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Abstract

Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk 

factor for development of obesity and its complications, such as fatty liver disease and insulin 

resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects 

of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, 

we present the data invoking fructose intake with development of hepatic insulin resistance in 

human studies and discuss the pathways by which fructose impairs hepatic insulin action in 

experimental animal models. First, we described well-characterized pathways by which fructose 

metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of 

fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce 

endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained 

the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be 

mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased 

protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), 

the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary 

fructose intake strongly promotes hepatic insulin resistance via complex interplay of several 

metabolic pathways, at least some of which are independent of increased weight gain and caloric 
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intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar 

drives metabolic complications and contradicts the notion that fructose is merely a source of 

palatable calories that leads to increased weight gain and insulin resistance.

Introduction

Obesity increases the risk of developing a myriad of negative health outcomes, including 

dyslipidemia, hypertension, insulin resistance, type 2 diabetes (T2D) and non-alcoholic fatty 

liver disease (NAFLD). NAFLD is a liver manifestation of obesity and is estimated to affect 

1 billion individuals worldwide [1]. In the USA, NAFLD is the most common liver 

abnormality in children [2] and among the top three causes of liver transplant in adults [3]. 

Due to a strong link between obesity and hepatic fat deposition, it has been proposed that 

perhaps a more appropriate name for this entity is obesity associated fatty liver disease 

(OAFLD) or simply, fatty liver disease [4]. Hepatic insulin resistance is a key feature of 

NAFLD and is universally present when the gold standard test, euglycemic hyperinsulinemic 

clamp, is used to assess insulin action [5]. However, it remains undefined whether hepatic 

insulin resistance develops first and primes the liver for subsequent fat accumulation or if 

hepatic insulin resistance is simply a product of increased fat accumulation in the liver.

Excessive caloric intake, either from a high-fat diet (HFD) or sugar-sweetened beverages 

(SSBs), is associated with development of NAFLD and hepatic insulin resistance [6]. While 

historically HFDs were considered crucial to the development of fatty liver disease, 

experimental animal studies, epidemiological evidence and clinical trials in humans have 

documented the major role for added sugars, such as sucrose and high-fructose corn syrup, 

in the development of NAFLD and insulin resistance [7, 8, 9]. However, consensus is 

lacking whether the fructose or glucose components of table sugar (sucrose) and high-

fructose corn syrup confers a greater risk or if sugar intake is simply a vehicle for increased 

caloric intake, which is the underlying driver of hepatic insulin resistance. Accumulating 

evidence indicates that fructose intake is strongly associated with development of hepatic 

insulin resistance, which in turn promotes development of NAFLD, even when total energy 

intake is matched by equal calories from glucose [8, 10, 11].

In this review, we will present the data invoking fructose intake with development of hepatic 

insulin resistance in human studies and discuss the pathways by which fructose impairs 

hepatic insulin action in experimental animal models. Initially, we will focus on well-

characterized pathways by which fructose metabolism indirectly leads to hepatic insulin 

resistance. These include unequivocal effects of fructose to stimulate de novo lipogenesis 

(DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and 

initiate hepatic inflammation. Additionally, we will also entertain the hypothesis that 

fructose can directly impede insulin signaling in the liver. Overall, this review aims to 

answer whether fructose induces hepatic insulin resistance through indirect and direct 

pathways or if it is merely a source of palatable calories that leads to increased weight gain.
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Human Studies Linking Fructose Intake to Hepatic Insulin Resistance

Initial evidence linking increased sugar intake to insulin resistance in humans dates back to 

studies conducted in the late 1970s. For example, high sucrose feeding for fourteen days in 

heathy adults resulted in a decreased response to insulin, with a 25% reduction in lowering 

of blood glucose levels following exogenous insulin administration [12]. In a subsequent 

study performed on a regular diet supplemented with 250 g of glucose or fructose (~ 3.5 

g/kg) for seven days, fructose, but not glucose, supplementation was associated with 

decreased insulin sensitivity during an intravenous insulin tolerance test in fifteen healthy, 

normal-weight individuals [11]. Likewise, six days of hypercaloric fructose feeding (3 g/kg) 

in seven healthy men increased fasting blood glucose levels and blunted suppression of 

hepatic glucose production during a hyperinsulinemic-euglycemic clamp, as compared to 

their baseline levels when fed a control diet [13]. In agreement with these studies, seven 

days of hypercaloric fructose feeding (3.5 g/kg) increased hepatic glucose production as 

assessed by 2-step hyperinsulinemic-euglycemic clamp and lowered whole body insulin 

sensitivity, when compared to the standard diet-fed group. This crossover study was 

performed in sixteen healthy adult males who were offspring of patients with type 2 

diabetes, a group at risk for development of metabolic disorders, and eight control subjects 

[14]. Hepatic glucose production, as measured by isotope dilution analysis using 6,6 2H2 

glucose, was also increased in a study of thirty-five normal-weight men in which a healthy 

diet was supplemented with 4 g/kg of fructose for fourteen days [15]. In this study, fructose 

feeding also impaired insulin-induced suppression of adipose tissue lipolysis, compared to 

control diet-fed individuals, but total body insulin resistance did not develop. The last three 

studies suggest that hepatic insulin resistance is one of the earliest signs of impaired insulin 

action and, in some cases, hepatic insulin resistance is present even before whole body 

insulin resistance can be detected. However, not all studies demonstrated increased insulin 

resistance with short term hypercaloric fructose feeding. Johnston et al. [16] found no 

change in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and insulin 

levels following hypercaloric fructose, as compared to glucose, supplementation for fourteen 

days in thirty-two overweight men. Of interest, in this study HOMA-IR was increased after 

two weeks of isocaloric fructose supplementation. Furthermore, there were strong trends 

toward higher BMI (p=0.07) and higher insulin levels (p=0.09) in the fructose, as compared 

to the glucose, group before initiation of the study [16].

