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Host transcriptomic profiling of COVID-19 patients with mild, moderate,
and severe clinical outcomes
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Characterizing key molecular and cellular pathways involved in COVID-19 is essential for disease prog-
nosis and management. We perform shotgun transcriptome sequencing of human RNA obtained from
nasopharyngeal swabs of patients with COVID-19, and identify a molecular signature associated with dis-
ease severity. Specifically, we identify globally dysregulated immune related pathways, such as cytokine-
cytokine receptor signaling, complement and coagulation cascades, JAK-STAT, and TGF- b signaling path-
ways in all, though to a higher extent in patients with severe symptoms. The excessive release of cytoki-
nes and chemokines such as CCL2, CCL22, CXCL9 and CXCL12 and certain interferons and interleukins
related genes like IFIH1, IFI44, IFIT1 and IL10 were significantly higher in patients with severe clinical pre-
sentation compared to mild and moderate presentations. Differential gene expression analysis identified
a small set of regulatory genes that might act as strong predictors of patient outcome. Our data suggest
that rapid transcriptome analysis of nasopharyngeal swabs can be a powerful approach to quantify host
molecular response and may provide valuable insights into COVID-19 pathophysiology.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the first case reported in December 2019 in Wuhan, SARS-
CoV-2 has spread very quickly across 188 different countries lead-
ing to over 31,887,485 COVID-19 cases and 976,789 associated
deaths worldwide as of 24th September 2020 [1]. The common
signs and symptoms of SARS-CoV-2 include fever, muscle pain,
cough, fatigue, shortness of breath, and chest CT abnormalities
[2,3]. Some patients with COVID-19 quickly develop severe pul-
monary symptoms including acute respiratory distress syndrome
(ARDS), pulmonary edema, intense kidney injury and multiple
organ failure [4] whereas other patients present with no symptoms
or with only mild disease [5]. The development of ARDS and epi-
sodes of thromboembolism leads to disseminated intravascular
coagulation (DIC) representing primary causes of lethality during
COVID-19 infection [6]. Patients with severe progression of
COVID-19 also show signs of hyperinflammatory syndrome i.e. sec-
ondary haemophagocytic lymphohistiocytosis (HLH), a potentially
fatal cytokine storm with multiorgan failure [7]. Similarly lym-
phopenia, increased serum ferritin, D-dimer, C-reactive protein
(CRP), and lactic-dehydrogenase (LDH), levels are also considered
to be the predictors of poor outcome of COVID infection [8]. Patho-
gen load and prevalence of infections are higher in males than
females demonstrating that sex physiology plays a role in infec-
tious disease pathogenesis [9]. Meng and colleagues [10] showed
that men who died of COVID-19 had elevated levels of systemic
inflammatory markers such as neutrophil-to-lymphocyte ratio
and C-reactive protein. Nevertheless, the mechanism behind
increased mortality among older adults and males with COVID-
19 remains speculative.

Despite the worldwide spreading, the host immune response
against SARS-CoV-2 infection remains poorly characterized.
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Dysregulation of host immune response and activation of inflam-
matory cytokines, known as the ‘‘cytokine storm”, is associated
with disease severity and poor prognosis [11–13]. A recent host
transcriptome study on patients with COVID-19 revealed distinct
host inflammatory cytokine profiles and highlighted the associa-
tion between SARS-CoV-2 pathogenesis and excessive release of
cytokine such as CCL2/MCP-1, CXCL10/IP-10, CCL3/MIP-1A, and
CCL4/MIP1B [14]. Additionally, Lieberman et al. showed upregula-
tion of antiviral factors such as OAS1-3 and IFIT1-3, and Th1
chemokines CXCL9/10/11 upon SARS-CoV2 induced antiviral
response. This study also showed immune responses may underlie
disparities between males and females, and among the elderly
compared to younger age groups [15].

