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ABSTRACT: The fundamental goal of generative drug design is to propose optimized molecules that meet predefined activity,
selectivity, and pharmacokinetic criteria. Despite recent progress, we argue that existing generative methods are limited in their
ability to favorably shift the distributions of molecular properties during optimization. We instead propose a novel Reinforcement
Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically accessible
drug-like molecules. This becomes possible by defining transitions in our Markov decision process as chemical reactions and allows
us to leverage synthetic routes as an inductive bias. We validate our method by demonstrating that it outperforms existing state-of-
the-art approaches in the optimization of pharmacologically relevant objectives, while results on multi-objective optimization tasks
suggest increased scalability to realistic pharmaceutical design problems.

1. INTRODUCTION

Following advances in generative modeling for domains such as
computer vision and natural language processing, there has been
increased interest in applying generative methods to drug
discovery. However, such approaches often fail to address
numerous technical challenges inherent to molecular design,
including accurate molecular reconstruction, efficient explora-
tion of chemical space, and synthetic tractability of generated
molecules. Further, these approaches bias the generation of
molecules toward the data distribution over which they were
trained, restricting their ability to discover truly novel
compounds. Previous work1,2 has attempted to address these
issues by framing molecular design as a Reinforcement Learning
(RL) problem3 in which an agent learns a mapping from a given
molecular state to atoms that can be added to the molecule in a
stepwise manner. These approaches generally ensure the validity
of the generated compounds and avoid the need to learn a latent
space mapping from the data. However, they do not address the
issue of synthetic tractability, and the proposed atom-by-atom
environment transitions prevent rapid exploration of chemical
space.
We instead approach the problem in a way that incorporates a

favorable bias into the Markov decision process. Specifically, we

define the environment’s state transitions as sequences of
chemical reactions, allowing us to address the common issue of
synthetic accessibility. While ensuring synthesizability of
computationally generated ligands is challenging, our framework
treats synthesizability as a feature rather than as a constraint. Our
approach, deemed REACTOR (Reaction-driven Objective
Reinforcement), thus addresses a common limitation of existing
methods whereby the synthetic routes for generated molecules
are unknown and require challenging retrosynthetic planning.
Importantly, the REACTOR framework is able to efficiently
explore synthetically accessible chemical space in a goal-directed
manner, while also providing a theoretically valid synthetic route
for each generated compound.
We benchmark our approach against previous methods,

focusing on the task of identifying novel ligands for the D2
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dopamine receptor, a G protein-coupled receptor involved in a
wide range of neuropsychiatric and neurodegenerative disor-
ders.4 In doing so, we find that our approach outperforms
previous state-of-the-art methods, is robust to the addition of
multiple optimization criteria, and produces synthetically
accessible, drug-like molecules by design.

2. RELATED WORK

Computational drug design has traditionally relied on domain
knowledge and heuristic algorithms. Recently, however, several
machine learning-based generative approaches have also been
proposed. Many of these methods, such as ORGAN,5 take
advantage of the SMILES representation using recurrent neural
networks (RNNs) but have difficulties generating syntactically
valid SMILES. Graph-based approaches6−8 have also been
proposed and generally result in improved chemical validity.
These methods learn a mapping from molecular graphs to a
high-dimensional latent space from which molecules can be
sampled and optimized. In contrast, pure Reinforcement
Learning algorithms such as1,2 treat molecular generation as a
Markov decision process in whichmolecules are assembled from
basic building blocks such as atoms and fragments. However, a
core limitation of existing methods is the forward-synthetic
feasibility of proposed designs. To overcome these limitations,
Button et al.9 proposed a hybrid rule-based and machine
learning approach in which molecules are assembled from
fragments under synthetic accessibility constraints in an iterative
single-step process. However, this approach is limited in terms of
the flexibility of its optimization objectives as it only allows for
generation of molecules similar to a given template ligand.
In order to have practical value, methods for computational

drug design must also make appropriate tradeoffs between
molecular generation, which focuses on the construction of
novel and valid molecules, and molecular optimization, which
focuses on the properties of the generated compounds. While
prior work has attempted to address these challenges
simultaneously, this can lead to sub-optimal results by favoring
either the generation or optimization tasks. Generative models
generally do not scale well to complex property optimization
problems as they attempt to bias the generation process toward a
given objective within the latent space while simultaneously
optimizing over the reconstruction loss. These objectives are
often conflicting, making goal-directed optimization difficult
and hard to scale whenmultiple reward signals are required. This
is generally the case in drug design where drug candidates must
show activity against a given target as well as favorable selectivity,
toxicity, and pharmacokinetic properties.
In contrast, atom-based Reinforcement Learning addresses

the generative problem via combinatorial enumeration of
molecular states2 or a posteriori verification of molecules.1