These short-term hypercaloric studies in which fructose supplementation provides about 

1000 additional calories (3–4 g/kg of fructose) have been taken with caution, since increased 

caloric intake alone is sufficient to induce insulin resistance. Consumption of lower amounts 

of fructose along with ad libitum diets, however, can also lead to insulin resistance. Stanhope 

et al. [8] reported that consumption of 25% of daily energy requirement (168 g/day) from 

fructose-sweetened beverages for ten weeks increased blood glucose, fasting insulin and 

insulin excursion following oral glucose tolerance test (OGTT). These increases were not 

observed in the glucose-supplemented group. Further, insulin sensitivity index as assessed 

by the deuterated glucose disposal was decreased by 17% in overweight/obese subjects 

consuming fructose [8]. Even a much lower amount of hypercaloric fructose (75 g/day) 

supplemented in drinks for twelve weeks increased insulin levels and HOMA-IR in obese 

men, compared to their baseline values before the intervention [17]. Similarly, in a study 
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providing 80 g/day of fructose in sweetened beverages for three weeks, fructose increased 

baseline endogenous glucose production and lowered suppression of hepatic glucose 

production during euglycemic-hyperinsulinemic clamp study, compared to an equal amount 

of glucose [18]. Taken in aggregate, these studies indicate that fructose consumption that 

reflects habitual SSB consumption can lead to decreased hepatic insulin sensitivity over 

time.

Studies of acute and chronic fructose supplementation on ad libitum diets still leave the 

question of whether or not isocaloric fructose intake has an effect on hepatic insulin 

resistance. This question was addressed in a crossover experiment in which eight healthy 

men consumed weight-maintaining, isocaloric diets containing either high-fructose (25% 

energy requirement) or low-fructose diet (starch provided in place of fructose) for nine days. 

In this study, subjects exhibited lower suppression of hepatic glucose production during a 

euglycemic-hyperinsulinemic clamp when they consumed the high-fructose diet, compared 

to the low-fructose diet [19]. Hallfrisch et al. [20] also conducted a crossover study in which 

twelve men with hyperinsulinemia and twelve healthy age- and BMI-matched men were 

provided standardized equicaloric meals that contained either 0, 7.5, or 15% of the energy 

requirement as fructose in solid food for five weeks. All other components of the diet were 

matched so that the participants received 43% of the calories as total carbohydrate, 42% as 

fat and 15% as protein. Compared with the 0% fructose diet, the 15% fructose diet increased 

glucose and insulin responses to a 3-hour oral sucrose tolerance test [20]. As above, the 

studies that utilized euglycemic-hyperinsulinemic clamps to index both whole body and 

hepatic insulin resistance suggest that development of hepatic insulin resistance precedes 

development of whole body insulin resistance [18, 19].

The rigorous nature of these highly controlled, labor intensive studies precludes inclusion of 

a large number of patients. In contrast, epidemiological evidence provides information on 

large populations of subjects. In a study of 70,000 women followed for 18 years, those who 

reported consuming 2–3 SSBs per day had 31% higher risk of developing type 2 diabetes, 

compared to subjects who consumed less than one drink per month, even after controlling 

for BMI and physical activity [9]. Similarly, in a cross sectional study of nearly 2,000 

healthy women, those in the highest quintile of self-reported energy-adjusted fructose intake 

had 13.9% higher plasma C-peptide concentrations, a marker of insulin secretion, compared 

to women in the lowest quintile of fructose intake [21]. Likewise, a meta-analysis of 17 

prospective cohort studies found that one serving per day increment in SSB consumption 

was associated with an 18% higher risk of developing type 2 diabetes among the studies that 

did not adjust for adiposity and a 13% increased risk in the studies that adjusted for 

adiposity [22]. Another meta-analysis of 1005 participants observed that both hypercaloric 

and isocaloric fructose intake promotes the development of hepatic insulin resistance in 

nondiabetic adults, without affecting peripheral or muscle insulin sensitivity [23]. Together, 

these studies indicate that SSB, and fructose consumption in particular, is associated with an 

increased risk of developing insulin resistance, even when adjusted for caloric intake or 

BMI.
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Indirect Effect of Fructose on Insulin Resistance

Acute and chronic intake of fructose-sweetened beverages in clinical trials and 

epidemiological evidence on consumption of SSBs, strongly suggest that excess fructose 

intake leads to hepatic and whole body insulin resistance (Figure 1). In certain studies where 

such determination was possible, hepatic insulin resistance was observed to develop before 

whole body insulin resistance, indicating that hepatic insulin resistance precedes or possibly 

initiates development of whole body insulin resistance. These effects of fructose on hepatic 

insulin resistance are generally thought to be secondary to an increase in hepatic DNL, a 

decrease in FAO, augmentation of ER stress and potentiation of inflammation.