At present, it is not known if the host gene expression profile
varies among patients with mild, moderate, or severe clinical out-
comes. Identification of such transcriptomic differences can be use-
ful for predicting COVID-19 outcomes and for better management
and earlier interventions especially for patient groups with severe
outcomes. In this study, we performed RNA sequencing on
nasopharyngeal tissue of patients with mild, moderate, and severe
disease to characterize transcriptomic regulation and immune
response differences among these patients, and to identify markers
for early identification of patients with possible severe disease
outcomes.
2. Methods

2.1. Patient cohort and ethics statement

This study was approved by the Dubai Scientific Research Ethics
Committee - Dubai Health Authority (approval number #DSREC-
04/2020_02). The Ethics committee waived the requirement for
informed consent since this study was part of a public health
surveillance and outbreak investigation in the UAE. The electronic
medical records of patients with laboratory confirmed SARS-CoV-2
were reviewed and important clinical data were extracted using
the World Health Organization (WHO) case report form.

Our patient cohort consisted of fifty patients with COVID-19
(36% female) who tested positive for SARS-CoV-2 by RT-qPCR with
a mean age of 40.9 years (ranging from 3 to 70 years) at diagnosis.
Cases were categorized into mild, moderate, and severe as previ-
ously described [16]. Briefly, mild cases were asymptomatic or
had mild non-life-threatening symptoms, while moderate cases
presented with symptoms (such as persistent fever) requiring
medical attention and/or hospitalization. Severe cases presented
with advanced disease and pneumonia requiring admission to
intensive care units and life-support treatment (such as mechani-
cal ventilation). In total, 37 patients (21 males and 16 females;
mean age 36.4 years) had mild disease, 10 patients (9 males and
1 female; mean age 49.3 years) had moderate presentations, while
3 patients (2 males and 1 female; mean age 68.0 years) had sev-
ere/critical disease. All patients were non-smokers. All 3 patients
with severe disease had chronic health issues (hypertension,
chronic kidney disease and/or diabetes mellitus) (Table 1).
2.2. Sample preparation, RNA isolation, library construction and
sequencing

RNA was extracted from nasopharyngeal swabs using the
QIAamp Viral RNA Mini or the 213 EZ1 DSP Virus Kits (Qiagen, Hil-
den, Germany). All patients in this study tested positive for SARS-
CoV-2 by RT-qPCR performed at Dubai Health Authority Hospitals.
RNA libraries were then prepared for shotgun transcriptome
sequencing using the TruSeq Stranded Total RNA Library kit from
Illumina (San Diego, CA, USA) as previously described [17,18].
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Libraries were then sequenced using the NovaSeq SP Reagent kit
(2 X 150 cycles) from Illumina (San Diego, CA, USA) to generate a
minimum of 15 M reads per sample (Supplementary Table 1).

2.3. Data analysis

The sequencing read quality was checked using FastQC v0.11.8
[19] and MultiQC v1.6 [20]. High quality reads (Q � 30) were first
mapped to rRNA sequences to remove potential rRNA reads using
hisat v2-2.1.0 [21] with the default parameter. The remaining
reads were then mapped to the GRCh37 (hg19). The unmapped
reads were then mapped to the SARS-CoV-2 genome (GenBank
Accession number: NC_045512.2) using BWA v0.7.17. PCR dupli-
cates were removed with Picard MarkDuplicates program
v2.18.17 [22]. Samples with more than 6 M reads aligned to the
GRCh37 (hg19) were considered for further analysis. RNA sequenc-
ing data obtained from nasopharyngeal swabs of samples con-
firmed to be COVID-19 negative by RT-qPCR, hereafter referred to
as controls (n = 32), were downloaded from GSE152075 [15].