These solutions are often slow and create a bottleneck in the
environment’s state transitions that limits effective optimization.

3. METHODOLOGY

In this work, we decompose generation and optimization by
delegating each problem to a distinct component of our
computational framework. Specifically, we allow an environ-
ment module to handle the generative process using known
chemistry as a starting point for its design, while an agent learns
to effectively optimize compounds through interactions with
this environment. By disambiguating the responsibilities of each
component and formalizing the problem as Markov decision

processes (MDPs), we allow the modules to work symbiotically,
exploring the chemical space both more efficiently and more
effectively.
We begin with a short overview of Markov decision processes

and actor-critic methods for Reinforcement Learning before
defining our framework in detail.

3.1. Background. 3.1.1. Markov Decision Processes. A
Markov decision process (MDP)10 is a powerful computational
framework for sequential decision-making problems. AnMDP is
defined via the tuple( , , , )where defines the possible
states, denotes the possible actions that may be taken at any
given time, denotes the reward distribution of the environ-
ment, and defines the dynamics of the environment.
Interactions within this framework give rise to trajectories of
the form (s0, a0, r1, s1, a1, ... rT, sT) with T being the terminal time
step. Crucially, an MDP assumes that

| = |+ + + +p s r a s r a s p s r a s( , , , , ..., , ) ( , , )t t t t t t t t t1 1 0 0 1 1 (1)

where t denotes discrete time steps.
This definition states that all prior history of a decision

trajectory can be encapsulated within the preceding state,
allowing an agent operating within an MDP to make decisions
based solely on the current state of the environment. This
assumption provides the basis for efficient learning and holds
under our proposed framework. An agent’s mapping from any
given state to action probabilities is termed a policy, and the
probability of an action ∈a at state s is denoted π(a | s).

3.1.2. Policy Optimization. The underlying objective of a
Reinforcement Learning agent operating in an MDP is to
optimize its policy to maximize the expected return from the
environment until termination at time T, defined for any step t
by
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where γ is a discount factor determining the value of future
rewards and the expectation is taken over the experience
induced by the policy’s distribution. Several approaches exist for
learning a policy that maximizes this quantity. In value-based
approaches, Q values of the form →Q X R: are trained to
estimate the scalar value of action−value pairs as estimates of the
expected return. A policy is then derived from these values
through strategies such as ϵ-greedy control.3 Alternatively,
policy-based approaches attempt to parameterize the agent’s
behavior directly, for example, through a neural network, to
produce πθ(a | s). While our framework is agnostic to the specific
algorithm used for learning, we choose to validate our approach
with an actor-critic architecture.11 This approach combines the
benefits of learning a policy directly using a policy network πθ
with a variance-reducing value network vθ′. Specifically, we use a
synchronous version of A3C,12 which is amenable to high
parallelization and further gains in training efficiency. The
advantage actor-critic (A2C) objective function at time t is given
by

∑θ θ π γ

β π
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Intuitively, maximization of eq 4’s first term involves adjusting
the policy parameters to align the high probability of an action
with a high expected return, while the second term serves as an
entropy regularizer preventing the policy from converging too
quickly to sub-optimal deterministic policies.
3.2.Molecular Design via Synthesis Trajectories.A core

insight of our framework is that we can embed knowledge about
the dynamics of chemical transitions into a Reinforcement
Learning system for guided exploration. In doing so, we induce a
bias over the optimization task, which, given its close
correspondence with natural molecular transitions, should
increase learning efficiency while leading to better performance
across a larger, pharmacologically relevant chemical subspace.
We propose embedding this bias into the transition model of