Fructose Increases Hepatic de novo Lipogenesis—Fructose is a highly lipogenic 

macronutrient, which stimulates hepatic DNL to a greater extent than it’s commonly 

compared counterpart glucose or even a HFD [6, 24, 25]. In our studies in chow and HFD-

fed mice, 30% (W/V) fructose supplementation for 10 weeks induced a greater increase in 

enzymes regulating fatty acid synthesis, such as ATP citrate lyase (ACLY), acetyl-CoA 

carboxylase 1 (ACC1), fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), 

compared to mice receiving an equal amount of glucose [10]. Increased protein and mRNA 

levels of these DNL enzymes correlate with increased endogenous fatty acyl-CoA 

production, especially palmitoyl-CoA, in livers of fructose-, as compared to glucose-

supplemented mice. A HFD itself did not robustly increase DNL enzymes and, interestingly, 

the effects of fructose were more robust on chow, than when paired with a HFD [10]. Human 

studies have also shown that carbohydrates support DNL more robustly than a HFD [26] and 

that fructose stimulates DNL more strongly than glucose [8, 27, 28] or starch [19].

On a molecular level, the effects of fructose to increase DNL are largely mediated via the 

two major lipogenic transcription factors, sterol regulatory element-binding protein 1c 

(SREBP1c) and carbohydrate-responsive element-binding protein (ChREBP). Insulin 

strongly increases DNL [29] and stimulates SREBP1c expression, post-translational 

processing and nuclear localization [30]. While fructose alone does not induce robust insulin 

secretion [31] and insulin is not required for acute fructose metabolism, fructose promotes 

insulin resistance and thus can chronically increase serum insulin levels. The effects of 

fructose on SREBP1c are not entirely dependent on insulin, as fructose can upregulate 

SREBP1c in the livers of insulin receptor knockout mice, which by design have no hepatic 

insulin signaling [32]. The effects of fructose on SREBP1c are also, at least in part, mediated 

via peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1b), as 

antisense oligonucleotide targeting PGC1b, reduces expression of SREBP-1c and its 

downstream lipogenic genes in livers of fructose-fed mice [33]. Further, fructose-induced 

expression of SREBP1c triggers a fast forward cycle, as its downstream target, SCD1, 

further increases SREBP1c [34].

Even though ChREBP transcriptional activity is mediated by glucose, fructose can also 

activate ChREBP [35] by inducing a second promoter in the ChREBP gene and an 

alternative splicing event to yield the ChREBP-β isoform [36]. Interestingly, ChREBP also 

promotes fructolysis by stimulating transcription of hepatic fructose transporter solute 

carrier family 2, member 5 (Glut5) [37] and the rate-limiting enzyme of fructose 
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metabolism, ketohexokinase (KHK), also known as fructokinase [35, 37]. Similar to 

SREBP1c, ChREBP can increase expression of enzymes regulating DNL, including ACLY, 

ACC1, FASN and SCD1. Thus, ChREBP knockout decreases DNL and accumulation of fat 

in the liver [38, 39]. ChREBP also appears to protect liver from fructose-induced injury by 

attenuating ER stress and cholesterol synthesis [40]. The essential role of ChREBP in 

protection from fructose is best inferred from studies using ChREBP deficient mice, which 

stop eating, lose weight, and eventually die when fed a high-fructose diet [39]. Consistent 

with its lipogenic but protective roles, ChREBP overexpression results in hepatic steatosis, 

but hepatic steatosis in this context is dissociated from development of insulin resistance and 

metabolic complications [41]. The beneficial effects of ChREBP in fructose metabolism are 

consistent with its protective role in ethanol-induced liver injury [42].

In addition to stimulating lipogenic transcription factors, tracer studies show that fructose 

carbons can be immediately utilized as substrate in lipogenesis, whereas carbons labeled in 

glucose molecule are not observed to enter lipids, at least during a short four-hour 

observation period [31]. The difference in carbon appearance can be explained by increased 

flux through the fructolysis pathway. Glyceraldehyde-3 phosphate (GA3P) and 

dihydroxyacetone phosphate (DHAP) are common intermediates of both glycolysis and 

fructolysis pathways, downstream of which glucose and fructose metabolism is 

indistinguishable. However, prior to formation of these intermediates fructose is metabolized 

by KHK and aldolase, both of which are not regulated by insulin or end products of 

fructolysis. On the other hand, phosphofructokinase, an upstream enzyme in glycolysis 

pathway, is inhibited by both ATP and citrate [43], which are the products of this pathway. 

Thus, while both fructose and glucose carbons converge onto a common pathway, fructolysis 

is not subjected to feedback inhibition and allows for unrestrained flux through the pathway.

