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Abstract

Blood pressure has a significant genetic component, but less than 3% of the observed variance has 

been attributed to genetic variants identified to date. Candidate gene studies of rare, monogenic 

hypertensive syndromes have conclusively implicated several genes altering renal sodium balance, 

and studies of essential hypertension have inconsistently implicated over 50 genes in pathways 

affecting renal sodium balance and other functions. Genome-wide linkage scans have replicated 

numerous quantitative trait loci throughout the genome, and over 50 single nucleotide 

polymorphisms (SNPs) have been replicated in multiple genome-wide association studies. These 

studies provide considerable evidence that epistasis and other interactions play a role in the genetic 

architecture of blood pressure regulation, but candidate gene studies have limited scope to test for 

epistasis, and genome-wide studies have low power for both main effects and interactions. This 

review summarizes the genetic findings to date for blood pressure, and it proposes focused, 

pathway-based approaches involving epistasis, gene-environment interactions, and next-generation 

sequencing to further the genetic dissection of blood pressure and hypertension.
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Introduction

Nearly one third of US adults over 20 years of age suffer from hypertension [1], a major risk 

factor for cerebrovascular disease, ischemic heart disease, and cardiac and renal failure [2]. 

Estimates for the heritability of systolic and diastolic blood pressure (BP) generally range 

from 31% to 68% [3*], but the genetic nature of hypertension has been debated since the 

days of Robert Platt and George Pickering in the 1940s. Platt argued that hypertension was 

caused by a single Mendelian genetic defect that produced a bimodal distribution of BP 

values [4]. Pickering countered that polygenic inheritance drove a continuous, unimodal BP 

distribution with values of hypertensives populating the right tail [5]. Platt’s theory is 
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supported by rare variants with large effects that cause monogenic hypertension syndromes 

[6], whereas Pickering’s theory is substantiated by variants with small effect sizes that 

collectively contribute to essential hypertension. The completion of the human genome 

project and the subsequent genome-wide mapping studies have confirmed the polygenic 

nature of essential hypertension [7].

Researchers have gained insight into the genetic architecture of hypertension, but most of 

the variance of BP is still unexplained. In this article, we review the BP-influencing variants 

identified by candidate gene, genome-wide linkage, and genome-wide association studies. 

We highlight successful strategies used to detect these variants, including meta-analysis of 

massive sample sizes, pathway-based analysis, inclusion of gene-gene and gene-

environment interactions, analysis of population isolates, and analysis of populations of non-

European ancestry. Finally, we discuss alternative strategies to leverage pathway analysis, 

epistasis, gene-environment interactions, and rare variants to deepen our understanding of 

the pathophysiology of hypertension and BP regulation, as summarized in Figure 1.

Candidate Gene Studies

Candidate gene studies interrogate polymorphisms in a subset of genes selected a priori 

based on biologic information. The limited number of polymorphisms examined translates 

into a favorable multiple testing correction that allows detection of small effects using 

moderate sample sizes. However, use of a moderate sample size precludes the study of rare 

variants (because very few participants have rare genotypes), and the number of genotyped 

polymorphisms limits the investigation of possible epistasis. Candidate gene studies ignore 

causative variants that lack an obvious physiological relationship to the complex disease [8].

Findings from candidate gene studies of Mendelian disorders (Table 1) are more consistent 

across studies than those of essential hypertension. Associations with essential hypertension 

are not always well replicated across studies (Table 2). Candidate gene studies often ignore 

epistasis, gene-environment interactions [9–17], and rare variants [18, 19], which may 

explain the inconsistent findings. Case-control candidate gene studies of a heterogeneous 

population may also have inflated type 1 and type 2 errors [20].

Candidate Gene Studies: Pathways

Entire physiological pathways may be more robustly associated with BP than their 

constituent polymorphisms. Candidate studies of over 15 rare Mendelian hypertensive or 

hypotensive syndromes have identified genes involved in renal sodium handling, including 

ion channels and cotransporters, kinase regulators (WNK1 and WNK4), and enzymes and 

receptors in the aldosterone synthesis or signaling pathways (Table 1). The implicated 

variants explain less than 1% of the observed population variance in BP. Candidate gene 

studies of essential hypertension have also implicated many of these renal sodium handling 

genes (such as WNK1, WNK4, SLC12A3, SLC12A1, KCNJ1, SCNN1A, SCNN1B, 

SCNN1G, and CLCNKB), as well as other parts of the renin-angiotensin-aldosterone system 

(RAAS) and dopaminergic signaling pathways involved in sodium homeostasis (Table 2). 