an MDP by defining possible transitions as true chemical
reactions. In doing so, we gain the additional benefit of built-in
synthetic accessibility in addition to immediate access to a
synthesis route for generated compounds. Lack of synthesiz-
ability is a known constraint of prior generative approaches in
molecular design.13 The REACTOR approach addresses this
constraint by embedding synthesizability directly into the
framework, leveraging synthetic routes as an inductive bias.
This is demonstrated in Figure 1 where a sample trajectory is
provided by REACTOR for a DRD2-optimized molecule, while
a high-level overview of our framework is presented in Figure 2.
3.2.1. Framework Definition.We define each component of

our MDP as follows.
3.2.1.1. State Space . We allow for any valid molecule to

comprise a state in our MDP. Practically, the state space is
defined as {f(m) | m ∈ } with f being a feature extraction
function and being the space of molecules reachable given a
set of chemical reactions, initialization molecules, and available
reactants. We use Morgan fingerprints16 with bit-length 2048
and a radius of 2 to extract feature vectors frommolecules. These

representations have been shown to provide robust and efficient
featurizations, while more computationally intensive approaches
like graph neural networks are yet to demonstrate significant
representational benefits.17,18

3.2.1.2. Action Space . In its general formulation, the
action space of our framework is defined hierarchically, enabling
the potential application of novel approaches for hierarchical
reinforcement learning. Specifically, we define a set of higher-
level actions o as a curated list of chemical reaction templates,
taking the form

= + + + →R r r r p p... ( , ..., )k m1 2 1 (5)

Each ri corresponds to a reactant, while each pj is a product of
this reaction.Wemake use of the SMARTS syntax19 to represent
these objects as regular expressions. We append to the high-level
actions a terminal action, allowing the agent to learn to terminate
an episode when the current state is deemed optimal for the
objective. At step t, the state st thus corresponds to a single
reactant in any given reaction. It is necessary to select which
molecular blocks should fill in the remaining pieces for a given
state and reaction selection. This gives rise to a set of primitive
actions, i, corresponding to a list of reactants derived from the
reaction templates, which we also refer to as chemical building
blocks. In contrast with previous methods,1,2 which establish a
deterministic start state such as an empty molecule or carbon
atom, we initialize our environment with a randomly sampled
building block that matches at minimum one reaction template.
This ensures that a trajectory can take place and encourages the
learned policies to be generalizable across different regions in the
chemical space.
For our experiments, we work with two-reactant reaction

templates and select missing reactants based on those that will
most improve the next state’s reward. We also select the
chemical product in this manner when more than one product is

Figure 1. A trajectory taken by the REACTOR agent during the optimization of affinity for the dopamine receptor D2.This trajectory provides a high-
level overview of a possible synthesis route for the proposed molecule in three steps: (1) a Mitsunobu reaction, (2) a reductive amination, and (3) a
Buchwald−Hartwig amination. We note that, although the proposed route is theoretically feasible, it would not be the first choice for synthesis and can
easily be optimized. Nevertheless, it remains an important indication of synthesizability. We also note here that the agent learns a policy that produces
structures containing a pyrrolidine/piperidine moiety, which have been shown as actives against dopamine receptors.14,15
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generated. Doing so collapses our hierarchical formulation into a
standardMDP formulation with the reaction selection being the

only decision point. Additionally, it is likely that, for any step t,
the set of possible reactions is smaller than the full action space.

Figure 2. Overview of the REACTOR framework. Each episode is initialized with a molecular building block. At each step, the current state is
converted to its fingerprint representation and the policymodel selects a reaction to be performed. A reactant selection heuristic completes the reaction
to generate the next state in the episode, while a reward of 0 is returned. Instead, if the terminal action is selected, the current state is considered as the
final molecule and its reward is used to update the policy’s parameters.