Whereas fructose strongly induces hepatic lipogenesis, it is hepatic lipid composition that 

correlates with progression of liver disease and development of metabolic complications, 

rather than the total amount of liver lipids [44]. Fructose has been associated with increased 

hepatic synthesis of free fatty acids (FFAs), diacylglycerol, ceramides and acyl-carnitines, 

which are known mediators of insulin resistance. In healthy subjects, fructose stimulates 

hepatic fatty acid synthesis at least twice as much as glucose [28], and many studies 

document that increased hepatic FFA synthesis strongly contributes to development of 

hepatic insulin resistance [45, 46, 47, 48, 49]. On the other hand, increased oxidation of FFA 

via upregulation of PPARα is sufficient to reverse hepatic steatosis and insulin resistance in 

mice fed high-fructose diet [50]. FFAs also serve as building blocks for synthesis of more 

complex lipid species, which in turn have been associated with development of fructose-

induced insulin resistance. Diacylglycerols (DAG), formed when two fatty acids are 

covalently bound to a glycerol backbone, are increased with fructose consumption [33, 51, 

52, 53]. On a molecular level, DAG activates PKC epsilon, a potential mediator of hepatic 

insulin resistance [54]. Fructose intake can increase condensation of endogenously produced 

fatty acids, such as palmitoyl-CoA, with an amino acid serine to commence de novo 

synthesis of ceramides. Ceramides are known to decrease Akt phosphorylation and induce 

hepatic insulin resistance [55, 56]. Acylcarnitines are produced from fatty acyl-CoAs by the 

action of carnitine palmitoyltransferase 1 (CTP1α) and are destined for mitochondrial 

oxidation. We observed increased acylcarnitine profile in HFD-fed and fructose-
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supplemented mice [57]. Increased acylcarnitine profile is strongly associated with insulin 

resistance, but this is thought to be a sign of decreased FAO, rather than a direct pathologic 

effect of acylcarnitines. However, in at least one study, infusion of acylcarnitines was shown 

to be sufficient to induce insulin resistance in muscle [58]. Taken together, the above studies 

strongly support the concept that increased DNL is one pathway by which fructose intake 

leads to hepatic insulin resistance.

Fructose Decreases FAO by Inducing Mitochondrial Dysfunction—In addition to 

promoting DNL, fructose decreases FAO in human [17, 19, 59], animal [60, 61, 62] and in 

vitro studies [57], and this can contribute to the development of hepatic steatosis and insulin 

resistance. Traditionally, decreased FAO has been thought to be secondary to increased 

DNL. This is because malonyl-CoA, an intermediate in lipogenesis, inhibits CPT1α, the rate 

limiting enzyme of FAO. Furthermore, chronic fructose intake leads to hyperinsulinemia, 

which also decreases FAO. Similar to the potent effects of insulin, fructose decreased FAO 

in perfused rat liver and their effects were additive [63], suggesting that fructose impairs 

FAO, independent of hyperinsulinemia that commonly occurs with chronic fructose intake. 

Furthermore, fructose inhibits FAO even in isolated liver mitochondria, an effect that is 

independent of DNL, since lipogenesis does not occur in mitochondria [64]. The decrease in 

mitochondrial beta-oxidation is, at least in part, mediated by fructose-induced impairment of 

peroxisome proliferator activated receptor alpha (PPARα) signaling, leading to decreased 

expression of its target genes, such as CPT1α, long chain acyl-CoA dehydrogenase 

(ACADL) and very long chain acyl-CoA dehydrogenase (ACADVL) [65]. This may be 

mediated by fructose-induced hypermethylation of PPARα and CTP1α promoter regions, 

resulting in decreased mRNA levels of these genes [66]. These effects are also, in part, 

mediated via fructose-induced upregulation of ChREBP as previously discussed, since 

ChREBP is known to negatively regulate PPARα expression in the liver and other tissues 

[67, 68]. Our recent work in mice supports a direct role of fructose to decrease expression of 

FAO genes, as knockdown of KHK leads to increased CPT1α mRNA and protein levels 

[57].

Fructose metabolism depletes hepatic ATP levels. This is thought to be secondary to the 

rapid conversion of fructose to fructose-1 phosphate, leading to rapid generation of AMP 

and its conversion to uric acid [69]. Indeed, acute fructose metabolism is 10 times faster than 

that of glucose [70] and leads to decreased ATP levels, while concomitantly increasing 

inorganic phosphate and ADP [71]. However, depletion of hepatic ATP could also be in part 

due to a decrease in mitochondrial ATP synthesis, as the degree and time course of fructose-

induced ATP depletion in isolated hepatocytes is similar to the effects of oligomycin, an 

inhibitor of mitochondrial ATP synthesis [72]. Human subjects with high habitual fructose 

consumption also have chronically lower hepatic ATP levels, and these subjects exhibit 

further decrease in ATP during times of acute fructose metabolism [73], providing additional 

evidence in favor of impaired mitochondrial ATP synthesis. Indeed, we reported that 

fructose pretreated hepatocytes generate less ATP, as compared to glucose pretreated ones, 

and this is associated with decreased mitochondrial beta-oxidation [57].

As discussed above, when fructose is metabolized by ketohexokinase, there is a transient 

decrease in intracellular ATP that activates the nucleotide degradation pathway and 
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subsequent uric acid formation [74] [75]. A central role of uric acid in mediating fructose 

effects is inferred from studies demonstrating that it further stimulates KHK expression in a 

fast-forward loop, which accelerates fructose metabolism [35]. Furthermore, uric acid can 

also play a part in increasing lipogenesis and decreasing beta oxidation. Uric acid blocks 

enoyl-CoA hydratase and decreases AMPK activation, thus contributing to fructose-induced 

decrease in FAO [76]. It also can stimulate lipogenesis by inducing NADPH oxidase, which 

associates with the mitochondria, resulting in oxidative stress that reduces aconitase-2, 

leading to generation of citrate, a lipogenic precursor [60, 75]. In addition to being produced 

by fructose metabolism, uric acid may stimulate endogenous fructose production by 

activating aldose reductase in the polyol pathway, which drives development of non-

alcoholic fatty liver disease [77].