The number of reads mapped to each gene in the genome
(GRCh37) was calculated using the FeatureCounts program in the
SubReads package v2.0.1 [23]. DESeq2 package v1.28.1 [24] was
applied to perform batch effects and normalization. In brief,
DESeq2 uses the median of ratios method to normalize data and
estimate size factors (which control for differences in the library
size of the sequencing experiment). We have also incorporated
multi-factor design to control additional variation arising due to
different library sizes. Distribution of Control and our cohorts
was plotted using Counts per million (CPM) (Supplementary
Fig. 1). CPM values are calculated by normalizing the read counts
for a given gene by the total counts per sample. Further, gene
expression change was calculated with respect to control for each
groups using Wald test and p-values and log2 fold change was
extracted. The resulting genes p-value was adjusted using the Ben-
jamini and Hochberg method. These adjusted p-value (adj p-value)
are calculated as: gene p-value � (m/i)) where m is the total num-
ber of genes, i is the gene p-value rank. Here we have considered a
fraction of 5% false positives acceptable hence the genes with adj p-
value < 0.05 were called as significant.

Pathway enrichment analysis was performed using the clus-
terProfiler package v 3.16.0 [25] to identify shared pathways
among DEGs. Pathways with adj p-value < 0.05 were reported as
significant. Heatmaps were generated using Morpheus [26] and
volcano plots were generated using VolcaNoseR package [27].
CPM values were used to compare expression between certain
genes and violin plots were generated using GraphPad Prism v8.0
[28]. Two tailed Mann–Whitney U test P-values are reported. A
schematic illustration of data analysis is represented in Fig. 1.

2.4. Data availability

The processed data from this study have been deposited in the
Gene Expression Omnibus (GEO), under the accession number:
GSE162835.
3. Results

3.1. Global transcriptomic changes in patients with COVID-19

To understand the host mechanisms of SARS-CoV-2 infections,
we explored transcriptomic profiling of patients with COVID-19
using RNA extracted from nasopharyngeal samples (see Methods).
We first mapped high quality reads to the human genome and the
SARS-CoV-2 genome (GenBank accession number: NC_045512.2)
and summarized sequencing statistics in Supplementary Table 1.



Table 1
Clinical characteristics of COVID-19 patients in this study.

Characteristic All patients (N = 50) Stratified by disease severity

Asymptomatic/mild (N = 37) Moderate (N = 10) Severe/critical (N = 3)

Age Mean (SD), yr 40.92 (16.03) 36.4 (14.04) 49.28 (14.35) 68 (3.56)
Female Sex – No./total no. (%) 18/50 (36%) 16/37 (43.24%) 1/10 (10%) 1/3 (33.33%)
Body Mass (kg) – Mean (SD) 66.2 (30.84) 63.4 (28.65) 73.07 (41.83) 77.93 (8.29)
Current Smoker – no./total no. (%) 0/50 (0%) 0/37 (0%) 0/10 (0%) 0/3 (0%)

Coexisting Disorder - no./total no. (%)
Chronic Cardiac Disease (not Hypertension) 3/50 (6%) 1/37 (2.7%) 2/10 (20%) 0/3 (0%)
Hypertension 9/50 (18%) 5/37 (13.51%) 3/10 (30%) 1/3 (33.33%)
Chronic Pulmonary Disease 0/50 (0%) 0/37 (0%) 0/10 (0%) 0/3 (0%)
Asthma 0/50 (0%) 0/37 (0%) 0/10 (0%) 0/3 (0%)
Chronic kidney disease 1/50 (2%) 0/37 (0%) 0/10 (0%) 1/3 (33.33%)
Chronic liver disease 0/50 (0%) 0/37 (0%) 0/10 (0%) 0/3 (0%)
Chronic Neurological Disorder 0/50 (0%) 0/37 (0%) 0/10 (0%) 0/3 (0%)
Diabetes Mellitus 8/50 (16%) 3/37 (8.1%) 3/10 (30%) 2/3 (66.66%)
Malignant Neoplasms 0/50 (0%) 0/37 (0%) 0/10 (0%) 0/3 (0%)

Fig. 1. Schematic workflow for Transcriptomic analysis. Sequencing data underwent pre-processing which includes primary QC and read mapping, followed by differentially
expressed genes (DEG) analysis and downstream pathway enrichment analysis and visualization.
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On average, ~2% (ranging from 0.1% to 13.6%) of the reads mapped
to the SARS-CoV-2 genome confirming the presence of the virus,
albeit coverage over the viral genome varied across patients most
likely due to differences in viral loads. On the other hand, ~65%
(ranges from 24.3% to 91.0%) of the RNA reads mapped to the
human genome, enabling host transcriptomic analysis.

