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COVID-19 testing has become a standard approach for estimating prevalence which then assist in public
health decision making to contain and mitigate the spread of the disease. The sampling designs used are
often biased in that they do not reflect the true underlying populations. For instance, individuals with
strong symptoms are more likely to be tested than those with no symptoms. This results in biased esti-
mates of prevalence (too high). Typical post-sampling corrections are not always possible. Here we pre-
sent a simple bias correction methodology derived and adapted from a correction for publication bias in
meta analysis studies. The methodology is general enough to allow a wide variety of customization mak-
ing it more useful in practice. Implementation is easily done using already collected information. Via a
simulation and two real datasets, we show that the bias corrections can provide dramatic reductions
in estimation error.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

There is an urgent need to better understand the spread of
COVID-19 in populations both from being able to identify impor-
tant changes in infection dynamics but also in understanding the
effectiveness of control and mitigation strategies. So testing studies
of multiple sorts have been undertaken all over the world. Serolog-
ical surveys (sometimes together with nucleic acid amplification
testing) have become a widespread tool to estimate SARS-CoV-2
prevalence and to assess the extent the infection has spread in
the population. On the other hand, the results of nucleic acid
amplification testing are usually used for diagnosis or detection
of SARS-CoV-2 infection and estimating the incidence of infections.
Outside of a few exceptions however, most of these studies have
been with biased samples. These can be convenience samples
which can lead to over representation of symptomatic sampled
units (Alleva et al., 2020). And this in turn can lead to over-
estimation of disease prevalence. Random sampling protocols can
be inefficient due to the lower degree of infection amongst asymp-
tomatic individuals. Thus there is a great need effective corrections
that can reduce bias in prevalence estimation.

Much attention has been focused on the issue of correcting for
imperfect tests (Diggle, 2011; Greenland, 1996); but less attention
has been paid to correcting for biased sampling. One notable
exception is Alleva et al. (2020), where it was proposed a snowball
sampling approach in conjunction with contact tracing in order to
set up a better disease surveillance system. However, this is not
how the vast majority of studies are conducted today. In this paper,
we address biased sampling from an entirely and somewhat unex-
pected viewpoint.

We note that biased samples also occur when doing meta anal-
yses due to publication bias (Andrews and Kazy, 2019). That is,
papers which favor a null hypothesis of no treatment effect are less
likely to be published and hence meta-analytic estimates of treat-
ment effect can be over-estimated. If the null-favoring censoring
mechanism can be modeled, then interesting corrections can be
made. Based on Andrews and Kazy (2019), we derive and adapt a
version of their model for correcting sampling bias in the current
COVID-19 pandemic.

We develop the main idea taking into account several cate-
gories of symptoms. However, some readers might find of interest
to consider just two categories (symptomatic and asymptomatic).
In this case, a simple summary of the theory can be found in
SubSection 3.5 and a real-life example for this situation can be
found in Section 6.

2. The model

Consider a population P of size N. P has a partition P into 2M
subsets of P each with proportions given by the vector

p� :¼ pð0Þ
1 ; pð1Þ

1 ; pð0Þ
2 ; pð1Þ

2 ; . . . ; pð0Þ
M ; pð1Þ

M

� �
, where
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XM
s¼1

pð0Þ
s þ pð1Þ

s

� � ¼ 1 and pð0Þ
s ;pð1Þ

s P 0; for s 2 f1; . . . ;Mg:

In other words, p� belongs to the standard ð2M � 1Þ-simplex.

We define a r.v. S� taking values in the set I :¼ 1ð0Þ;1ð1Þ; . . . ;
n

Mð0Þ;Mð1Þg that, conditioned on p�, selects an element of the
partition P according to a categorical distribution in the interval
ð0;1Þ:

f S� sðiÞjp�� � ¼ pðiÞ
s ;

where s 2 f1; . . . ;Mg represents symptomatology (i.e., number or
degree of symptoms), and i 2 f0;1g, prevalence: i ¼ 1 represents
infected, while i ¼ 0 represents non infected. Think of I as the set
of indexes of the elements in the partition P. Thus, with a slight
abuse of notation, we will refer to s either as a category or as the
subset of P with that particular index. In the most common sce-
nario there are just the categories—asymptomatic and symp-
tomatic—, so M ¼ 2. However, some studies have considered more
than two degrees of symptoms (see Sudre et al., 2020).

The proportion of people with symptoms s ¼ sð0Þ [ sð1Þ is given
by

ps ¼ pð0Þ
s þ pð1Þ

s : ð1Þ
Here pð1Þ

s represents the probability of being in the category s

and being infected, whereas pð0Þ
s represents the probability of being

in the category s while non infected.
From this notation, the overall probability of being infected is

pð1Þ
1 þ � � � þ pð1Þ

M :

Also, pð1Þ
s =ps is the conditional probability of being infected

given that we are considering the category s of symptoms.
We assume a Bernoulli r.v. T, which will be 1 with probability

pðS�Þ. Let’s consider an independent sequence T1; . . . ; TN , dis-
tributed as T. If the individual j belongs to the group s�; Tj ¼ 1,
which happens with probability pðs�Þ, will tell us that the individ-

ual j is tested (sampled). The sample size is given by NT ¼ PN
j¼1Tj.