Fructose-induced increase in uric acid production is one of the mechanisms by which 

fructose leads to increased reactive oxygen species (ROS) levels [78, 79]. While fructose 

induces ROS generation, fructose-fed mice are more sensitive to ROS, as fructose feeding 

decreases expression of several ROS defense genes. Furthermore, mice with diminished 

antioxidant capacity, due to hepatocyte specific deficiency in eIF2a phosphorylation, have 

more severe hepatocyte cell death and increased liver fibrosis when exposed to dietary 

fructose [80]. On the other hand, a decrease in ROS, achieved by resveratrol treatment, is 

sufficient to reverse fructose-induced insulin resistance [81], further implicating ROS in the 

pathogenesis of fructose-induced metabolic syndrome. A fructose-induced increase in ROS 

is not only a sign of mitochondrial dysfunction, but it can also result in increased 

mitochondrial DNA (mtDNA) damage, thus itself causing mitochondrial dysfunction. 

Indeed, in one study, fructose supplementation decreased hepatic mtDNA copy number and 

increased mtDNA damage, as evident by increased plasma 8-hydroxy-2’-deoxyguanosine 

levels [82].

In our studies of sugar metabolism, fructose, but not glucose, supplementation of mice on a 

HFD induced mitochondrial dysfunction, characterized by decreased FAO, decreased 

hepatic ATP levels and increased hepatic ROS [57]. Interestingly, we also found that 

fructose affects mitochondrial fusion/fission, so that mice supplemented with fructose on a 

HFD had the highest mitochondrial number, but the lowest mitochondrial size, as compared 

to the mice supplemented with regular or glucose-sweetened water on a HFD. This was 

accompanied by increased levels of mitochondrial fission protein FIS1 and decreased levels 

of fusion protein OPA1 in mice fed HFD plus fructose. We also show that the effects on 

mitochondrial morphology were dependent on fructose metabolism, as knockdown of KHK 

normalized mitochondrial number and decreased the proportion of smallest mitochondria. 

Our mitochondrial proteome analysis revealed that a HFD profoundly decreased levels of 

many mitochondrial proteins, and addition of fructose further decreased global 

mitochondrial proteome, but addition of glucose normalized some parts of proteome towards 

the levels found in chow-fed mice. Thus, fructose metabolism has profound effects, not only 

on mitochondrial ATP and FAO, but also on mitochondrial number, structure and protein 

abundance.

Fructose and ER stress—Increased metabolic demands on the endoplasmic reticulum, a 

major site of protein folding and lipid synthesis, leads to ER stress and unfolded protein 
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response (UPR), which is strongly associated with development of insulin resistance. 

Fructose increases all three pathways of UPR, including activating transcription factor 6 

(ATF6), inositol-requiring enzyme alpha (IREa) and PKR-like kinase (PERK) [50, 83, 84]. 

However, the IREa branch of ER stress response, which leads to activation of XBP1s, 

appears to be increased first, only one day after fructose feeding [85]. A seminal study by 

Lee et al. [86] established the importance of XBP1s in mediating hepatic lipogenesis 

induced by a 60% fructose diet. Subsequent studies showed that XBP1s is required for the 

ER stress-mediated development of insulin resistance induced by fructose, as fructose-fed 

mice with conditional knockout of XPB1s had improved insulin sensitivity and decreased 

lipogenesis, characterized by reduced hepatic DAG content and reduced PKCɛ activity [52]. 

Reduction of ER stress via treatment with ER chaperones was also sufficient to prevent 

hepatic lipid accumulation via inhibition of fructose-induced increase in SREBP-1c and its 

downstream targets [87, 88].

The function of the ER is intimately connected with that of the mitochondria, as these 

organelles physically interact with 20% of the mitochondrial surface being in direct contact 

with the ER [89]. ER stress can thus directly induce mitochondrial dysfunction through 

excess calcium flux, leading to increased mitochondrial fragmentation and decreased 

membrane potential [90]. Unresolved ER stress resulting in mitochondrial dysfunction, 

increases cell death via cytochrome c release and autophagy. Intriguingly, in spite of 

inducing ER stress, fructose decreases hepatic autophagy, as a result of activation of a 

mammalian target of rapamycin [91]. In agreement with this, we showed that knockdown of 

KHK in mice on a HFD and a HFD supplemented with fructose restores autophagy/

mitophagy to normal levels found in HFD-fed and glucose-supplemented mice [57]. 

Regulation of autophagy may be a critical step in ER stress-mediated insulin resistance, 

since restoration of autophagy decreases ER stress and leads to improved insulin signaling in 

fructose-fed mice [91]. In summary, ER stress is a pivotal part of fructose-associated 

metabolic effects, as it directly increases lipogenesis through XBP1s, leads to decreased 

FAO via accelerating mitochondrial dysfunction and induces liver inflammation.

Liver Inflammation and Fructose—Dietary intake of high-fructose corn syrup 

sweetened drinks has been reported to result in increased liver inflammation [92]. 

Dysregulated immune response is an integral part in the pathogenesis of hepatic insulin 

resistance, which is thought to be, in large part, mediated by increased serine 

phosphorylation of insulin receptor and insulin receptor substrates (IRS) [93]. However, it 

remains to be defined whether fructose effects are dependent on inflammation triggered by 

liver stromal cell or direct effects on immune cells in the liver.