To detect global signature genes in patients with COVID-19 we
combined transcriptomic data from patients with mild, moderate,
and severe disease and made a comprehensive cohort called ‘‘COV-
ID” to compare against controls for DEG analysis (see Methods).
We detected 3547 upregulated genes and 410 downregulated
genes with adj p-value < 0.05 and fold-change cutoff >2 (Supple-
mentary File). Several interferon, cytokine and immune-related
genes, such as CXCL5, CXCL12, CCL2, CCL4, CXCL10, IFIH1, IFI44, IFIT1
and IL6, IL10 were upregulated, whereas metabolic pathways or
155
housekeeping genes, like RPL41, RPL17, SLC25A6, CALM1 and
TUBA1A, were downregulated (Fig. 2).

Pathway enrichment analysis of the DEGs was performed to
interrogate signaling programs induced by SARS-CoV-2. Up-
regulated genes were related to cytokine-cytokine receptor inter-
action, JAK-STAT signaling pathway, complement and coagulation
cascades and other inflammatory pathways. Whereas, several
metabolic pathways were negatively enriched, including ribo-
some and ER protein processing, which suggests a global reduc-
tion in the production of proteins related to cellular energy
production (Fig. 2). Oxidative phosphorylation pathway was
mainly downregulated in patients with mild disease. This could
be due to immune cells, such as macrophages/monocytes and
immune sentinels, triggering intracellular cascades which in turn
alter mitochondrial metabolism and impede mitochondrial



Fig. 2. Left, Dotplot visualization of enriched Pathway terms in all COVID-19 patients. The color of the dots represents adj p-value for each enriched pathway, and size
represents the percentage of genes enriched in the total gene set. Right, Volcano plot representing upregulated and downregulated genes. X-axis represents log2 fold change of
genes and Y-axis represents –log10 P-value in differentially expressed gene (DEG) analysis.

Fig. 3. Heat map and Violin plots of pathways in patients with mild, moderate or severe disease. Pathways are: a) Complement and coagulation cascades, b) Cytokine-
cytokine receptor interaction, c) JAK-STAT signaling pathway, d) TGF-beta signalling, e) Platelets activation, and f) Ribosome. Heat map depicts the log2 fold change of
differentially expressed gene (DEGs) of COVID-19 patients compared with controls. Genes included have a log2 fold change of more than 1 and a p-adjusted value of <0.05. For
every gene in a given pathway, the average counts per million (CPM) was calculated in cases with mild (n = 37), moderate (n = 10) and severe (n = 3) disease, and these CPM
values (dark dots) were plotted (Violin plots) indicating median and quartiles as well as minima and maxima bounds. *Expression of ACE2 and TMPRSS2.
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Fig. 3 (continued)
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oxidative phosphorylation for ATP production in favor of cytosolic
aerobic glycolysis [29].

3.2. Transcriptome analysis of patients with mild, moderate and severe
COVID-19

Next, we compared the transcriptomic profiles of patients with
mild, moderate, and severe disease each separately with controls
to determine if the above global signature, and the identified cyto-
kine storm, hold similarly or varies by disease severity. Overall, we
detected 2315 upregulated and 418 downregulated genes in
mildly, 3413 upregulated and 302 downregulated genes in moder-
ately, and 2691 upregulated and 215 downregulated genes in
severely ill patient samples. Most of the immune response genes
were significantly upregulated in all patient groups (Supplemen-
tary Fig. 2). Interestingly, single cell transcriptomic analysis from
bronchoalveolar fluid (BALF) of patients with severe COVID-19
(from another study) showed that dysregulated genes identified
here overlap with different cell types, including monocyte derived
alveolar macrophages (MoMs) (Supplementary Fig. 3).