In summary, up to this point, for m 2 f1 . . . ;Mg, we have that:

� pðmÞ is the probability of being in the category m and being
tested.

� p mð1Þ� �
is the probability of testing for an individual in category

m who is infected.

� pð1Þm
pm

is the conditional probability of being infected given m.

� pm is the real proportion of people with the symptoms.

Let’s assume without loss of generality, an ordering for the par-
tition of P by increasing severity and/or number of symptoms. Then
we obtain the four following orderings:

pð1Þ 6 � � � 6 pðsÞ 6 � � � 6 pðMÞ; ð2Þ
p 1ð1Þ
� �

6 � � � 6 p sð1Þ
� �

6 � � � 6 p Mð1Þ
� �

; ð3Þ
pð1Þ
1

p1
6 � � � 6 pð1Þ

s

ps
6 � � � 6 pð1Þ

M

pM
; ð4Þ

p1 P � � � P ps P � � � P pM : ð5Þ
The intuition behind these is that the higher the degree and/or

number of symptoms, then the higher the probability of being
tested (2), the higher the probability of testing infected people
(3), the higher the probability of being infected inside that group
(Eq. 4), and the lower the real proportion of people with the symp-
toms (5).
2

From the conditional distribution of ðS�jp�; T ¼ 1Þ, we observe i.
i.d. draws of Sjp, whose density, because of Bayes theorem, is

f Sjpðsj~pÞ ¼ f S�jp� ;T sj~p;1ð Þ ¼ P T¼1jS�¼s;p�¼~p½ �
P T¼1jp�¼~p½ � f S�jp� sj~pð Þ

¼ pðsÞ
E½pðS�Þjp�¼~p� ps:

ð6Þ

Assume there is no error in testing. Then we know exactly the
proportion of infected people in the sample. Moreover, we know
under which category s is each person tested. Therefore, for all s,
we can derive:

f Sjp sð1Þj~p� � ¼ f S�jp� ;T sð1Þj~p;1� � ¼ P T¼1jS�¼sð1Þ ;p�¼~p½ �
P T¼1jp�¼~p½ � f S�jp� sð1Þj~p� �

¼ p sð1Þð Þ
E½pðS�Þjp�¼~p�p

ð1Þ
s :

ð7Þ

Thus, we obtained in (6) the biased estimate of the proportion
of people tested—and in (7) the biased estimate of the proportion
of prevalence) for each s—. The total biased estimator of tested
people is

XM
s¼1

pðsÞ
E½pðS�Þjp� ¼~p�ps; ð8Þ

and the total biased estimator of prevalence is

XM
s¼1

p sð1Þ
� �

E½pðS�Þjp� ¼~p�p
ð1Þ
s : ð9Þ
3. Bias correction

The bias correction is easily determined. It amounts to multi-
plying the quantity on the LHS of (6) and (7) by the inverse of
the quotient on the RHS of each respective equation. Specifically,
the bias correction is given by CðxÞf Sjpðxj~pÞ, where

CðxÞ :¼ P T ¼ 1jp� ¼~p½ �
pðxÞ : ð10Þ

Replacing x by s and sð1Þ will give us the bias correction for testing
and prevalence, respectively, for each s. Summing over sð1Þ gives the
sampling bias-corrected estimate of disease prevalence. Now, the
numerator at the RHS of (10) can be estimated as NT=N, where NT

is the number of people tested, andN is the census population. How-
ever, the denominator is unknown, but we can still say some things,
depending on the number of symptomsM we are considering.

3.1. Big s

The bias problem of testing and prevalence is not in the last val-
ues of S�, but in considering only the last values of S� for testing.
This is the main thing to correct. We already learned that the over-
all proportion of people tested is NT=N. We also know that most of
the people tested are symptomatic; therefore, when s approaches
M; ~ps :¼ ðNT=NÞf Sjpðsj~pÞ is a good estimator of the real proportion
of the last value. Finally, since we know that most of the symp-
tomatic people will be infected, and most of them will get tested,

then ~pð1Þ
s � ~ps for large s.

3.2. Small s

When s decreases to 1, the situation is different. According to
(2), in the absence of symptoms, the probability of being tested
is small. Nonetheless, having few tests for small values of s does
not mean that the proportion of people infected/uninfected is close
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to 0. I.e., pðsÞ might be small, but ps is large, which according to (6)
is introducing a heavy bias. Another way to think of this is that for
an unbiased sample, ps would have a clear representation.

