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Purpose: Heatmapping techniques can support explainability of deep learning (DL)
predictions inmedical image analysis. However, individual techniques havebeenmainly
applied in a descriptive way without an objective and systematic evaluation. We inves-
tigated comparative performances using diabetic retinopathy lesion detection as a
benchmark task.

Methods: The Indian Diabetic Retinopathy Image Dataset (IDRiD) publicly available
database contains fundus images of diabetes patients with pixel level annotations of
diabetic retinopathy (DR) lesions, the ground truth for this study. Three in advance
trained DL models (ResNet50, VGG16 or InceptionV3) were used for DR detection
in these images. Next, explainability was visualized with each of the 10 most used
heatmapping techniques. The quantitative correspondence between the output of a
heatmap and the ground truth was evaluated with the Explainability Consistency Score
(ECS), a metric between 0 and 1, developed for this comparative task.

Results: In case of the overall DR lesions detection, the ECS ranged from 0.21
to 0.51 for all model/heatmapping combinations. The highest score was for
VGG16+Grad-CAM (ECS= 0.51; 95% confidence interval [CI]: [0.46; 0.55]). For individual
lesions, VGG16+Grad-CAM performed best on hemorrhages and hard exudates.
ResNet50+SmoothGrad performed best for soft exudates and ResNet50+Guided
Backpropagation performed best for microaneurysms.

Conclusions: Our empirical evaluation on the IDRiD database demonstrated that
the combination DL model/heatmapping affects explainability when considering
common DR lesions. Our approach found considerable disagreement between regions
highlighted by heatmaps and expert annotations.

Translational Relevance: We warrant a more systematic investigation and analysis of
heatmaps for reliable explanation of image-based predictions of deep learningmodels.

Introduction

With deep learning (DL) we can now achieve excel-
lent diagnostic performance on awide range of medical
image analysis tasks.1–3 However, the use of DL in
clinical decision-making is still challenging and involves
demonstrating the clinical utility of the algorithm,
obtaining regulatory approval, and building trust and
approval of the medical practitioner and patient. In

this context, one of the tasks is to explain how and
why a DL algorithm, which is often conceived as a
black box model, makes a particular prediction.4 A
wide range of heatmapping techniques has been intro-
duced to produce visual maps to highlight regions in
the image that contribute most to the prediction and
thus explain the algorithm’s decision.5–7

Being able to explain model decisions is impor-
tant for a number of reasons. First, heatmaps build
trust in the model when they corroborate clinically
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relevant features.4,5 Second, they can expose failure
modes or hidden biases and suggest how models can
be improved. For example, Winkler and colleagues8
inspect heatmaps and find that surgical skin markings
in dermoscopic images significantly influence deep
learning predictions. Third, experts can use the expla-
nations to discover novel knowledge. For example,
Poplin and colleagues9 report that age and sex can
be predicted from retinal images. Ophthalmologists
inspect blindly the heatmaps of 100 random retina
images and identify for the first time that models
trained to predict age focus on blood vessels and
that models trained to predict sex highlight the optic
disc, vessels, and macula. Intrigued by this finding
Yamashita et al.10 discover that human assessed
features such as optic disc ovality ratio, artery trajec-
tory, and supratemporal retinal artery angle play a role
in the DL models that predict sex.

Diabetic retinopathy (DR) is a common complica-
tion of diabetes and the leading cause of blindness
among working age adults around the world.11,12 The
presence of lesions such as microaneurysms, hemor-
rhages, hard exudates, venous beading, and other
microvascular abnormalities in fundus images are used
by human experts to score DR stage and disease
severity. Several deep learning studies for DR staging
have used heatmaps to explain model predictions.13–16
However, none of them quantify the performance
of the heatmapping. Studies typically apply a single
technique on a small selection of images to support
visually DL explainability. However, it is reported
that results vary significantly between images and
methods.17,18

In this article we present a systematic and objec-
tive comparison of heatmapping techniques for DR.
Popular deep learning network architectures (VGG16,
InceptionV3 and ResNet50) trained to detect DR
stage were combined systematically with each of 10
heatmapping techniques that are commonly reported
in literature for visualization of DL output in the
context of medical image analysis. Heatmaps were
compared with common DR lesions in the images that
were annotated by human experts. Comparisons were
done with a newly developed metric, the Explainability
Consistency Score (ECS).