Initial evidence indicates that fructose strongly upregulates an inflammatory cascade via c-

jun NH(2)-terminal kinase (JNK) activity in liver parenchyma, even after a single sucrose-

containing meal. In this study, intraperitoneal fructose injection after only 6 hours also 

increased hepatic JNK activity and induced hepatic insulin resistance [94]. These effects can 

occur specifically in hepatocytes, since fructose supplementation in isolated primary rat 

hepatocytes is sufficient to activate JNK activity and decrease insulin signaling [95]. 

Normalization of the inflammatory response, on the other hand, is sufficient to reverse 

fructose-induced JNK activation, lipid dysregulation and hyperinsulinemia [96]. 
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Mechanistically, fructose-induced effects on hepatic inflammation are, at least in part, 

mediated via induction of ER stress, as it can directly lead to JNK activation via IREa 

branch of ER stress response. It is not clear, however, whether fructose-induced JNK 

activation and subsequent insulin resistance are entirely independent of hepatic lipid 

metabolism [52]. Adequate disposal of lipids in adipose tissue, achieved by pioglitazone 

administration, can decrease hepatic inflammatory response and liver insulin resistance 

induced by fructose [97]. Conversely, inability of adipose tissue to adequately store lipids, 

such as in lipodystrophy, is highly associated with development of hepatic inflammation and 

insulin resistance [98]. Aberrant lipid oxidation may be a source of ROS, which has been 

implicated in the initiation of fructose-induced hepatic inflammation. In support of this 

claim, antioxidant administration has been shown to reverse increased inflammation in 

cultured hepatocytes treated with 5 mM of fructose [99]. Thus, fructose can induce liver 

inflammation by activating JNK specifically in hepatocytes, leading to hepatic insulin 

resistance.

Recent reports suggest that fructose can also induce liver inflammation by acting directly on 

inflammatory cells. For example, fructose induces dendritic cell inflammatory capacity, with 

specific increases in production of interleukin 6 (IL-6) and IL-1β [100]. These 

proinflammatory cytokines are known to modulate T helper cell polarization and promote 

skewing of naive CD4+ T cells into Th17 subset [101, 102]. In fact, Th17 cells play a central 

role in the pathogenesis of diet-induced liver inflammation as mice lacking either IL-17A or 

IL-17RA, needed for Th17 signaling, are protected from either a high-fat or high-fat, high-

sugar diet-driven progression of fatty liver disease [103]. In addition, the link between ROS 

and Th17 cell polarization has been demonstrated in context of liver inflammation [104]. 

Further, peroxisomal beta-oxidation, which impacts ER stress and mitochondrial function, 

also regulates inflammation and Th17 cell polarization in NAFLD [105]. Detailed 

contribution of the IL-17 axis in immunopathogenesis of fatty liver disease has been 

reviewed elsewhere [106]. Lastly, a recently described model of fatty liver and 

cardiovascular disease, which more accurately reflects human pathology, shows increased 

uric acid and ROS production, and is linked with increased IL-6, IL-1b and IL-17A 

production [107, 108, 109]. In summary, fructose can induce inflammation in hepatocytes 

through activation of JNK and/or aberrant lipid metabolism. Some of these effects may also 

occur in inflammatory cells, which further drives production of proinflammatory cytokines 

and liver inflammation that underpins hepatic insulin resistance.

Direct Effect of Fructose on Insulin Signaling

Above we have described unequivocal effects of fructose to induce hepatic insulin resistance 

via its effects on several pathways such us hepatic lipogenesis, mitochondrial dysfunction, 

ER stress and liver inflammation (Figure 2). But fructose, its metabolites or the enzymes 

involved in fructose metabolism may also directly contribute to insulin resistance. In the 

next section we will explore this hypothesis by discussing the effects of fructose on the 

insulin signaling pathway, that are independent of its effects to promote obesity, and its role 

as a source of additional calories in obesogenic diets.
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Fructose Decreases Hepatic Insulin Receptor and IRS2—Some reports indicate 

that fructose feeding is associated with a decrease in proximal insulin signaling. This can be 

either a consequence of decreased protein levels of insulin signaling molecules, including a 

decrease in insulin receptor and insulin receptor substrates 1 and 2 (IRS1/IRS2), or impaired 

signal transduction of these molecules. Indeed, it has been shown that fructose-fed rats have 

lower insulin receptor levels in the liver and muscle [110]. This was noted after only two 

weeks of feeding diet containing 66% fructose, an intervention that was not long enough to 

result in changes in body weight, fasting plasma glucose, and plasma insulin levels. A 

decrease in protein levels of insulin receptor was associated with a decrease in insulin 

receptor mRNA, indicating that less protein was transcribed. This resulted in decreased 

binding of radiolabeled insulin, which can be explained by decreased receptor numbers in 

fructose-fed rats, as binding affinity of insulin to insulin receptor was not affected [110].

Similarly, two weeks of fructose-sweetened water (10% W/V) supplementation in female 

rats resulted in decreased hepatic IRS2, but not IRS1 protein levels [111], without having an 

effect on total body weight. A decrease in IRS2 is found in the setting of NAFLD [112], 

where insulin is unable to suppress hepatic glucose production, but is sufficient to stimulate 

hepatic lipogenesis via IRS1, a term called selective insulin resistance [113]. A decrease in 

IRS2 was associated with decreased insulin sensitivity and impaired glucose tolerance in 

these rats, but hepatic insulin receptor levels were not reported in this study [111]. 