Now, notice that, since 1 P CðsÞf Sjpðsj~pÞ, it is possible to give a
lower bound for pðsÞ:

NT

N
f Sjpðsj~pÞ 6 pðsÞ ð11Þ

Giving pðsÞ its lower possible value makes the corrected esti-
mate CðsÞf Sjpðsj~pÞ ¼ 1. However, this implies that for all s0 – s, the
estimated probability of being tested is 0, which cannot be true.

In order to solve this, let’s divide P into three groups:
P� [Pm [Pþ, where P� and Pþ are the subsets of low and high
values of symptoms, respectively; and Pm, the symptoms in
between.

According to Section 3.1, we have already estimated the proba-
bility of the elements in Pþ. Thus making pþ:¼

P
s2Pþ~ps, we

propose the following solution for values in P�:

1. Take the space P� [Pm, which has probability 1� pþ.

2. Letting ~M be the cardinality of the set P� [Pm, assign equal
probabilities ~pk to all k 2 P� [Pm. I.e., ~ps ¼ 1� pþ

� �
= ~M.

The assignation of equal probabilities is justified by our total
ignorance of the real proportions, resorting thus to Bernoulli’s Prin-
ciple of Insufficient Reason (PoIR, see, e.g., Dembski and Marks,
2009), which says that in the absence of further knowledge we
must assign equal probabilities to events. Or, more strongly, by
the maximum entropy principle, since, according to Jaynes, ‘‘in
making inferences on the basis of partial information we must
use that probability distribution which has maximum entropy sub-
ject to whatever is known. This is the only unbiased assignment we
can make; to use any other would amount to arbitrary assumption
of information which by hypothesis we do not have” (Jaynes, 1957)
(see also Díaz-Pachón and Marks, 2020). In other words, if we are
going to consider some other distribution than equiprobability,
we must justify the reduction in entropy that is inserting bias.
3.2.1. Prevalence
We know that in the asymptomatic population, a non-negligible

portion of individuals is infected. However, studies vary here as for
the proportion of asymptomatic and infected individuals. Some of
those studies maintain that most of the asymptomatic people are

already infected. In such case, pð1Þ
s � ps, as we explained in SubSec-

tion 3.2. Others lean on the side that, for small, s, we have pð1Þ
s =ps

closer to 0 than to 1, but not necessarily approaching 0. We pro-
pose the following algorithm:

1. If we don’t have any information about the asymptomatic cate-
gory with the disease, generate a random number u according
to a uniform distribution in the interval ð0;1Þ.

2. If we have some information about the asymptomatic category
with the disease from the biased sample, make u the proportion
of prevalence inside the particular category of interest provided
by the biased sample (i.e., u ¼ f Sjp sð1Þj~p� �

=f Sjpðsj~pÞ).
3. Make ~pð1Þ

s ¼ u~ps.
Remark 1. We have randomized u in ð0;1Þ, assuming total igno-

rance regarding pð1Þ
s =ps. However, as we mentioned before the algo-

rithm, other options are possible. For instance, in case of pð1Þ
s =ps

closer to 0 than to 1, but not necessarily approaching 0, it makes
sense to randomize u in ð0;1=2Þ.
3

Remark 2. It is also worth noticing that, because of step 2 in the
previous algorithm, the importance of u decreases as the informa-
tion in the sample (particularly information about asymptomatic
individuals and groups with lesser symptoms) increases.

3.3. Middle values of s

Notice that in the previous algorithm we are not asking to use ~p
for the correction in (10) of values in Sm (although it might be done
with some care.) This is because for these values we have few to no
knowledge. Our recommendation is to collapse P to P� [Pþ. For
this case, we explain the estimated values in SubSection 3.5.

3.4. Some model caveats

The model is presented in some generality on purpose. It natu-
rally permits customization to different testing settings. For
instance, symptomatology may be extended to reflect different
subpopulations (e.g., racial/ethnic subgroups, age groups, risk
groups, environments). The model can also be generalized to index
more than 1 type of test (not shown here).

We also make the caveat that this is a correction of the bias, not
a total elimination of it. This is a consequence of the fact that the
correction factor Cð�Þ in (10) cannot take any value, but has restric-
tions as explained in the obtention of Eq. (11). Nonetheless, as we
will see in the toy example and the two real-life scenarios in the
last sections, the proposed method achieves very important reduc-
tions in sampling bias, particularly for the overall prevalence, but
does not reduce it to zero.

3.5. M ¼ 2

As suggested before, an important simplification occurs when
we consider only two groups of symptomatology: asymptomatic
(s ¼ 1) and symptomatic (s ¼ 2). In this case, the analysis is conve-
niently reduced to:

� ~pð1Þ
2 � ~p2 ¼ ðNT=NÞf Sjpð2j~pÞ (from SubSection 3.1)

� ~p1 ¼ 1� ~p2 (from SubSection 3.2).

� ~pð1Þ
1 ¼ u~p1 (from SubsubSection 3.2.1).