Furthermore, pathway enrichment analysis showed modula-
tion, to varying extents (Fig. 3), of several overlapping pathways
among mildly, moderately, and severely affected patients (Supple-
mentary Fig. 2). In addition to upregulation of immune-related
response genes, there was consistent disruption of the ribosome
pathway. The SARS-CoV-2 receptor ACE2 is an interferon-
157
regulated receptor and is upregulated in response to SARS-CoV-2
infection [30]. We also found that ACE2 expression was highest
in patients with severe disease compared to patients with mild
and moderate disease (Fig. 3).

3.3. Comparison of functional enrichment among patients with mild,
moderate, and severe COVID-19

To further delineate the differences among these groups, we
compared the expression levels of genes and associated pathways
(complement and coagulation cascades, cytokine-cytokine recep-
tor interaction, JAK STAT signaling, TGF beta signaling pathway,
platelets activation and ribosome pathway) between patients with
mild, moderate, and severe disease. Gene expression in most regu-
lated pathways was significantly higher (adj p-value < 0.05) in
patients with severe disease compared to those with mild or mod-
erate disease (Fig. 3). For example, expression of certain inter-
leukins (such as IL11, IL12, IL19, IL34), interleukin receptors (like
IL10RA, IL21R and IL11RA), chemokines and tumour necrosis factor
genes (such as CXCL12, CXCL9, CCL25, CCL2, CCR5, CCR7, TNFSF9,
TNFSF15, TNFRSF25 and TNFRSF9) were significantly higher in
patients with severe disease compared to patients with mild or
moderate disease (adj p-value < 0.05; Fig. 3). Furthermore, comple-
ment and coagulation cascades (e.g. C2, C5, C6, F12 and F8) were
activated to a higher extent in patients with severe disease. Finally,
patients with severe disease had higher expression of STAT4,



Fig. 4. Scatter plot of fold change gene expression differences between patients
with mild/moderate and severe outcomes. Fold change of mild/moderate was
averaged and subtracted from severe fold change when compared to controls.
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STAT5A and STAT5B which are important components of JAK-STAT
pathway and play a critical role in the fate of T helper cells [31].

The highest fold change (>2) in patients with severe disease was
among the pro-inflammatory cytokines and chemokine receptors
CCR1 (CXCL8/CXCL6 receptor), CCR6, CCR22, CCR25, IL3RA, IL11,
IL19, and IL21RA, the TGF-b signaling genes BMP2, BMP7, PDGFA,
and TNFSF11, and the complement and coagulation cascade genes
158
C6, C7, F2, F5, SERPINC1, and SERPIND1 (Fig. 4). This distinction is
likely due to viral infection resulting in release of inflammatory
responses to a higher extent in patients with severe disease as
compared to patients with mild or moderate disease.

Finally, we compared transcriptomic changes in male and
female COVID-19 patients with mild and moderate outcomes. Sev-
eral immune related genes (CSF2, TNFSF11, TNFRSF11B, IL18R1,
IFIT1B and C4BPA) were upregulated in male patients compared
to females (Fig. 5).
4. Discussion

Transcriptomic analysis of nasopharyngeal tissues from
patients with COVID-19 reveals a robust induction of cytokine
and immune-related profiles by SARS-CoV-2 infection. Those
results were highly consistent with those from Lieberman et al.
study from which controls were used in our analysis. Our findings
are also similar to those recently observed by Butler et al. [32] in
New York (United States) and Qin et al. [33] in Wuhan (China).
The latter work reported that an increase in ‘serum’ cytokine and
chemokine levels, as well as in neutrophil–lymphocyte-ratio
(NLR) in SARS-CoV-2 infected patients is correlated with the sever-
ity of the disease and adverse outcomes, suggesting a role for
hyper-inflammatory responses in COVID-19 pathogenesis. In addi-
tion to immune-related pathways, elevated levels of complement
and coagulation cascades were also observed in our study.
Inflammation-induced coagulation pathways, which can them-
selves be regulated by the complement system, are pivotal in con-
trolling pathogenesis associated with infections and have recently
been shown to correlate with adverse outcomes [34].

