARS-CoV-2 virus to develop a
vaccine [162]. They are using the deoptimization approach to
manipulate the virus in such a way that it may replicate inside
both without causing any disease. COVAX (COVID-19 Vaccines Glo-
bal Access) COVAX has the largest vaccine portfolio for the COVID-
19 [163]. They have nine candidate vaccines and nine more vacci-
nes under consideration. COVAX is co-led by CEPI (The Coalition for
Epidemic Preparedness Innovations), ACT (Access to COVID-19
Tools), WHO, the vaccine Alliance and Gavi. One vaccine is
approved by the Ministry of Health of the Russian Federation on
11 August. The name of the vaccine is Sputnik-V, previously known
as COVID-Vac [164]. The Gamaleya Research institute developed
this vaccine in Moscow. Medicago is going to develop a vaccine
that is a SARS-CoV-2 like particle. They proposed that this virus-
like particle would force the immune system of humans to produce
antibodies against SARS-CoV-2. Overall, without approved and
specific anti-SARS-CoV-2 drugs and vaccines, it is very difficult to
treat the patients with severe COVID-19, so currently, the main
focus during the treatment of COVID-19 patients is to maintain
the functions of patients’ organs.

Nano-formulations of the proposed therapeutics and vaccines
can target the effected cells through inhalation or intravenous
injection in a way with better efficiency and efficacy [165].
Nano-antibodies (nanobodies) have been developed to treat
COVID-19 patients. Nanodrugs based on Silver (Ag), gold (Au)
and zinc (Zn) nanoparticles and nanoparticle bases drug delivery
systems have been found effective against many viral infections
like HIV, HSV, HCV, monkey pox virus and zika virus [166]. Cur-
rently under clinical trial nanobodies includes BGB-DXP592 (US
clinical trial # NCT04551898), LY3819252 (US clinical trial
#NCT04497987), REGN10933/REGN10987 monoclonal antibodies
(US clinical trial # NCT04426695) and antibody fragments (INO-
SARS) (US clinical trial # NCT04514302). Dexamethasone, which

has been recommended to treat COVID-19 patients (https://

www.recoverytrial.net/results), nano-formulations have been pro-
posed to be more effective [167]. In addition to the two approved
vaccines i.e. mRNA-1273 from Moderna and BNT162b2 from Pfizer
– BioNtech, many other vaccines under clinical trials have been
lipid nanoparticle–formulated (Fig. 5) [168].

While scientists around the world are working on the develop-
ment of effective therapeutics and vaccines against COVID-19. Fur-
ther research studies are needed to understand the SARS-CoV-2
infections in humans and the zoonotic transmission of CoVs through
clinical manifestations and study these viruses in detail. On the
otherhand, thepandemic’s catastrophic economic impact is pushing
governments to reopen their economies, and this creates a public
healthquandary. Currently, the option is tominimize viral transmis-
sion through social distancing and efficient public health policy.
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