4. Estimated variance

Let X1; . . . ;Xn be iid multinomial M 1;p�ð Þ. ThenPn
i¼1Xi � Mðn;p�Þ. Let p̂ :¼ n�1Pn

i¼1Xi. By the MCLT, we know that
ffiffiffi
n

p � p̂ � AN p�;R=nð Þ; ð12Þ
where AN stands for asymptotically normal, and
R ¼ Diagðp�Þ � p�p�T .

Now define

fp :¼ f Sjp sð0Þ1 j~p
� �

; f Sjp sð1Þ1 j~p
� �

; . . . ; f Sjp sð0ÞM j~p
� �

; f Sjp sð1ÞM j~p
� �� �

;

and let Y1; . . . ;Yn be iidM 1; fp
� �

, so that
Pn

i¼1Yi � Mðn; fpÞ. Applying
the Delta method to q̂ ¼ n�1Pn

i¼1Yi, we obtain thatffiffiffi
n

p � q̂ � ANðfp;VnÞ, where Vn ¼ 1
n g

0ðpÞRg0ðpÞT , and g0ðpÞ is

g0ðpÞ ¼ 1
P½T ¼ 1jp ¼~p� p sð0Þ1

� �
;p sð1Þ1

� �
; . . . ;p sð0ÞM

� �
;p sð1ÞM

� �� �
: ð13Þ

Notice that the correction in (10) applies g�1 to Y, which leads
back to X. Therefore, asymptotically, we obtain again the distribu-
tion in (12).
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In practice, we start with the biased iid ~Y1; . . . ; ~YNT , which are

Mð1; fpÞ, whose sum is Mðn; fpÞ. Letting ~q ¼ N�1
T

P ~Yi, we have
again by the MCLT that

ffiffiffiffiffiffi
NT

p � ~q � ANðfp;VNT Þ. Making
hðfpÞ ¼ C � fp, where C is a vector with components as in (10), we
can apply again the Delta method to h, obtaining

ffiffiffiffiffiffi
NT

p
� ~q � AN hðfpÞ;CVNTC

T
� �

: ð14Þ

However, since we are not using C, butC, anM-vector whose last
component is ðNT=NÞf M and with the first M � 1 components being
all 1

M�1 1� NT
N f M

� �
. Then, the variance-covariance matrix becomes

ar2
M ar2

M � � � br2
M

ar2
M ar2

M � � � br2
M

..

. ..
. . .

. ..
.

ar2
M ar2

M � � � br2
M

br2
M br2

M � � � cr2
M

0
BBBBBBB@

1
CCCCCCCA
;

where c ¼ NT
N

� �2
; a ¼ c 1

M�1

� �2
; b ¼ c

M�1, and r2
M is the variance of f M .

From this, the estimated variance of the total prevalence estimate
can be calculated.

5. Toy example

Let’s consider a population of size one million where individuals
are labeled as asymptomatic (S� ¼ 1), few symptoms (S� ¼ 2), mild
symptoms (S� ¼ 3), and all symptoms (S� ¼ 4). According to our
previous definitions let’s consider the following probabilities:
p1 ¼ 0:5 p2 ¼ 0:25 p3 ¼ 0:15 p4 ¼ 0:1

pð0Þ
1 ¼ 0:45 pð0Þ

2 ¼ 0:2 pð0Þ
3 ¼ 0:075 pð0Þ

4 ¼ 0:01

pð1Þ
1 ¼ 0:05 pð1Þ

2 ¼ 0:05 pð1Þ
3 ¼ 0:075 pð1Þ

4 ¼ 0:09

p 1ð0Þ
� �

¼ 0:001 p 2ð0Þ
� �

¼ 0:01 p 3ð0Þ
� �

¼ 0:1 p 4ð0Þ
� �

¼ 0:9

p 1ð1Þ
� �

¼ 0:001 p 2ð1Þ
� �

¼ 0:01 p 3ð1Þ
� �

¼ 0:1 p 4ð1Þ
� �

¼ 0:9

pð1Þ ¼ 0:001 pð2Þ ¼ 0:01 pð3Þ ¼ 0:1 pð4Þ ¼ 0:9

None of these values is known to the researcher. The first row is
the proportion of people in each group, it adds to 1. The second (third)
are the population proportion of non infected (infected). Notice that

the total prevalence is
P

pð1Þ
i ¼ 0:265. The fourth is the proportion of

tested people without the disease in each group. The fifth is the
proportion of infected tested people in each group. The sixth is the
resulting proportion of people tested within each group, it is derived
using all the other rows. The proportion of tested people is