This score quantifies how well the regions
highlighted by the heatmapping technique match
the regions marked independently by humans. The
aim of the study was to investigate which heatmapping
techniques are best able to detect regions of interest
relevant for DR classification relative to a ground
truth and to determine the impact of the DL network
architecture used for DR classification.

Material and Methods

Deep Learning Models

Three deep learning models for diabetic retinopathy
detection were trained and validated on the EyePACS
KaggleDR dataset.19,20 This dataset contains 88704
images, which were randomly split in a training
set of 68,074 images, a validation set of 10,000
images and a test set of 10,000 images. Patient level
splits were maintained. All images were rescaled to
448 × 448 pixels. After rescaling, local average color
was subtracted and mapped to 50% gray, and images
were clipped to 90% size to remove boundary effects.21
Image augmentation was applied by rotating, shift-
ing, and flipping images, as well as by applying zooms.
We implemented versions of VGG16,22 InceptionV3,23
and ResNet50.24

The fully connected top layer was replaced with
the following sequence of layers for all architectures:
a global average pooling layer, two repetitions of a
dense layer followed by a dropout layer, and finally a
layer with only a single output with sigmoid activa-
tion function. A variant of the mean squared error
that is tailored to ordinal classification was used as
loss function for training.25 Models were evaluated
using the quadratic weighted kappa, a modification to
Cohen’s kappa, that allows partial agreement.26 The
weighted kappa allows the use of weighting schemes to
take into account the closeness of agreement between
categories, which is very suitable in case of using
ordinal or ranked grades. The metric varies from 0,
meaning random agreement, and 1, meaning complete
agreement between raters. The quadratic weighted
kappa was the reference metric in the Kaggle EyePacs
challenge of 201620 and since then it has been used
frequently in publications evaluating deep learning for
scoring DR severity from fundus pictures.27–29

The InceptionV3 model attained a quadratic
weighted kappa of 0.82, and the ResNet50 andVGG16
models both had a quadratic weighted kappa of 0.79
on the test set. These scores are in the range of the
top results attained in the KaggleDR competition.20
Further boost in performance was not considered
for the current publication because the focus is on
a comparative evaluation of explainability methods
rather than deep learning prediction optimization.

The IDRiD Dataset

The trained DL models were used as baseline for
evaluating and comparing the different heatmapping
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Figure 1. Example expert segmentation. Left: image from the IDRiD dataset; right: expert segmentation.

Table. HeatmappingTechniquesUsed for Explainability inDeepLearningModels forDiabetic RetinopathyPredic-
tion From Fundus Images

Heatmapping Technique Reference

Gradients Simonyan et al.22

Integrated gradients Sundararajan et al.35

Input * gradient Shrikumar, Greenside, & Kundaje, 201740

Guided backpropagation Springerberger et al.6

LRP Bach et al., 201541

Grad-CAM Selvaraju et al.4

DeconvNet Zeiler & Fergus, 201442

SmoothGrad Smilkov, Thorat, Kim, Viegas, & Wattenberg, 201743

SmoothGrad-Squared Hooker et al.33

VarGrad Hooker et al.33

techniques. These experiments were performed on the
Indian Diabetic Retinopathy Image Dataset (IDRiD),
which contains 81 images of DR patients from an
Indian population with pixel level annotations.30

All subjects underwent mydriasis before collec-
tion of 50° field-of-view images with the Kowa
VX-10a digital fundus camera. Pixel level annota-
tions were done and reviewed by two retinal special-
ists. Four types of lesions were annotated: hemor-
rhages, microaneurysms, soft exudates, and hard
exudates. Figure 1 shows an example of such an expert
segmentation.