Renin, angiotensinogen, angiotensin-converting enzyme, and the angiotensin receptor (each 

playing critical roles in the synthesis and signaling of angiotensin, which stimulates 
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aldosterone secretion and sodium retention) have yielded inconsistent associations with 

essential hypertension (Table 2). Three kinases (WNK1, WNK4, and SGK1) regulating the 

activity of renal ion channels, and subunits of adducin (ADD1 and ADD2) that can activate 

the Na+/K+ pump (reviewed in references [21] and [22]) have been associated with BP 

(Table 2).

Both vasoactive and inflammation pathways have been implicated in BP regulation. 

Vasoactive dopamine (also involved in renal sodium balance) and epinephrine signaling 

pathways have been studied; polymorphisms in the catecholamine pathway genes TH, 

COMT, and DBH, dopamine receptor types 1 and 2, a kinase regulating dopamine receptors 

(GRK4), and adrenergic receptors have yielded inconsistent associations (Table 2). The 

literature as a whole, as well as mechanisms linking these catecholamines to BP, tentatively 

support the role of genes from these signaling pathways in BP regulation. Several genes 

involved in vasodilation/vasoconstriction (but not sodium balance), such as nitric oxide 

synthase (NOS3), endothelin-1b (EDN1), endothelin-1b receptor (EDNRA), and CYP2C8, 

have been associated with BP (Table 2). Similarly, a small number of studies have offered 

inconclusive results regarding the role of inflammation genes, particularly IL6 and TGFβ. 

Levels of interleukin-6 were correlated with BP [23], but no genetic associations have been 

reported. Panoulas et al. [24] demonstrated an association for TGFβ (replicated by He et al. 

[25]) in 400 patients with rheumatoid arthritis.

Analysis of Interactions in Candidate Gene Studies

Although most studies fail to systematically interrogate epistasis or other interactions, there 

is considerable evidence that they contribute to BP variability. Pascoe et al. [9] described 

intragenic interactions in the aldosterone synthase gene, leading to Mendelian hypotension. 

Participants with two missense variants (R181W and V386A) displayed the elevated serum 

ratio of 18-hydroxycorticosterone to aldosterone characteristic of the disorder, whereas those 

with only one missense variant were asymptomatic [9]. This finding exemplifies a strong 

interaction effect in the absence of the main effects of the individual polymorphisms [9].

Other RAAS components are involved in interactions with BP or essential hypertension. An 

intragenic interaction between two SNPs in angiotensin-converting enzyme (ACE [12]), as 

well as an intergenic interaction between polymorphisms in the angiotensinogen (AGT) and 

ACE genes [11], may influence BP. Epistatic interactions involving adducins, such as those 

between ADD1 and ADD2 [15], ADD1 and ACE [16], and ADD1 and CYP11B2 [17], may 

also influence BP. Numerous dopamine receptor interactions have been described in 

transgenic mice [26–28].

Gene-environment interactions may also contribute to BP variance. Wang et al. [10] reported 

an AGT-sex-ethnicity between body mass index and CYP19A1 [29], CAPN13 [30], MMP3 
[31], ADRB2 [32], CYP11B2 [33], and adducin-1 [34]. No association between the adducin 

G460W variant and BP was found until interactions with body mass index and sex were 

included [34], emphasizing the need to properly account for interactions to detect BP-

influencing variants. Investigators from the Genetic Epidemiology Network of Salt 

Sensitivity (GenSalt) study interrogated interactions between physical activity and 196 SNPs 

harbored in 24 genes from metabolic and physiological pathways involved in BP 
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homeostasis [35]. Significant BP-associated interactions were detected between physical 

activity (dichotomous active vs inactive) and SNPs in MR, SCNN1B, APLNR, GNB3, and 

BDKRB2 [35]. The effect sizes were substantial: active individuals may have cumulative 

reductions of up to 8 mm Hg in systolic BP (SBP) and 5 mm Hg in diastolic BP (DBP), 

compared with inactive individuals who carry the same number of minor alleles of these 

SNPs.

Genome-Wide Linkage Scans

Candidate gene studies highlighted several major pathways involved in BP homeostasis, but 

their reliance on prior biological knowledge precluded discovery of unsuspected genes and 

pathways. Genome-wide linkage scans (GWLS) agnostically query variants distributed 

throughout the genome. Low-frequency and rare variants with large effects on hypertension 

can be detected via linkage [36], but GWLS have low power for variants with modest effects 

[37**], suffer an increased multiple testing burden, and yield broad linkage peaks containing 

numerous positional candidate genes. Linkage analysis has identified BP quantitative trait 

loci (QTLs) on every chromosome [8], but these often lack replication.