P½T ¼ 1jp� ¼~p� ¼
X4
i¼1

pðiÞpi ¼ 0:108: ð15Þ

The researcher does not know this probability, but knows the
total number of people tested (which can also be derived easily
to be NT ¼ 108;000), and the overall census population
N ¼ 1;000;000, with which she can estimate it. In addition, each
individual’s symptomatology status and test result is known. Thus
the proportion of people tested in each group is:

f Sjpð1j~pÞ ¼ f S�jp� ;T 1j~p;1ð Þ
¼ P T¼1jS�¼1;p¼~p½ �

P T¼1jp¼~p½ � f S�jpð1j~pÞ
¼ 0:001ð0:5Þ

0:108 � 0:004;

f Sjpð2j~pÞ ¼ 0:01ð0:25Þ
0:108 � 0:023;

f Sjpð3j~pÞ ¼ 0:1ð0:15Þ
0:108 � 0:14;

f Sjpð4j~pÞ ¼ 0:9ð0:1Þ
0:108 � 0:833:
4

Notice that the last term is grossly overestimated as 0:833
(against the real 0.1), and the first two terms are grossly underes-
timated (against the real 0.5, 0.25); the third term is very well
approximated, but in practice we do not know it. However, since
we know that most of NT is made of the last group,
ðNT=NÞ0:833 ¼ 0:0899 becomes a very good estimator of its size,

and ~pð1Þ
4 is also 0.0899. According to our proposal for the small val-

ues of S, take 1� ðNt=NÞf Sjpð4j~pÞ ¼ 0:911, and by maxent, distribute
it equally among the three remaining groups. In this way, we
obtain a probability of 0.306 for each of the first three groups.
According to SubsubSection 3.2.1, using the information we have
from the sample, we know that 50/500 were positive in the first
group, 500/2500 were positive in the second group, and
7500/15,000 were positive in the third group. In this way,
~pð1Þ
1 ¼ ð50=500Þ0:306 ¼ 0:0306; ~pð1Þ

2 ¼ ð500=2500Þ0:306 ¼ 0:0612,

and ~pð1Þ
3 ¼ ð7500=15;000Þ0:306 ¼ 0:153 are the corrected preva-

lence estimators for each of the remaining groups. From this, we
obtain a total corrected prevalence of 0:0306þ 0:0612þ 0:153þ
0:0899 ¼ 0:3347. That is, we have obtained a big correction for
the original estimator. The naïve estimator of prevalence produces
P4

i¼1p ið1Þ
� �

pð1Þ
i =0:108 ¼ 0:8245.

This corrects greatly for p1 and p2, but is harmful for p3, which is
now overestimated, since its original naïve value was the right one,
and the maxent value of 0.306 is doubling its real proportion.
Moreover, since inside this third category the real number of
infected is 75,000, and in the fourth category it is 90,000 (i.e.,
7:5% and 9% of the overall population, respectively), any little

change in the sampling scheme is likely to produce ~pð1Þ
3 > ~pð1Þ

4 . Since
our correction averages on unknowns, this very situation is
observed. Thus the toy example illustrates very well the method,
even highlighting the comments in SubSection 3.3 about the diffi-
culty of dealing with middle values. Nonetheless, the fact remains
that the overall correction of prevalence is a very good one.
6. The Diamond Princess COVID-19 outbreak: a real data
example

A challenge in applying our bias correction to real data is that
one does not know the population prevalence value typically (i.e.
the true answer). However, we will consider the testing data from
the Diamond Princess cruise (Mizumoto et al., 2020) in which
essentially all people on the ship were tested, thus providing a
‘‘population” prevalence value as the gold standard. However, this
example also has its problems in that it is considering mostly an
elderly population. As background, a COVID-19 outbreak emerged
on board the Diamond Princess cruise ship in early 2020. This was
traced back to a former passenger who tested positive for the virus
after disembarking in Hong Kong. After arriving in Yokohama,
Japan, the ship was placed under quarantine and over a two-
week period, essentially the entire population on the ship was
tested by laboratory-based PCR for the virus. A total of 3063 unique
tests were done out of 3711 total individuals. Some individuals
were permitted to disembark at various points in time, but the sta-
tus of those individuals not tested is assumed unknown.

At the end of the testing period, out of 3603 tests conducted,
there were 634 confirmed positive cases (positive for the virus).
Very importantly for our purpose, these were further categorized
as 306 symptomatic and 328 asymptomatic at the time of testing.
We will assume that all PCR negative individuals were asymp-
tomatic. Additional demographic information is provided on coun-
try of residence, age and gender distributions for the cases
(Mizumoto et al., 2020). The population value of prevalence found
with PCR is thus 634/3063 = 0.206. We make the caveat that the
accuracy of the PCR testing heavily depends on the delay between
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the time of infection and the time of sample collection, therefore,
more probable than not, 0.206 does not correspond to the real
prevalence. However, for the purposes of our illustration this is
not an issue, and we will proceed considering it as the prevalence
in the ship.

In order to demonstrate our bias correction, we will analyze
samples from the tested ship population considering four possible
sampling protocols: 1) total bias in which we sample only the
symptomatic positive individuals; 2) partial bias in which we draw
a sample with 75% representation from symptomatic individuals;
3) a balanced sampled of symptomatic and asymptomatic individ-
uals; 4) a truly random sample from the ship’s population based on
population symptom frequencies.