Heatmapping Techniques

The 81 IDRiD images were analyzed with each of
the three in advance trained deep learning models.
None of the IDRiD images were used to train the
DR scoring DL model. The IDRiD set was split

into a tuning set of 54 images and a test set of
27 images. Heatmaps were generated for the 54 images
using the 10 heatmapping techniques in Table 1.4,6,27–33
The test set was used for testing possible overfitting
(see Results section). For Grad-CAM the implemen-
tation in the keras-vis library was used.31 In Grad-
CAM we can visualize the filters of any convolutional
layer. We tested every layer in the network for all
tuning images and chose the one producing the best
results on average. For the Gradients method, Decon-
vNet, Guided Backpropagation, Integrated Gradients,
Input*Gradients, and Layerwise Relevance Propa-
gation (LRP) the iNNvestigate library was used.32
We made custom implementations of SmoothGrad,
SmoothGrad-Squared,33 and VarGrad,33 which rely
on the iNNvestigate library to compute the gradi-
ents.32 LRP can be applied using several variants
and parameter configurations. We experimented with
16 configurations (listed in Supplementary Informa-
tion A) and selected the one that produced the best



Heatmaps Applied on Diabetic Retinopathy Lesions TVST | Special Issue | Vol. 9 | No. 2 | Article 64 | 4

Figure 2. Illustration of the ECS calculation for a 10 × 10 grid.

results in the training set for each architecture. This
was LRP-Alpha2Beta1-IgnoreBias for VGG16, LRP-
Alpha1Beta0-IgnoreBias for ResNet50 and LRP-Z for
InceptionV3. Heatmapping techniques (except Grad-
CAM) produce a heatmap with three channels and the
output was converted to a single channel heatmap by
taking the maximum over the channels.

The Explainability Consistency Score

We define the ECS to compare the heatmaps to
ground truth lesion expert segmentations.

The computation of the ECS consists of two
steps: the expert segmentation and the computer-
generated heatmap are discretized (Step 1), and after-
wards the agreement between the two discretized maps
is computed (Step 2).

Step 1: Discretization
The expert segmentations were discretized by

overlaying the fundus image with a grid and counting
the number of lesion pixels in each cell. An example
of a 10 × 10 grid overlaid to one of the images in the
IDRiD dataset is given in Figure 2.

The pixel count was weighted by the lesion types
to deal with severe pixel count imbalance between
lesion types: in the expert segmentations of the IDRiD
dataset 1% of the pixels indicated as lesions by the
experts correspond tomicroaneurysms, 8% correspond
to soft exudates, 44% correspond to hard exudates
and 47% correspond to hemorrhages. Not taking this

imbalance into account would lead to microaneurysms
barely contributing to the agreement score, although
they are crucial for identifying early stages of DR
diagnosis.34 We denote the segmentation of hemor-
rhages as a matrix as HE ∈ R

N×N , with HEi,j =
1 if the expert indicated the presence of a hemor-
rhage at that pixel and HEi,j = 0 otherwise. Similarly,
MA describes microaneurysms, EX hard exudates and
SE soft exudates. The discretized expert segmentation
DE combines these four matrices into one by taking
weighted sums of these segmentation matrices in grid
cells. For an S× S grid we computedDEi,j for i, j∈ 1...S
of the discretized expert segmentation as follows:

DEi, j = wHE

(i+1)d−1∑
p = id

( j+1)d−1∑
q = jd

HEp,q + wMA

(i+1)d−1∑
p = id

( j+1)d−1∑
q = jd

MAp,q

+ wSE

(i+1)d−1∑
p = id

( j+1)d−1∑
q = jd

SEp,q + wEX

(i+1)d−1∑
p = id

( j+1)d−1∑
q = jd

EXp,q

with d = N
S the width/height of a cell, and

wHE, wMA, wSE, and wEX the weights for hemorrhages,
microaneurysms, soft exudates, and hard exudates.
We determined the weight for each lesion type by its
pixel count over all training images, relative to the
pixel count of the most frequently occurring lesion
type. This led to the following weights for the IDRiD
dataset: wHE = 1, wEX = 1.05, wSE = 5.77 and wMA =
46.97.