Subsequent studies showed that decreased hepatic IRS2 protein and mRNA levels in 

fructose-supplemented rats (10% W/V) are likely mediated by increased activity of 

mammalian target of rapamycin 1 and inactivation of the hepatic transcription factor 

forkhead box O1 (FoxO1) [114]. An extended dietary intervention over two months was also 

associated with decreased hepatic IRS2 protein levels and impaired glucose tolerance in 

fructose-, but not glucose-, supplemented rats. Again, this was observed without a change in 

total caloric intake and body weight gain between fructose- and glucose-supplemented 

groups, whereas both groups gained more weight than chow-fed group [115]. Together, 

these studies suggest that fructose supplementation leads to decreased protein and mRNA 

levels of insulin receptor and IRS2, which contributes to hepatic insulin resistance. 

Furthermore, these effects are evident before weight gain occurs from increased fructose 

intake and are also indepenent of total calories, as equivalent caloric intake from glucose 

does not lead to these changes.

Fructose Upregulates PTP1b—Protein tyrosine phosphatase non-receptor type 1 

(PTP1b) negatively regulates insulin signal transduction by removing tyrosine 

phosphorylation on insulin receptor and insulin receptor substrates. Thus, a decrease in 

PTP1b improves insulin sensitivity in diabetic mice [116, 117] and several PTP1b inhibitors 

are being developed for treatment of insulin resistance [118]. Adeli’s [119] group reported 

increased PTP1b protein and enzymatic activity in isolated hepatocytes from fructose-fed 

hamsters. This was associated with reduced tyrosine phosphorylation of the insulin receptor 

and IRS1/IRS2, indicative of reduced proximal insulin signaling [119]. They also reported 

decreased phosphatidylinositol 3-kinase activity and decreased insulin-stimulated 

phosphorylation of Akt on Ser473 and Thr308. Similar to findings in hamster, fructose 

feeding in rats also decreases hepatic tyrosine-phosphorylation of insulin receptor and IRS1 
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to about 70% of control levels after insulin stimulation [120, 121]. Increased hepatic PTP1b 

levels and activity in fructose-fed rats could be reversed by curcumin, an intervention that 

also results in increased insulin receptor, IRS1/IRS2 and Akt phosphorylation [122]. The 

effects of fructose to increase PTP1b may not be completely independent of hepatic 

lipogenesis, as fructose-induced elevation of PTP1b leads to increased mRNA, as well as 

promoter activity of SREBP1 and its downstream target FASN. This is mediated via 

induction of protein phosphatase 2A (PP2A), as its inhibition results in normalization of 

SREBP1 levels [123]. The effects of fructose to decrease tyrosine phosphorylation of insulin 

signaling molecules via induction of PTP1b activity provide further evidence that fructose 

feeding can directly decrease early steps of insulin signal transduction.

Knockdown of Fructose Metabolism Increases Hepatic Insulin Sensitivity—
The direct effect of fructose to induce hepatic insulin resistance can also be inferred from 

studies utilizing silencing of fructose metabolizing enzyme, KHK. We showed that siRNA 

targeting KHK improves glucose tolerance in HFD-fed mice supplemented with fructose in 

drinking water, but also in HFD-fed mice provided with regular water. This was associated 

with an increase in insulin stimulated Akt phosphorylation (Ser473) in livers of these mice, 

as well as improved NAFLD activity score and hepatic triglyceride content [10]. We could 

not consistently document increase in insulin receptor following KHK knockdown and had 

not yet assessed total IRS1/IRS2 levels. Ishimoto et al. [124] also published that global KHK 

knockout mice are protected from steatohepatitis and hyperinsulinemia induced by high-fat, 

high-sucrose diet, but assessment of hepatic insulin resistance was not reported in this 

manuscript. Others, have also published that KHK knockout mice are protected from diet-

induced metabolic dysregulation, but again hepatic insulin sensitivity was not directly tested 

in these mice [125].

The above discussed studies pave the way for fructose to exert a direct role in inducing 

hepatic insulin resistance in addition to its indirect effects (Figure 3). This hypothesis needs 

to be adequately addressed in future studies. If confirmed, it would be reasonable to suggest 

that reducing excess fructose intake takes priority over reducing total caloric intake as a first 

step on the road to improve hepatic insulin sensitivity.

Summary and Future Perspective

Dietary fructose intake is strongly associated with development of hepatic insulin resistance 

[124], and this effect appears to be independent of total caloric intake [126] or body weight 

gain [115]. Furthermore, while both glucose and fructose can induce features of metabolic 

syndrome, it is the internal conversion of glucose to fructose in the liver that is responsible 

for increased lipogenesis and insulin resistance [127]. Fructose effects are largely dependent 

on increased hepatic lipogenesis, manifesting as NAFLD. However, not all hepatic fat 

accumulation leads to insulin resistance, as deposition of triglycerides, observed with 

glucose supplementation, does not result in hepatic insulin resistance [10]. This is further 

highlighted in studies of mice with overexpression of Dgat2, an enzyme that mediates the 

final step in TG synthesis, where increased hepatic triglyceride accumulation does not result 

in hepatic insulin resistance [128]. In addition to lipogenesis, fructose intake decreases 

mitochondrial FAO, induces ER stress and potentiates liver inflammation, which are all 
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pathways that play a marked role in the development of hepatic insulin resistance. 