Sampling Protocol 1: The sample consists only of the 306
symptomatic positive individuals. The naïve estimate of prevalence
is then 1.0, which is grossly overestimated. The bias-corrected
estimate of ~p2 is ðNT=NÞ1 ¼ 306=3063 ¼ 0:099. This is also our

bias-corrected estimate of ~pð1Þ
2 . Furthermore, ~p1 ¼ 1� ~p2 ¼

1� 0:099 ¼ 0:901 and, taking the average of u, we obtain
~pð1Þ
1 ¼ 0:5ð0:901Þ ¼ 0:450. Thus the bias-corrected total prevalence

estimate is ~pð1Þ
1 þ ~pð1Þ

2 ¼ 0:450þ 0:099 ¼ 0:549.
Sampling Protocol 2: The sample consists of 306 symptomatic

positive individuals and 101 asymptomatic ones. Thus the sample
has 75% representation of symptomatic individuals. We assume
the number of positive asymptomatics in the sample is
101ð328=3063Þ � 11. Thus the naïve sample estimate of preva-
lence is ð306þ 11Þ=407 ¼ 0:779. Here ~p2 ¼ ðNT=NÞð0:75Þ ¼ 0:099,

which is also our estimate for ~pð1Þ
2 . Then ~p1 ¼ 1� ~p2 ¼ 0:901 and

~pð1Þ
1 ¼ ð11=101Þð0:901Þ ¼ 0:098. Setting u ¼ 11=101 � 0:109 repre-

sents knowledge we have, which is the sample estimate of the
prevalence for the asymptomatic group. Thus the biased corrected

estimated of total prevalence is ~pð1Þ
1 þ ~pð1Þ

2 ¼ :099þ :098 ¼ 0:197
which is very close to the true population value of 0.206.

Sampling Protocol 3: The sample consists of 306 symptomatic
positive individuals and 306 asymptomatic ones. This means that
all symptomatic individuals were still in the sample. We will
assume 306ð328=3063Þ � 33 positive cases among the asymp-
tomatic individuals. Thus the naïve estimate of prevalence is
ð306þ 33Þ=612 ¼ 0:554. Once again ~p2 ¼ ðNT=NÞ0:50 ¼
612=3063 � 0:50 � 0:099, which is also our estimate for ~pð1Þ

2 . Then
~p1 ¼ 1� ~p2 ¼ 0:901 and ~pð1Þ

2 ¼ ð33=306Þð0:901Þ ¼ 0:097. Thus total
corrected prevalence is 0.196, which is very close to the naïve esti-
mate as we predicted.

Sampling Protocol 4: This is a random sample from the popu-
lation. Suppose we take NT ¼ 500. Of these, 500ð306=3063Þ � 50
are symptomatic positive individuals and thus 450 are asymp-
tomatic individuals. Among the asymptomatic individuals, we
assume 450ð328=3063Þ � 48 are positive for the virus. Thus the
naïve sample estimate of prevalence is ð50þ 48Þ=500 ¼ 0:196
which is quite close to the true value (save rounding errors).
Thus, we anticipate, the bias correction will do little.
Specifically, ~p2 ¼ ðNT=NÞ0:90 ¼ 500=3063 � 0:90 � 0:147 and this

is also our estimate for ~pð1Þ
2 . Then ~p1 ¼ 1� ~p2 ¼ 0:853 and

~pð1Þ
1 ¼ 0:106ð0:853Þ ¼ 0:090. Thus the corrected prevalence esti-

mate is 0:147þ 0:090 ¼ 0:237. Again the true population value is
0.206.

Remark: One could also do brute force simulated bias estima-
tion for each of the four sampling protocols above. This would
mean drawing repeated samples of a given size from a ‘‘ship pop-
ulation” characterized using particular protocol-specific probabili-
ties for symptoms and then conditional on symptom status,
population probabilities for being virus positive. Corrected esti-
mates of prevalence would be estimated for each sample and
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empirical biases estimated given that the true population preva-
lence is known. The analyses conducted above can be thought of
as based on an idealized representative sample for each protocol
across all draws.

Remark: It would be of interest to do similar analyses broken
out by age and gender. However, the Diamond Princess data only
provides aggregate information at these levels without a known
mapping to symptomatology and viral presence status. It’s also
important to note that all estimates and inferences are limited to
considering the ship passengers as a population and should not
be generalized further.
7. Lombardy – Italy

Since the share of symptomatic individuals on the Diamond
Princess is controversial and the on-board population was highly
skewed towards older ages, we add this new example on which
the probability of developing symptoms is much lower (closer to
the actual values estimated for COVID-19). This example will cor-
roborate that the maxent principle (or Bernoulli’s PoIR) works in
a more representative scenario of the COVID-19 pandemic. The
actual example comes from a recent preprint by Poletti et al.,
where the authors calculated the probability of symptoms and crit-
ical disease after SARS-CoV-2 infection in Lombardy, Italy (Poletti
et al., 2020).