The heatmap discretization was computed in a
similar manner but without weighting, as heatmaps do
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Figure 3. Average ECS for the three different deep learningmodels and each of the 10 heatmapping techniques. Results are obtainedwith
a tuning subset of the IDRiD image dataset (n = 54). The top three combinations are marked by the cup on top of the bars.

not distinguish between different lesion types. For a
heatmap H ∈ RN × xN entry DHi,j for i,j ∈ 1..S of the
discretized heatmap DH ∈ RS × xS was computed as
follows:

DHi, j =
(i+1)d−1∑

p = id

( j+1)d−1∑

q = jd

Hp,q

Step2: Calculationof Agreement BetweenDiscretized
Maps

The agreement between the discretized expert
segmentation and the discretized heatmap was
computed:

ECS (DE,DH ) = |top_k_cells (DE,K ) ∩ top_k_cells (DH,K )|
min (K, n_nonzero_elements (DE ))

top_k_cells is a helper function that returns the row and
column indexes of the K cells with the highest value.
The n_nonzero_elements return the number of nonzero
elements in a matrix. We divide by K (or the number of
nonzero elements in the discretized expert segmenta-
tion if this is smaller than K) such that ECS our score
always takes values in [0, 1] and can be interpreted as
a percentage. We tested the sensitivity to the selection
of the K parameter by experimenting with K = 10, 15
and 20. The choice of this parameter did not affect our

main outcomes. Figure 2 summarizes the computation
of the ECS score.

Results

Figure 3 presents the average values of the Explain-
ability Consistency Score (ECS) for the IDRiD tuning
set of 54 fundus images (See Supplementary Infor-
mation B for detailed numerical results). The scores
range from 0.21 to 0.51, with 0 meaning no overlap
between pixels marked by the heatmap and pixels
marked by experts during lesion annotation and 1
referring to complete agreement between both. The
top three combinations are indicated in Figure 3,
with VGG16 + Grad-CAM overall highest (ECS =
0.51; 95% confidence interval [CI]: [0.46;0.55]). The
selected Grad-CAM configuration was the one in
which the pixels responsible for the activation of the
filters of the first convolutional layer of the last convo-
lutional block are visualized. The VGG16 architec-
ture compared favorably to the other architectures in
combination with most heatmapping techniques, that
is, approximately 0.05 to 0.1 higher ECS or 5% to
10% more correspondence with human annotations.
The gray bar in Figure 3 and dashed line refer to
the score obtained by using a heatmap that attributes
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Figure 4. Examples of images with high and low ECS scores. Two heatmaps generated by VGG16+Grad-CAM with the highest score on
the IDRiD training set (top row), and two heatmaps with the lowest score (bottom row).

importance randomly. All combinations significantly
outperform this baseline. Values of ECS between 0.21
to 0.51 illustrate that the choice of the architecture
and heatmapping technique impact how much visual
overlap there will be with the actual DR lesion segmen-
tation done by experts. Possible overfitting was investi-
gated by computing the scores for the 27 images in the
IDRiD test set for the VGG16+Grad-CAM combina-
tion. The average ECS score on the tuning set was 0.51
(95% CI: [0.46; 0.55]) and the test set score was 0.48
(95% CI: [0.44; 0.53]). This is only a modest decrease,
which is suggestive for the fact that our selection proce-
dure was not overfitting. We also investigated whether
the performance of the ECS score varied according
to the DR severity class using our IDRiD tuning set.
Grade 2 images 2 (n = 18) had an ECS score of 0.47
(95% CI: [0.43; 0.58]), Grade 3 (n = 16) and 4 (n = 19)
images had an ECS score of 0.54 (95% CI: [0.43; 0.58])
and 0.50 (95% CI: [0.43; 0.58]), respectively. Only one
image of Grade 1 was available in the IDRiD dataset.
Data suggests no bias according to severity class, but
the available number of images is low for a conclusive
evaluation.

We present the ECS score with a 10 × 10 grid,
taking the top 15 cells with the highest values in the
discretized maps into account for computing the score

(i.e., S = 10 and K = 15 ). Results for additional exper-
iments can be found in Supplementary Information
C for reference. A 10 × 10 grid was selected because
it has the granularity to indicate potentially interest-
ing regions to an ophthalmologist and it can deal with
the outputs produced by the different heatmapping
techniques.

The heatmaps produced by Grad-CAM, for
example, were very different from those produced
by Guided Backpropagation, and discretization in a
10 × 10 grid allows our score to be sensitive to the
regions that these heatmaps indicate instead of their
pixel level appearances.