Table 1. Goal-Directed Molecule Design

objective method total actives mean activity diversity scaff. similarity uniqueness

DRD2 BLOCKS 3 ± 0 0.03 ± 0 0.94 ± 0 N/Aa 1.0 ± 0.0
hill climbing 43.0 ± 2.94 0.43 ± 0.03 0.878 ± 0.01 0.124 ± 0.0 1.0 ± 0.0
ORGAN 5.333 ± 0.47 0.093 ± 0.01 0.86 ± 0.01 0.577 ± 0.11 0.873 ± 0.01
JTVAE 4.0 ± 0.82 0.014 ± 0.0 0.934 ± 0.0 0.097 ± 0.0 0.976 ± 0.01
GCPN 0.0 ± 0.0 0.0 ± 0.0 0.906 ± 0.0 0.12 ± 0.0 1.0 ± 0.0
MolDQN 9.667 ± 0.47 0.816 ± 0.08 0.6 ± 0.02 N/A 0.12 ± 0.02
REACTOR 77.0 ± 4.32 0.77 ± 0.04 0.702 ± 0.02 0.133 ± 0.01 1.0 ± 0.0

aComputation of the scaffold similarity requires the presence of a ring system, thus the N/A.
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In order to increase both the scalability of our framework (by
allowing for larger reaction lists) and the speed of training, we
use amask over unfeasible reactions. This avoids the need for the
agent to learn the chemistry of reaction feasibility and reduces
the effective dimension of the action space at each step. We
compare policy convergence when using a masked action space
to a regular action space formulation in Figure S1. The policy
then takes the form π(at | st, M(st, R)) with M being the
environment’s masking function and R being the list of reaction
templates.
3.2.1.3. Reward Distribution .Appropriate reward design is

crucial given that it drives the policy optimization process. In
graph convolutional policy networks,1 intermediate and
adversarial rewards are introduced in order to enforce drug-
likeness and validity of generated compounds. In MolDQN,2

these requirements are ignored, and while optimization
performance increases, desirable pharmaceutical properties are
often lost. In the REACTOR framework, the separation between
the agent and the environment allows us to maintain property-
focused rewards that guide optimization while ensuring that
chemical constraints are met via environment design.
We use a deterministic reward function based on the property

to be optimized. In Table 1, this corresponds to the binary
prediction of compounds binding to the D2 dopamine receptor
(DRD2). In Table S1, these are the penalized calculated
octanol−water partition coefficient (cLogP) and quantitative
estimate of drug-likeness (QED).20 In order to avoid artificially
biasing our agent toward greedy policies, we remove
intermediate rewards and provide evaluative feedback only at
the termination of an episode. While we feel that this is a more
principled view on the design process, Zhou et al.2 have also
suggested that, using an intermediate reward discounted by a
decreasing function of the step t may improve the learning
efficiency. We further apply a constraint based on the atom
count of a molecule to be consistent with prior work. When
molecules exceed the maximum number of atoms (38), the
agent observes a reward of zero.
3.2.1.4. Transition Model . In the template-based

REACTOR framework, state transitions are deterministic. We
therefore have p(st + 1 | st, at) = 1 according to our choice of
reaction and the subsequent reactant−product selection. When
modifying the reactant−selection policy, either via a stochastic
heuristic such as an epsilon-greedy reactant selection or learned
hierarchical policies, state transitions over the higher-level
actions, Ao, become stochastic according to the internal policy’s
dynamics.
3.2.2. Building Block Fragmentation. In order to maximize

the exploration capacity of the REACTOR agent, it is desirable
to scale up the size of both the reaction template and reactant
lists. However, current Reinforcement Learning methodology is
poorly suited for very large discrete action spaces. In particular,
there are approximately 76,000 building blocks available for our
experiments with a wide range of possibilities matching a given
reaction template position. While certain approaches propose
learning a mapping from continuous to discrete action
spaces,21,22 we instead mitigate the dimensionality of the
reactant space directly. Indeed, we leverage the BRICS23

retrosynthesis rules to reduce our original reactant set to one
of approximately 5000 smaller blocks. This reduces the reactant
space dimension by an order of magnitude while rendering the
transitions in space less extreme and thus more flexible.
Additionally, we may limit the size of the set of reactants
under consideration at any given step, treating this as a

hyperparameter. For our experiments, we set this to 100
reactants, finding little variation when selecting reactants in a
greedy manner.