Early Genome-wide Linkage Scans

Nearly all of the GWLS published between 1999 and 2006 (about two dozen) reported a 

suggestive association. Only about half of these studies reported a genome-wide significant 

QTL, and these lacked external replication (reviewed in [38]). One of the largest (N=3,599) 

early GWLS, the British Genetics of Hypertension Study (BRIGHT), reported just one 

genome-wide significant QTL at the end of chromosome 6 [39]. Using an expanded sample 

size (N=3,863) and denser marker set (2 cM spacing instead of 8 cM), the chromosome 6 

QTL vanished [40], but a suggestive locus (LOD=2.5) on chromosome 5 appeared. Early 

results from the Family Blood Pressure Program (FBPP) were also disappointing. One of 

four FBPP networks, HyperGEN, reported one suggestive locus (2 < LOD < 3 [41]), 

whereas a preliminary meta-analysis of all four FBPP networks (N=6,245) failed to identify 

any locus with LOD exceeding 2 [42].

Later studies of the FBPP produced more encouraging results. A genome-wide significant 

QTL on chromosome 1 discovered in GenNet [43] was replicated in two other FBPP cohorts 

(GENOA and HyperGEN), three previous studies [44–46], and a homologous region of the 

mouse genome [47]. Based on a combination of known physiology and the human and 

murine linkage signals, family-based association tests were performed on nine candidate 

genes on chromosome 1 [43]. Significant associations were detected between BP and 

ATB1B, RGS5, and SELE. The gene ATB1B encodes the β subunit of the Na+/K+ ATPase, 

which participates in renal sodium absorption, cardiac contraction, and regulation of 

vascular smooth muscle tone. RGS5 inactivates the G proteins that mediate vasoconstriction 

stimulated by angiotensin II and endothelin-1 and is suspected to have a role in angiogenesis 

and the remodeling of arteries. SELE encodes an endothelium-specific adhesion protein that 

influences vasoactive response. Each SNP has a large effect of 2–5 mm Hg [43].
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Genome-wide Linkage Scans of Non-European Populations

A GWLS using 385 microsatellite markers genotyped on 1,089 Mexican Americans from 

the Veterans Administration Genetic Epidemiology Study (VAGES) revealed significant 

linkage (LOD = 5.0) between SBP and chromosome 6q14.1 [48]. This broad linkage region 

in Mexican Americans (1-LOD interval is 23 cM long and contains 180 genes) encompasses 

loci also linked in European Americans (LOD = 3.3 [45]) and Dutch families (LOD = 2.5 

[49]). A SNP in this chromosomal region significantly interacted with a SNP on 

chromosome 20q12 to influence susceptibility to young-onset hypertension in the Han 

Chinese of Taiwan [50].

Genome-wide Linkage Scans of Isolated Populations

To reduce genetic heterogeneity and the impact of nonuniform environmental exposures, 

researchers have performed GWLS using isolated founder populations [51]. Forty-six loci 

involved in the regulation of arterial pressure were identified by analyzing 120 French-

Canadian extended families from an isolated population [52]. Ciullo et al. [53] studied a 

single extensive (N=2,180), multigenerational family containing 173 individuals with 

essential hypertension. Linkage analysis after splitting the family into smaller families 

produced two previously reported QTLs for essential hypertension as well as a novel QTL 

that has since been replicated [54]. The extended linkage disequilibrium (LD) in a founder 

population increases power but complicates the identification of the BP-influencing gene 

[51]. In addition, variants identified in isolated populations may not be relevant to other 

populations [51].

Follow-up Genome-wide Linkage Scans: Interactions

Bell et al. [55] undertook a systematic two-dimensional scan of the British Genetics of 

Hypertension (BRIGHT) study (N=4,284) to test for epistasis across all marker pairs. 

Although several interactions produced a LOD exceeding 4, no pair of markers reached 

genome-wide significance (defined by LOD ≥ 5.84). Environment can contribute to the 

heterogeneity of the disease [56]. Linkage analyses can harvest previously undetected QTLs 

by incorporating gene-environment interactions. A GWLS of 3,289 European and African 

Americans from HyperGEN yielded 11 novel QTL regions and 15 previously reported QTLs 

after incorporating gene-age interactions [57]. Numerous loci that lacked any linkage 

evidence (LOD < 0.5) using the traditional model obtained genome-wide significance (LOD 

> 3) after including gene-age interactions.