Interestingly, dietary fructose may also have direct effects on the insulin signaling pathway, 

so that insulin resistance develops first in the liver, which is one of the primary sites of 

fructose metabolism.

This review is exclusively focused on the pathways in the liver by which fructose leads to 

insulin resistance. Future work is needed to investigate the effects of dietary fructose on 

insulin resistance via its other reported effects, such as to promote accumulation of visceral 

adipose tissue, alter gut microbiome, induce inflammatory response in adipose and muscle 

tissue, impact exercise physiology, increase production of uric acid in the kidney and central 

effects leading to hyperphagia and leptin resistance. Furthermore, improved laboratory 

techniques, such as RNA sequencing to identify microRNAs and long non-coding RNAs 

[129], proteomic analysis of post-translational modification of mitochondrial proteins [57] 

and new metabolomic platforms to identify fructose-specific lipids, may uncover new 

pathways that could mediate detrimental effects of fructose of insulin resistance.

In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex 

interplay of several metabolic pathways, at least some of which are independent of increased 

weight gain and total caloric intake. Further studies are needed to more completely 

understand the underlying mechanisms and to identify opportunities for intervention where 

modified fructose metabolism may be used for treatment of insulin resistance and fatty liver 

disease. The current evidence contradicts the notion that fructose is merely a source of 

palatable calories that leads to increased weight gain.
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Figure 1. 
Clinical Studies of Fructose and Hepatic Insulin Resistance

The top right side of the figure depicts short-term (~1–2 weeks) clinical studies in humans 

on a regular diet supplemented with additional 3–4g/kg of fructose. The top left side of the 

figure lists long-term (3–12 weeks) studies of fructose supplementation in human subjects 

on a regular diet, but with much lower amount of fructose. These short- and long-term 

studies document that hypercaloric fructose supplementation is associated with development 

of hepatic insulin resistance. The bottom panel depicts crossover studies of isocaloric short- 
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(bottom right) and long-term (bottom left) consumption of dietary fructose. These studies 

demonstrate that weight maintaining diet supplemented with fructose is associated with 

hepatic insulin resistance. Lastly, epidemiologic evidence indicates that increased fructose 

intake, in sugar-sweetened beverages (SSB) on a population level, leads to outcomes 

suggestive of insulin resistance, even when adjusted for BMI or energy intake.
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Figure 2. 
Fructose Activated Pathways That Lead to Insulin Resistance

Fructose is metabolized in hepatocytes by ketohexokinase (KHK). This leads to decreased 

adenosine triphosphate (ATP) levels and increased uric acid production. Uric acid further 

stimulates KHK expression in a feed forward loop. Fructose strongly increases hepatic de 

novo lipogenesis (DNL). This is mediated through sterol regulatory element-binding protein 

1c (SREBP1c) and carbohydrate-responsive element-binding protein (ChREBP) 

transcription factors that are at least in part regulated through peroxisome proliferator-

activated receptor gamma coactivator 1-beta (PGC1b). They upregulate enzymes involved in 

free fatty acid (FFA) synthesis, such as ATP citrate lyase (ACLY), acetyl-CoA carboxylase 1 

(ACC1), fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1). Accumulation 

of FFA in hepatocyte leads to insulin resistance, either directly or through buildup of more 

complex lipids and intermediates of lipid oxidation. In addition to DNL, fructose decreases 

mitochondrial fatty acid oxidation (FAO). This leads to a further decrease in ATP, decreased 

mitochondrial size and attenuated mitochondrial proteome, whereas mitochondrial fission, 

protein acetylation and reactive oxygen species (ROS) are increased. Decreased FAO is 

signaled through upregulation of ChREBP and a decrease in peroxisome proliferator 

activated receptor alpha (PPARα). Mitochondrial dysfunction and decreased FAO have been 
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strongly linked with the development of hepatic insulin resistance. Fructose also strongly 

induces ER stress and hepatic inflammation, both of which can lead to hepatic insulin 

resistance.
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Figure 3. 
Effects of Fructose on Insulin Signaling Pathway

Insulin binds to the insulin receptor (IR), which leads to autophosphorylation of IR and 

triggers the insulin signaling cascade. Insulin receptor substrates (IRS) dock to IR to further 

propagate insulin signaling by interacting with phosphoinositol 3 kinase. PI3K 

phosphorylates phosphoinositol diphosphate to phosphoinositol triphosphate (PIP3), which 

activates 3-phosphoinositide-dependent protein kinase 1 (PDPK1) that subsequently 

phosphorylates Akt, one of the critical nodes in the insulin-signaling network. Fructose 

intake has been associated with a decrease in IR and IRS2 expression, with no change in 

IRS1 levels, leading to decreased Akt phosphorylation. Additionally, fructose may increase 

protein-tyrosine phosphatase 1b (PTP1b) activity, which results in dephosphorylation of IR 

and IRS2, further leading to decreased Akt phosphorylation. This process may not be 

entirely independent of lipogenesis as fructose through PTP1b induces protein phosphatase 

2A (PP2A), which increases SREBP1. Whereas dietary fructose decreases insulin signaling, 
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knockdown of ketohexokinase (KHK) reduces fructose metabolism and increases 

phosphorylation of Akt.
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