4. RESULTS AND DISCUSSION
To validate our framework, we benchmark its performance on
goal-directed design tasks, focusing primarily on predicted
activity for the D2 dopamine receptor. We frame this objective
as a sparse reward, using a binary activity indication to simulate a
hit discovery setting. In order to maintain consistency with
experiments done in prior work, we perform additional
experiments on penalized cLogP and QED with the results
presented in the Supporting Information.
In order to better understand the exploration behavior of our

approach, we also investigate the nature of the trajectories
generated by the REACTOR policies, showing that policies
retain drug-likeness across all optimization objectives, while also
exploring distinct regions of the chemical space.

4.1. Experimental Setup. 4.1.1. Reaction Data. For these
experiments, the set of reactions used was obtained from Konze
et al.24 with the final list consisting of 127 reactions following
curation for specificity and validity. The set of reactants are
drawn from PubChem§,25 totaling 76,208 building blocks
matching the reaction templates. Following the retrosynthesis
methodology introduced above, these lists were reduced to
approximately 5000 smaller reactants with 90 reaction templates
matching these blocks. This allows us to make the space of
action possibilities more tractable while rendering the
exploration of chemical space more flexible due to each
transition corresponding to smaller steps in space. Naturally,
this action space does not encompass all chemical trans-
formations, which may be of interest in a general setting.
However, it is straightforward to extend the reaction templates
and associated building blocks to tailor the search space to the
data available for a given design objective.

4.1.2. Empirical Reward Models. While generative models
are biased by their data distribution, RL-driven molecule design
may be biased implicitly by training data used for an empirical
reward model. Thus, it is crucial that these models provide
robust generalization. A model that is overly simplistic, as is seen
for the cLogp experiments, may lead to agents exploiting
particular biases, leading to pharmacologically undesirable
molecules. Training details for the DRD1, DRD2, DRD3, and
Caco-2 models are found in the Supporting Information.

4.1.3. Baselines. We compare our approach to two recent
methods in deep generative molecular modeling, JT-VAE and
ORGAN.5,8 Each of these approaches was first pre-trained for up
to 48 h on the same compute facility, a single machine with 1
NVIDIA Tesla K80 GPU and 16 CPU cores. Property
optimization was then performed using the same procedures
as described in the original papers. We also compare our method
with two state-of-the-art Reinforcement Learning approaches,
graph-convolutional policy networks and MolDQN.1,2 Each
algorithm was run using the open-sourced code from the
authors, while we enforced the same reward function
implementation across methods to ensure consistency. We ran
theGCPN using 32CPU cores for approximately 24 h (against 8
h in the original paper) and MolDQN for 20,000 episodes
(against 5000 episodes in the original paper). In addition, we
added a steepest-ascent hill-climbing baseline using the
REACTOR environment to demonstrate that for simple mostly
greedy objectives such as cLogP andQED, simple search policies
may provide reasonable performance. In contrast, learned
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traversals of space become necessary for complex tasks such as
DRD2.
4.1.4. Evaluation. Given the inherent differences between

generative and reinforcement learning models, evaluation was
adapted to remain consistent within each class of algorithms. JT-
VAE and ORGAN were evaluated based on decoded samples
from their latent space using the best results across training
checkpoints with statistics for JT-VAE computed over three
random seeds. Given the prohibitive cost of training ORGAN,

results are given over a single seed and averaged over three sets
of 100 samples. Other baselines were compared based on three
sets of 100 building blocks used as starting states. Statistics are
reported over sets, while the statistics of the initial states are
shown by BLOCKS.
We prioritize the evaluation of eachmethod based on the total

number of active molecules identified, as determined by the
environment reward model, given that this corresponds most to
the underlying objective of de novo design. Indeed, in a hit

Figure 3. Synthetic accessibility and drug-likeness score distributions of molecules optimized for DRD2 and the starting blocks.