Meta-analysis of Genome-wide Linkage Scans

By harnessing the power of an increased sample size, Simino et al. [54] detected five QTLs 

(LOD ≥ 3) on chromosomes 6p22.3, 8q23.1, 20q13.12, 21q21.1, and 21q21.3 using overall 

and ethnicity-specific meta-analyses of 13,044 African American, Asian, European 

American, and Hispanic American participants from the FBPP. The QTL shoulders (defined 

by LOD ≥ 2 regions under the linkage peaks) were broad (spanning 11.5 Mbps to 38.4 

Mbps) and encompassed a multitude of genes (79 to 541 in each QTL). The potential 

candidate genes and external corroboration for the association with BP or hypertension 

included HLA-A, HLA-DRB1, and TNFα for the chromosome 6 QTL region [58–60]; 
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YWHAZ, ANGPT1, ZFPM2, and OXR1 for the chromosome 8 QTL region [53, 60–62]; 

and KCNB1 and PTGIS on chromosome 20 [63–65]. According to the US National Center 

for Biotechnology Information (NCBI) Gene database (http://www.ncbi.nlm.nih.gov/gene/), 

the potential candidate genes are diverse, coding for parts of the major histocompatibility 

complex (HLA-A and HLA-B); angiopoietin involved in vascular development and 

angiogenesis (ANGPT1); a zinc-finger protein (ZFPM2); a cytokine that increases 

production of both angiotensin II and endothelin-1 (TNFα); a voltage-gated potassium 

channel with a role in insulin secretion, heart regulation, and neurotransmitter release 

(KCNB1); an enzyme producing prostacyclin (a vasodilator and inhibitor of platelet 

aggregation, PTGIS); a signal transduction protein that may play a role in insulin sensitivity 

(YWHAZ); and a protein that may prevent oxidative damage (OXR1). The chromosome 21 

QTLs had external support [60, 66–69] but lacked strong candidate genes (although this 

region has been moderately linked to two markers of inflammation, C-reactive protein and 

fibrinogen [70]).

Genome-wide Association Studies

The lack of compelling linkage evidence shifted attention to association studies. With 

sufficient sample size and the dense genotyping afforded by new SNP chips (initially 100 k 

to 500 k SNPs, later 1 M)and through imputations of intervening SNPs based upon HapMap 

haplotypes, over 80% of common SNPs (minor allele frequency [MAF] ≥ 5%) could be 

interrogated for association with BP and hypertension [71]. Genome-wide association 

studies (GWAS) can uncover common variants with small effect sizes that are often missed 

by candidate gene and linkage analyses [3*]. However, the ability to detect BP-influencing 

variants may be hindered by a harsh multiple-testing burden (due to 1 million genotyped 

SNPs), a failure to capture many rare and structural variants, a lack of interaction analysis, 

and inadequate accounting for shared environment among relatives (in family studies) 

[37**]. In early GWAS, the few common variants that reached genome-wide significance 

lacked replication and biological plausibility. (Over 80% of variants identified via GWAS 

are harbored in noncoding regions [37**].) Later GWAS employing meta-analysis of 

massive sample sizes and diverse populations have identified over 50 positional candidate 

genes. These variants generally have small effect sizes (typically less than 1 mm Hg per 

variant) and collectively explain less than 3% of the BP variability in the population. The 

functional mechanisms of most implicated variants remain unclear.

Early Genome-wide Association Studies

The Wellcome Trust Case Control Consortium (WTCCC) published the first GWAS of 

hypertension, analyzing approximately 470,000 genotyped and 2.2 million imputed SNPs 

[72]. The WTCCC simultaneously investigated 2,000 cases for each of seven complex 

diseases (including hypertension), using 3,000 shared controls drawn from the Great Britain 

population regardless of disease status. No hypertension variant reached the genome-wide 

significance level of α < 5×10−8, possibly due to poor tagging of variants (e.g., WNK1 
promoter) by the Affymetrix chip, the presence of hypertensives in the control sample, and 

confounding by age (the mean age of the controls was 20 years less than the age of the 

cases) [72, 73]. A GWAS of quantitative phenotypes (SBP and DBP) measured at two 
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examinations (1971–1975, N=1,260; and 1998–2001, N=1,233) also failed to produce any 

genome-wide significant hits in the Framingham Heart Study (FHS) [74]. A SNP intronic to 

CDH13 suggestively associated (P=9.9×10−8) with long range SBP in the FHS was 

supported by the association (P= 5.30×10−8) of a SNP upstream of CDH13 with 

hypertension in 1,407 cases and 2,365 controls from Germany and Estonia (the Kooperative 

Gesundheitsforschung in der Region Augsburg [KORA] S3, KORA S4, and HYPEST 

cohorts) [75]. Subsequent analysis indicated that even with these relatively large sample 

sizes, power was extremely limited (< 1%) for several of the replicated variants [76].