The top row in Figure 4 illustrates the ground truth
and heatmaps for the two images with the highest
scores in the IDRiD training set. For both images,
Grad-CAM successfully identified 11 of the top 15
cells in the expert segmentation, which correspond to
exudates and hemorrhages. The two images with the
lowest scores are shown in the bottom row in Figure 4.
The left fundus shows that the model did not attribute
importance to the large bleeding, resulting in a lowECS
score. In the right fundus on the bottom row, there are
only a few small lesions. The heatmap covers several
of them, but also highlights several cells that are not
marked by experts, which results in the low score.
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Figure 5. Average ECS scores computed separately for each lesion type. The results are shown for the random baseline, the overall best
configuration (VGG16+Grad-CAM), and the configuration that scored best for this lesion type.

The ECS values in Figure 3 are computed by
comparing model explanations to a weighted combi-
nation of expert segmentations of hard exudates, soft
exudates, hemorrhages and microaneurysms. We also
computed the ECS separately for the different lesion
types to investigate whether there were large differ-
ences in performance between them. Figure 5 summa-
rizes the results of these experiments. The supplement
contains the figures and numerical data of the exper-
iments for the DL models/heatmapping techniques
for the individual lesions (Supplementary Informa-
tion D and E). No weighting was performed for these
computations: the discretized model explanation was
compared to the discretized lesion segmentation for
one specific lesion type. The ECS score varied signif-
icantly across lesion types. ECS was lowest for soft
exudates (0.29 for the best architecture and heatmap-
ping combination) and highest for microaneurysms
(0.42 for the best combination). The overall best combi-
nation, VGG16+Grad-CAM, consistently performed
well for all lesion types, but was not the best perform-
ing combination for each individual lesion type. For
example, ResNet50+SmoothGrad performed best for
soft exudates, and ResNet50+Guided Backpropaga-
tion performed best for microaneurysms.

Discussion

This study presents a systematic and objective
comparison between heatmapping techniques in
deep learning (DL) using diabetic retinopathy lesion
detection as a case study. Several studies on DL

for DR detection have used a single heatmap to
support their model predictions. Lam et al.15 gener-
ate heatmaps using patch-wise occlusion, Bellemo
et al.13 use Integrated Gradients, and Sundararajan
and colleagues35 and Gargeya and Leng14 use Grad-
CAM.4 Heatmaps of a small selection of images are
typically submitted for visual inspection. The result of
this analysis is then used to support the fact that the
AI model is trustworthy because it is looking at the
expected locations. Sayres et al.16 generate heatmaps
using Integrated Gradients and found that accuracy
of the DR diagnosis improves when a trained grader
is given the DL predicted DR grade and heatmap
to make the DR diagnosis for moderate-or-worse
DR. They found that providing heatmaps for cases
with no DR can cause graders to overcall these cases
but observed that this effect diminished over time
as graders learned to use the heatmaps for guiding
diagnosis. However, it is reported that heatmaps can
differ significantly depending on the used technique.
Hence, variation in the provided visual support may
impact any diagnostic judgment.

In the context of general image classification
tasks, studies have aimed to compare heatmapping
techniques. Selvaraju et al.4 evaluate class discrimina-
tiveness of several methods based on human studies.
Others have defined properties that a heatmapping
method should satisfy, such as completeness, imple-
mentation invariance, sensitivity and input invari-
ance.35,36 One can evaluate methods by verifying which
properties they satisfy or construct new ones that
satisfy certain properties. This does not necessarily
provide the practitioner with enough guidance for
selecting a method for an application because no
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method satisfies all properties and it is hard to deter-
mine which ones are most relevant for a specific appli-
cation. Recently, Hooker et al. have proposed RemOve
And Retrain (ROAR), which evaluates explainability
by measuring how the accuracy of retrained models
degrades as pixels that are estimated to be impor-
tant are removed.33 According to their evaluation
methodology, most of the heatmapping/explainability
methods are not better than random designation of
feature importance. They find that only VarGrad
and SmoothGrad-Squared outperform the random
baseline.