Figure 4. (a−c) Sample molecules produced for each objective by each RL algorithm.
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discovery scenario, a user may be most interested in identifying
the maximal number of unique potential hits, leaving potency
optimization to later stages in the lead optimization process. We
denote this quantity by “total actives” in Table 1. “mean activity”
corresponds to the percentage of generated molecules that are
predicted to be active for the DRD2 receptor. In both Table 1
and Table S1, the mean reward (“mean activity”) was computed
based on the set of unique molecules generated by each
algorithm in order to avoid artificially favoring methods, which
often generate the same molecule. Diversity corresponds to the
average pairwise Tanimoto distance among generated mole-
cules, while ″scaff. similarity″ corresponds to the average
pairwise similarity between the scaffolds of the compounds, as
implemented by the MOSES repository.26 Finally, we limited
the number of atoms to 38 for all single-objective tasks, as done
in prior work,1,2,8 and 50 for the multi-objective tasks.
4.2. Goal-Directed de Novo Design. Results on the

unconstrained design task show that REACTOR identifies the
most active molecules for the DRD2 objective. Furthermore, we
observe that REACTOR maintains high diversity and unique-
ness in addition to robust performance. This a crucial
characteristic as it implies that the agent is able to optimize
the space surrounding each starting molecule without reverting
to the same molecule to optimize the scalar reward signal. In
Table S1, REACTOR also achieves a higher reward on QED,
while remaining competitive on penalized cLogP despite the
simplistic nature of this objective favoring atom-by-atom
transitions. We note that, while MolDQN exhibits higher
mean activity, this is attributed to the fact that the optimization
tends to collapse into generating the same molecule. This
explains why the total number of active molecules identified
remains low despite the mean activity suggesting good
performance on the task.
Training efficiency is an important practical consideration

while deploying methods for de novo design. Generative models
first require learning a mapping of molecules to the latent space
before training for property optimization. During our experi-
ments, this resulted in more than 48 h of training time, and after
which, training was stopped. Reinforcement Learning methods
trained faster but generally failed to converge within 24 h. We
ran MolDQN for 20,000 episodes, taking between 24 and 48 h,
while GCPN was stopped after 24 h on 32 CPU cores. In
contrast, our approach converges within approximately 2 h of
training on 40 CPU cores for the cLogP and QED objectives
while consuming less memory than GCPN for 32 cores and
terminates under 24 h for the D2-related tasks. In order to make
effective use of parallelization, we leveraged the implementation
of A2C provided by the rllib library.27

4.3. Synthetic Tractability and Desirability of Opti-
mized Compounds. Given the narrow perspective offered by
quantitative benchmarks for molecular design models,26 it is
equally important to qualitatively assess the behavior of these
models by examining generated compounds. Figure 4 provides
samples generated by each RL method across all objectives.
Since the computational estimation of cLogP relies on the
Wildman−Crippen method,28 which assigns a high atomic
contribution to halogens and phosphorous, the atom-based
action space of MolDQN produces samples that are heavily
biased toward these atoms, resulting in molecules that are well
optimized for the task but neither synthetically-accessible nor
drug-like. This generation bias was not observable in previously
reported benchmarks where atom types were only limited to
carbon, oxygen, nitrogen, sulfur, and halogens.2 Furthermore,

MolDQN samples for the DRD2 task lack a ring system, and
whereas molecules from GCPN have one, none adequately
optimizes for the objective.
In contrast, REACTOR appears to produce more pharmaco-

logically desirable compounds without explicitly considering
this as an optimization objective. This is supported by Figure 3,
which illustrates the shift in synthetic accessibility scores29 and
drug-likeness for the DRD2-active molecules produced by
REACTOR and MolDQN. This suggests that REACTOR is
able to simultaneously solve the DRD2 task while maintaining
favorable distributions for synthetic accessibility and drug-
likeness.
Further, as shown in Figures 1 and 7, optimized compounds

are provided along with a possible route of synthesis. While such
trajectories may not be optimal given that they are limited by the
reward design and the set of reaction templates available, they
provide a crucial indication of synthesizability. Further, it is
possible to encourage trajectories to bemore efficient by limiting
the number of synthesis steps per episode or by incorporating
additional costs such as reactant availability and synthesis
difficulty in the reward design. In certain applications, it may also
be desirable to increase specificity of the reaction templates via
group protection. Gao and Coley13 detail the lack of
consideration for synthetic tractability in current molecular
optimization approaches, highlighting that this is a necessary
requirement for application of these methods in drug discovery.
While alternative ideas aiming to embed synthesizability
constraints into generative models have recently been ex-
plored,9,30,31 REACTOR is the first approach that explicitly
addresses synthetic feasibility by optimizing directly in the space
of synthesizable compounds using Reinforcement Learning.