In a sample of 5824 individuals it was possible to identify 932
infections through PCR testing. Moreover, besides these 932
infected individuals, they also detected 1892 infections using sero-
logical assays. Thus, the total of infected individuals was 2824.
Among the total of infected, 876 were symptomatic (31%). There-
fore, since for our purposes we are only interested in detection by
PCR and not through antibodies, we will not count the 1892 infec-
tions detected through serological assays. However, we will use the
fact that 31% of the cases were symptomatic assuming that the
same percentage is holding for the 932 infections detected by
PCR. Thus, in our case we will have a prevalence of
932=5824 ¼ 0:16; and among the infected, 0:31ð932Þ ¼ 289 indi-
viduals will be symptomatic. The remaining 932–289 = 643 will
be infected and asymptomatic.

Sampling Protocol 1: The sample consists of the 289 infected
and symptomatic individuals. In this case, the naïve estimate of
prevalence is 1. The bias corrected estimate will be
~p2 ¼ ðNT=NÞ1 ¼ 289=5824 � 0:05. And this will also be the correc-

tion for ~pð1Þ
2 . Then ~p1 ¼ 1� ~p2 ¼ 0:95, and taking the mean of u we

obtain ~pð1Þ
1 ¼ 0:5ð0:95Þ ¼ 0:475. Therefore, the total corrected

prevalence is estimated as ~pð1Þ
1 þ ~pð1Þ

2 ¼ 0:475þ 0:05 ¼ 0:525, which
still high but corrects heavily the effects of a very bad sample.

Sampling Protocol 2: The sample consists of 384 individuals.
Among these, 289 (75%) are infected and symptomatic, and 95
(25%) are asymptomatic. We assume the sample has
95ð643=5824Þ � 10 asymptomatic positive for the virus. So our
naïve estimate of prevalence is ð289þ 10Þ=384 � 0:78. In this case,
~pð1Þ
2 ¼ ~p2 ¼ ð384=5824Þ0:75 � 0:049. Now, ~p1 ¼ 1� ~p2 ¼ 0:951;

and setting u as 10=95 � 0:105; pð1Þ
1 ¼ 0:105ð0:951Þ � 0:1. There-

fore the total prevalence is corrected to 0:1þ 0:049 ¼ 0:149, which
is very close to the real 0.16.

Sampling Protocol 3: In this scenario we have 289 symp-
tomatic positive and 289 asymptomatic. We assume the sample
has 289ð643=5824Þ � 32 asymptomatic and infected individuals.
The naïve estimate is ð289þ 32Þ=578 � 0:55. However,
~pð1Þ
2 ¼ ~p2 ¼ ð578=5824Þ0:5 � 0:05; and ~p1 ¼ 0:95. In this case,

~pð1Þ
1 ¼ ð32=289Þ0:95 � 0:105., where u ¼ 32=289. Therefore,

0:105þ 0:05 ¼ 0:11 is the corrected estimate of prevalence.
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Sampling Protocol 4: This sample is truly random. Say
NT ¼ 600. Among these, 600ð289=5824Þ � 30 are symptomatic
and positive. Therefore, 570 are asymptomatic. Among the asymp-
tomatic group, we are going to assume 600ð643=5824Þ � 66
infected individuals. The naïve sample estimate is thus
ð66þ 30Þ=600 ¼ 0:16, which of course is the same as the real
prevalence. In this case, the correction will work like this:

pð1Þ
2 ¼ p2 ¼ ð600=5824Þ0:95 � 0:098. Then ~p1 ¼ 1� ~p2 ¼ 0:902,

and pð1Þ
1 ¼ ð66=570Þð0:902Þ � 0:1044. Therefore, the total preva-

lence is estimated as 0:1044þ 0:098 ¼ 0:2024. In this case, the cor-
rection is not bad, but of course does not do as well as the truly
random sample.

8. The need for further bias correcting and discussion

The model assumes tests with no errors (i.e. false positives or
false negatives). Clearly this is not the situation in practice. Speci-
ficities and sensitivities can often be less than ideal. Sampling bias-
corrected estimates of prevalence can be further corrected in a sec-
ond stage using the methods of Diggle (2011) or Greenland (1996)
which account for using imperfect tests.

Our study demonstrates that under biased sampling designs
that are often difficult to avoid in testing studies for COVID-19,
the resulting biased estimates of prevalence can be corrected using
simple methodology derived and adapted from corrections for
publication bias used in meta analysis studies. Further research is
needed in order to correct the prevalence of ‘‘middle” groups, as
stated in SubSection 3.3 and seen with the overestimation of
s ¼ 3 in the toy example. However, the correction detailed in our
toy example, while extreme, shows the effectiveness of the correc-
tion for the total prevalence. The corrections can be used directly in
practice using the data collected even though many of underlying
quantities in the population may be unknown to the researcher.