Our RNA work, using nasopharyngeal tissue, corroborates and
extends those findings to show that those pathways are more sig-
nificantly altered in patients with severe disease outcomes. Specif-
ically, SARS-CoV-2 seems to induce expression of certain genes
(Fig. 4) to higher extents in patients with severe, compared to
those with mild or moderate disease. This finding has direct prog-
nostic and therapeutic implications. Identifying molecules target-
ing the pathways where those genes are involved might help
ameliorate or avoid adverse clinical outcomes due to SARS-CoV-2.
Moreover, this expression signature can be used to predict the
clinical course of disease, so that early interventions can be
implemented. However, a cautionary note should be made since
the differentially expressed genes presented in our study have been
obtained from small cohort of severe patients (n = 3). Hence the data
may be biased, due to the high degree of inter-individual variability
that characterize SARS-CoV-2 infection. In addition, since 2 out of
the 3 patients in our cohort suffered from diabetes mellitus (Table 1),
it is possible that our differential gene expression is affected by this
comorbidity. Larger datasets are needed to validate this expression
signature and to show that it can reliably predict disease outcomes
in the general population.

While preparing this manuscript, several groups published
additional data consistent with our findings regarding the elevated
cytokine expression profile in COVID-19 patients, and specifically
those with severe outcomes. Single-cell RNA sequencing (scRNA-
seq) of nasopharyngeal and bronchial samples suggested that che-
mokine and chemokine receptor expression of the different cell
populations increased markedly in the critical compared to the
moderate cases [35]. In addition, another study identified distinct
expression and cellular immunopathological patterns in the lungs
of fatal COVID-19 [36]. Cavalli et al. identified humoral immune
expression profiles in branchoalveolar lavage fluid samples from
COVID-19 patients [37].

Certain molecular pathways require specific attention. In the
majority of patients with COVID-19, respiratory failure is the pri-



Fig. 5. Heat map (top) and Violin plots (bottom) of differentially expressed genes in males and females. Heat map depicts the log2 fold change of differentially expressed gene
(DEGs) of COVID-19 patients compared with controls. Genes included have a log2 (fold change) of more than 1 and adj p-value < 0.05. Violin plots represent each gene as CPM
(counts per million) for each male of female patients. Shown are the median and 75th quartiles as well as minima and maxima bounds of CPM (counts per million) of
highlighted differentially regulated genes.
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mary cause of death and is often associated with uncontrolled
inflammatory responses, edema, and lung fibrosis [38]. In our anal-
ysis, the TGF-b pathway was significantly upregulated in patients
with severe disease suggesting they are more prone to respiratory
failure [39]. Another main manifestation of COVID-19 is arterial or
venous thrombosis, our data shows that complement and coagula-
tion factors and of inhibitors of the fibrinolytic system, in particu-
lar SERPINE1 and SERPINF2, are up-regulated. Those genes may be
responsible for the important development of thrombosis in
COVID-19 patients [40].

The PI3K/Akt and JAK/STAT signaling pathways are two other
noteworthy pathways given that several cellular and immune
responses, including host cell immune response to counteract viral
infection [41], activation of interferon-stimulated genes (ISGs)
[42], and activation of several regulatory and pro-inflammatory
cytokines [43] converge on those two pathways.

Our gender-specific transcriptomic analysis revealed a few
genes which were upregulated in male patients compared to
females (Fig. 5). It is highly likely that many other key factors,
which are involved in sex-specific responses to SARS-CoV-2, were
not detected in our study. It is possible that our cohort was not
large enough to perform appropriate comparisons on a large num-
ber of patients adequately stratified for age, sex, and disease
severity.

Taken together, our study highlights key molecular and func-
tional pathways involved in COVID-19 pathogenesis and character-
izes a specific Supplementary Figs. 1–3 expression signature
associated with severe disease outcomes due to SARS-CoV-2.
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