Our evaluation is focused on DR detection, whereas
most prior work was performed with the ImageNet
classification task.37 These tasks differ considerably,
and we cannot expect conclusions drawn for ImageNet
to transfer directly to our application. We are the first
to do an objective and fair comparison of heatmap-
ping techniques in the context of DR detection. A
second difference to prior work is that we leverage
expert segmentations. This allowed us to circumvent
many of the problems that related studies face due
to the absence of ground truth data. The pixel level
expert annotations in the IDRiD dataset are separated
by lesion type, and this enabled us to tailor the ECS
metric to our application byweighting pixels differently
according to their type. Most heatmapping methods
outperformed significantly the random baseline in our
experiments and thus contradict the suggestion of
Hooker et al.33 that themajority of themethods are not
better than random designation of feature importance.
It is important to note that the evaluation strategies
are different: whereas Hooker and colleagues33 evalu-
ate interpretability by measuring how the accuracy of
retrained models degrades as pixels that are estimated
to be important are removed, we do it by compar-
ing heatmaps to expert segmentations. Although most
explainability methods significantly outperformed the
random baseline, there is still considerable room for
improvement. The best-performing configuration on
average correctly identified 51% of the most impor-
tant lesion cells on the IDRiD training dataset, indicat-
ing that there is still disagreement between regions
highlighted by heatmaps and expert annotations. This
could be because the DL model weighs in additional
information for DR detection such as various blood
vessel changes, which is not present in the IDRiD
annotation. However, this was not further investigated.

The task of evaluating how well a heatmap
matches an expert segmentation is like that of evalu-
ating segmentations produced by image segmentation
methods. Three key differences, however, render exist-
ing evaluation scores for segmentation (such as DICE)
inadequate.38 First, pixel level agreements between

heatmaps and expert segmentations are not relevant.
Heatmaps must mark the right regions in the image,
but pixel level segmentation accuracy is not their goal.

Second, existing scores have difficulties dealing with
the highly different types of outputs that are gener-
ated by various heatmapping techniques. For example,
a Grad-CAM heatmap typically marks larger regions
as being important, while Integrated Gradients marks
individual pixels: any pixel-based score will behave very
differently for Grad-CAM and Integrated Gradients,
obstructing a fair comparison between the two. Third,
existing scores do not incorporate domain knowl-
edge and treat every pixel equally. For example, a
pixel labeled as a microaneurysm will have the same
weight as a pixel labeled as a hemorrhage, which does
not reflect the importance of microaneurysms in DR
diagnosis: despite their small size in terms of pixel
count, they strongly influence early level DR diagno-
sis.34 The ECS metric deals with the first two points by
discretizing heatmaps and expert segmentations. The
result of this step is that exact pixel locations and types
of heatmap do not matter, but only the regions that
they indicate as being important. The third point is
addressed by weighting the pixels in the expert annota-
tion by their lesion type, such that small lesions that are
important for diagnosis contribute sufficiently in the
ECS calculation.

A study limitation is that not all lesions that charac-
terize DR are annotated in the IDRiD dataset. It
contains expert segmentations of hard exudates, soft
exudates, microaneurysms, and hemorrhages, but not
for several other, less abundantly present, abnormalities
that are associated with DR such as venous beading,
intraretinal microvascular abnormalities (IRMAs),
and neovascularization.34 This limitation could of
course be alleviated by obtaining expert segmentations
for all lesion types. Alternatively, it would be interest-
ing to capture eye tracking data of ophthalmologists
performing DR grading, similar to the work of Li et
al. for glaucoma detection.39 We would expect such
eye tracking data to cover all relevant lesions, and as
such provide for a natural point of comparison for the
produced heatmaps produced. A second limitation is
the fact that the ECS score does not consider the lesion
location. The latter can impact its role in DR diagnosis.
For example, severe nonproliferative diabetic retinopa-
thy is indicated by, among others, venous beading in at
least two quadrants.34

Conclusions

This work objectively evaluated heatmapping
techniques in deep learning in the context of diabetic
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retinopathy. Heatmaps were compared to common
DR lesions that were annotated at pixel level by expert
graders. The proposed ECS tailored to DR scoring
enabled a fair comparison between heatmaps and
expert annotations. An empirical evaluation of three
DLmodels for DR detection in combination with each
of 10 heatmapping techniques is presented.

The best overall explainability results were reached
with Grad-CAM and a VGG16 model. For the
ResNet50 model, the best explainability results were
obtained with Guided Backpropagation and for
the InceptionV3 model this was Grad-CAM. We
found considerable differences between heatmapping
techniques when trying to identify relevant diabetic
retinopathy lesions. We warrant a more systematic
investigation and analysis of heatmaps for reliable
explanation of image-based predictions of deep learn-
ing models.
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