4.4. Multi-objective Optimization. Practical methods for
computational drug designmust be robust to the optimization of
multiple properties. Indeed, beyond the agonistic or antagonistic
effects of a small molecule, properties such as the selectivity,
solubility, drug-likeness, and permeability of a drug candidate
must be considered. To validate the REACTOR framework
under this setting, we consider the task of optimizing for
selective DRD2 ligands. Dopamine receptors are grouped into
two classes: D1-like receptors (DRD1 and DRD5) and D2-like
receptors (DRD2, DRD3, and DRD4). Although these
receptors are well studied, design of drugs selective across
subtypes remains a considerable challenge. In particular, as
DRD1 and DRD3 share 78% structural similarity in their
transmembrane region,4,32 it is very challenging to identify small
molecules that can selectively bind to them and modulate their
activity. We therefore assess the performance both on selectivity
across classes (using DRD1 as an off-target) and within classes
(using DRD3 as an off-target). We then analyze how our
framework performs as we increase the number of design
objectives. For these experiments, we focus our comparison on
MolDQN as it outperforms other state-of-the-art methods on
the single-objective tasks. Our approach in combining multiple
objectives is that of reward scalarization. Formally, a vector of
r ewa rd s i g n a l s i s a g g r e g a t ed v i a a mapp i n g ,

× × →R R R: ... k1 , thus collapsing the multi-objective
MDP33 into a standard MDP formulation. While the simplest
and most common approach to scalarization is to use a weighted
sum of the individual reward signals, we adopt a Chebyshev
scalarization scheme34 whereby reward signals are aggregated
via the weighted Chebyshev metric:
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= − | − *|r w r zmax ( )
i

i i i (6)

where *
÷ ◊÷÷÷
z is a utopian vector, w⃗ is assigned to the relative

preferences for each objective, and i indexes the objectives. For
our experiments, we consider rewards that are constrained to a
range between 0 and 1 such that the utopian point is always 1⃗,
rendering the dynamics of each reward signal more comparable,
and we assign equal preferences to the objectives. For the
selectivity tasks, given that both rewards are binary, we use a soft
version of this scalarization scheme corresponding the negative
Euclidean distance to the optimal point. This allows the reward
signal to differentiate between reaching 0,1 and both of the
objectives. While Chebyshev scalarization was introduced for
the setting of tabular Reinforcement Learning, we may interpret
it in the function approximation setting as defining an adaptive

curriculum whereby the optimization focus shifts dynamically

according to the objective most distant from *
÷ ◊÷÷÷
z .

4.4.1. DRD2 Selectivity. The total number of actives in Table
2 corresponds to the number of unique molecules that were
found to satisfy all objectives, while the mean reward in Table 2
and Figure 5 is computed as the proportion of evaluation
episodes for which the algorithms optimize all desired
objectives. In Table 2, we find that REACTOR maintains the
ability to identify a higher number of desirable molecules on the
selectivity tasks, optimizing for DRD2 while avoiding off-target
activity on the D1 and D3 receptors. Further, it is able to
outperform MolDQN while maintaining very low scaffold
similarity among generated molecules.

4.4.2. Robustness to Multiple Objectives. In addition to off-
target selectivity, we assess the robustness of each method’s
performance as we increase the number of pharmacologically

Table 2. DRD2 Selectivity

objective method total actives mean reward diversity scaff. similarity uniqueness

D2/D1 MolDQN 9.0 ± 1.41 0.64 ± 0.07 0.502 ± 0.01 N/A 0.14 ± 0.01
REACTOR 36.667 ± 4.99 0.368 ± 0.05 0.599 ± 0.01 0.139 ± 0.01 0.997 ± 0.0

D2/D3 MolDQN 25.667 ± 3.09 0.884 ± 0.07 0.746 ± 0.05 N/A 0.29 ± 0.02
REACTOR 53.0 ± 8.29 0.53 ± 0.08 0.692 ± 0.03 0.147 ± 0.01 1.0 ± 0.0

Figure 5. Reward progression as the number of optimization objectives increases.

