Skip to main content
. 2020 Oct 23;52(12):590–601. doi: 10.1152/physiolgenomics.00084.2020

Table 1.

CNN architecture details for Task 1

Name Type Activations Learnable Parameters Total Learnables
1 227×227×3 images Input image 227×227×3 - 0
2 96 7×7×3 convolutions with stride [4 4] and padding [0 0 0 0] Convolution 56×56×96 Weights: 7×7×3×96
Bias: 1×1×96
14,208
3 ReLU-1 ReLU 56×56×96 - 0
4 Cross channel normalization with 5 channels per element Cross-channel normalization 56×56×96 - 0
5 3×3 maxpooling with stride [2 2] and padding [0 0 0 0] Maxpooling 27×27×96 - 0
6 2 groups of 128 5×5×48 convolutions with stride [1 1] and padding [2 2 2 2] Grouped convolution 27×27×256 Weights: 5×5×48×128×2
Bias: 1×1×12×2
307,456
7 ReLU-2 ReLU 27×27×256 - 0
8 3×3 maxpooling with stride [2 2] and padding [0 0 0 0] Maxpooling 13×13×256 - 0
9 50% dropout Dropout 13×13×256 - 0
10 2 fully connected layer Fully connected 1×1×2 Weights: 2×43,264
Bias: 2×1
86,530
11 Softmax Softmax 1×1×2 - 0
12 Crossentropyex with classes
COVID-19(+) and COVID-19(−)
classification output - - 0