CRediT authorship contribution statement

Daniel Andrés Díaz-Pachón: Conceptualization, Methodology,
Validation, Formal analysis, Writing - original draft. J. Sunil Rao:
Conceptualization, Methodology, Validation, Formal analysis,
Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
6

Acknowledgments

JSR was partially supported by NSF grant DMS-1915976 and
NIH grants U54 MD010722 and UL1 TR000460. We would like to
thank the two referees for their helpful input which improved
the final version of the paper.

References

Alleva, G., Arbia, G., Falorsi, P.D., Zuliani, A., 2020. A sample approach to the
estimation of the critical parameters of the SARS-CoV-2 epidemics: an
operational design with a focus on the Italian health system (Technical
report). University of Sapienza.

Andrews, I., Kazy, M., 2019. Identification of and correction for publication bias. Am.
Econ. Rev. 109 (8), 2766–2794.

Dembski, W.A., Marks, R.J., II, 2009. Bernoulli’s principle of insufficient reason and
conservation of information in computer search. In: Proc. of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics. San Antonio, TX.
pp. 2647–2652.

Díaz-Pachón, D.A., Marks II., R.J., 2020. Generalized active information: extension to
unbounded domains. BIO-Complexity 2020 (3), 1–6. https://doi.org/10.5048/
BIO-C.2020.3. URL:/https://bio-complexity.org/ojs/index.php/main/article/
view/BIO-C.2020.3.

Diggle, P.J., 2011. Estimating prevalence using an imperfect test. Epidemiol. Res. Int.
608719.

Greenland, S., 1996. Basic methods for sensitivity analysis of biases. Int. J.
Epidemiol. 25 (6), 1107–1116.

Jaynes, E.T., 1957. Information theory and statistical mechanics. Phys. Rev. 106 (4),
620–630.

Mizumoto, K., Kagaya, K., Zarebski, A., Chowell, G., 2020. Estimating the
asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on
board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill.
25 (10), 2000180. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180.

Poletti, P., Tirani, M., Cereda, D., Trentini, F., Guzzetta, G., Sabatino, G., Marziano, V.,
Castrofino, A., Grosso, F., del Castillo, G., Piccarreta, R., 2020. ATS Lombardy
COVID-19 Task Force, A. Andreassi, A. Melegaro, M. Gramegna, M. Ajelli, and S.
Merler. Probability of symptoms and critical disease after SARS-CoV-2 infection.
Preprint, 2020. URL https://arxiv.org/abs/2006.08471.

Sudre, C.H., Lee, K., Ni Lochlainn, M., Varsavsky, T., Murray, B., Graham, M.S., Menni,
C., Modat, M., Bowyer, R.C.E., Nguyen, L.H., Drew, D.A., Joshi, A.D., Ma, W., Guo,
C., Lo, C.H., Ganesh, S., Buwe, A., Capdevila Pujol, J., Lavigne du Cadet, J., Visconti,
A., Freydin, M., El Sayed Moustafa, J.S., Falchi, M., Davies, R., Gomez, M.F., Fall, T.,
Cardoso, M.J., Wolf, J., Franks, P.W., Chan, A.T., Spector, T.D., Steves, C.J., Ourselin,
S., 2020. Symptom clusters in Covid19: A potential clinical prediction tool from
the COVID Symptom study app. medRxiv.https://doi.org/10.1101/2020.06.12.
20129056.

http://refhub.elsevier.com/S0022-5193(20)30411-2/h0010
http://refhub.elsevier.com/S0022-5193(20)30411-2/h0010
https://doi.org/10.5048/BIO-C.2020.3
https://doi.org/10.5048/BIO-C.2020.3
https://bio-complexity.org/ojs/index.php/main/article/view/BIO-C.2020.3
https://bio-complexity.org/ojs/index.php/main/article/view/BIO-C.2020.3
http://refhub.elsevier.com/S0022-5193(20)30411-2/h0030
http://refhub.elsevier.com/S0022-5193(20)30411-2/h0030
http://refhub.elsevier.com/S0022-5193(20)30411-2/h0035
http://refhub.elsevier.com/S0022-5193(20)30411-2/h0035
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
https://doi.org/10.1101/2020.06.12.20129056
https://doi.org/10.1101/2020.06.12.20129056

	A simple correction for COVID-19 sampling bias
	1 Introduction
	2 The model
	3 Bias correction
	3.1 Big s
	3.2 Small s
	3.2.1 Prevalence

	3.3 Middle values of s
	3.4 Some model caveats
	3.5 [$]M=2[$]

	4 Estimated variance
	5 Toy example
	6 The Diamond Princess COVID-19 outbreak: a real data example
	7 Lombardy – Italy
	8 The need for further bias correcting and discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