Figure 6. (a, b) Trajectory steps of the REACTOR agent for each objective, starting with the same building block. The RL agent shifts the molecule
toward different regions in space to identify the relevant local maximum.
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relevant property objectives to optimize. Specifically, we
compare the following combinations of rewards:

(a) DRD2 with range-targeted cLogP (2 objectives) accord-
ing to the Ghose filter35

(b) DRD2, range cLogP, and a molecular weight ranging from
180 to 600 (3 objectives)

(c) DRD2, range cLogP, target molecular weight, and drug
absorption as indicated by a model trained on data for the
Caco-2 permeability assay36 (4 objectives)

For the range-targeted cLogP, molecular weight, and
permeability objectives, the component-wise reward is 0 when
the molecule falls within the desired range. Otherwise, the
distance to the objective is mapped to a range of (0,1]. Given
that the DRD2 objective is binary, this implicitly prioritizes the
optimization for this reward.
Figure 5 shows that REACTOR demonstrates greater

robustness to an increasing number of design objectives. Indeed,
while both methods see diminishing success rates in optimizing
for multiple objectives, the performance of REACTOR
diminishes gradually, while MolDQN’s performance collapses.
Furthermore, REACTOR maintains the ability to generate
unique terminal states throughout.
4.5. Goal-Directed Exploration. In order to gain further

insight into the nature of the trajectories generated by the
REACTOR agent, we plotted two alternative views of
optimization routes generated for the same building block
across each single-property objective. In Figure 6, we fit a
principal component analysis (PCA)37 on the space of building
blocks to identify the location of the initial state and
subsequently transform the next states generated by the RL
agent onto this space. We find that the initial molecule is clearly
shifted to distinct regions in space, while the magnitude of the
transitions suggest efficient traversal of the space. This provides
further evidence that exploration through space is a function of

reward design and is mostly unbiased by the data distribution of
initialization states. Figure 7 shows the same trajectories with
their corresponding reactions and intermediate molecular states.
We find that optimized molecules generally contain the starting
structure. We believe this to be a desirable property given that
real-life design cycles are often focused on a fixed scaffold or set
of core structures. We also note that the policy learned by our
REACTOR framework is able to generalize over different
starting blocks, suggesting that it achieves generation of
structurally diverse and novel compounds.

5. CONCLUSIONS
This work proposes a novel approach to molecular design that
defines state transitions as chemical reactions within a
Reinforcement Learning framework. We demonstrate that our
framework leads to globally improved performance, as measured
by reward and diversity of generatedmolecules, as well as greater
training efficiency while producing more drug-like molecules.
Analysis of REACTOR’s robustness to multiple optimization
criteria, coupled with its ability to maintain predicted activity on
the DRD2 receptor, suggests increased potential for successful
application in drug discovery. Furthermore, molecules gen-
erated by this framework exhibit better synthetic accessibility by
design with one viable synthesis route also suggested. Although
the reactivity and stability of the optimized molecules remain a
potential issue, REACTOR’s efficiency in a multiple optimiza-
tion setting suggests that this can be addressed by explicitly
considering them as additional design objectives.
Future work aims to build on this framework by making use of

its hierarchical formulation to guide agent policies both at the
higher reaction and lower reactant levels, exploring proposals
from h-DQN38 for hierarchical value functions, or the option-
critic framework39 as a starting point. We also plan to expand the
effective state space of our MDP by embedding a synthesis
model with transformer-based architectures showing promise40

Figure 7. (a, b) Trajectories taken by the REACTOR agent from the same building block for different objectives. Note that the reaction steps are
simplified and are mainly indicative of synthesizability. For example, the Negishi coupling reaction would first require the formation of an organozinc
precursor. Furthermore, selectivity is low at some steps, which will result in a mixture of products, unless reacting groups are protected.
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as the MDP transition model. Because practical de novo design
requires optimization of multiple criteria simultaneously, we
believe that the efficiency of our design framework provides a
robust foundation for such tasks and hope to expand on existing
approaches41−43 for multi-objective Reinforcement Learning.
Finally, we intend to validate the proposed synthetic routes and
bio-activity of generated molecules experimentally to better
demonstrate real-world utility.
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