Numerous GWAS studies targeting populations of European descent were the subject of two 

large meta-analyses, CHARGE and GlobalBPgen, discussed in the meta-analysis section 

below.

Genome-wide Association Studies of Cohorts of Non-European Descent

Although early GWAS were conducted on individuals of European descent, later studies 

interrogated associations in cohorts of other ancestries to capitalize on differences in allele 

frequencies and LD patterns [71]. Performing GWAS on participants of African ancestry in 

particular can provide more genetic variation and shorter BP-associated regions because of 

less extended LD [37**]. The first GWAS of hypertension and BP in African Americans 

analyzed 808,465 SNPs in 1,017 participants (509 hypertensives and 508 normotensives) 

from the Howard University Family Study (HUFS) [60]. SNPs located near or in PMS1, 

SLC24A4, YWHAZ, IPO7, CACANA1H, and MYLIP were significantly associated with 

SBP. The meta-analysis of the Korea Association Resource (KARE, N=8,842) and Health2 

(N=7,861 Koreans) cohorts yielded a significant association between ATP2B1 and SBP [77, 

78]. The first GWAS of hypertension-related traits in a Japanese population (the Suita Study, 

N=936) identified a significant association between SBP and a SNP upstream of CCBE1 
[79]. Several issues still haunt GWAS of non-European cohorts, particularly population 

stratification, imputation difficulties, and less coverage of variants on genotyping platforms 

[71].

Genome-wide Association Studies of Homogenous Populations

A novel genetic variant associated with essential hypertension was discovered in a 

population with reduced genetic and lifestyle heterogeneity. Wang et al. [80] interrogated the 

association of 79,447 SNPs with SBP and DBP using 542 Old Order Amish (from the 

Amish Family Diabetes Study).

One SNP nearly reaching genome-wide significance (P=9.1×10–8) was harbored in a gene 

desert (chromosome 9p21.3) 900 kb away from known genes. A cluster of SNPs populating 

STK39 was suggestively associated (9.1×10–5< P<8.9×10–6) with SBP; a meta-analysis of 

7,125 participants from six studies (2 Amish and 4 non-Amish Caucasian) revealed an 

association (P=1.6×10–7) between STK39 and SBP. The gene STK39 (serine/threonine 

kinase) is expressed in the distal nephron and encodes SPAK; the latter kinase interacts with 

WNK kinases and both Na-Cl and Na-K-2Cl cotransporters and may influence sodium 

homeostasis [73].
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Pathway Analysis of GWAS Results

Differences in LD patterns across populations hinder replication of significant SNPs. 

Analyzing networks and pathways may be more robust than analyzing individual SNPs. 

Several pathways including defects in dopamine signaling that were undetected during 

single-SNP GWAS were identified during a pathway analysis of the genes most strongly 

associated with hypertension in the WTCCC [81]. Adeyemo et al. [60] followed the 

discovery GWAS in HUFS with a pathway analysis of the genes represented by the top-

scoring SNPs to assess any clustering in networks and pathways of biological relevance to 

BP regulation (using MetaCore with GO and GeneGo processes). The most strongly 

associated pathway, the role of HDAC and CaMK in skeletal myogenesis, contained the 

calcium-gated channels (CACNA1E and CACNA1H), IGF-1, and AKT, known to influence 

BP regulation, hypertension, and its correlates [60]. Several implicated pathways and 

processes had straightforward roles in BP, including PIP3 signaling in cardiac myocytes, 

potassium transport, and blood vessel morphogenesis. Others, such as synaptic vessel 

exocytosis [60], were less obvious, thereby highlighting the ability of pathway analysis to 

contribute to physiological understanding of BP regulation. Although specific SNPs lacked 

replication, several significant pathways were common to the WTCCC and the study by 

Adeyemo et al. [81].

Pathway analysis may ease replication of findings from an African American sample (such 

as HUFS), in which the LD pattern depends on admixture proportion, which varies 

regionally [82].

Epistasis and Gene-Environment Interactions in Genome-wide Association Studies

Incorporating interactions enhanced the capability of linkage and candidate gene analyses to 

discover BP-influencing variants. The increased degrees of freedom to model epistasis and 

gene-environment interactions, coupled with a nearly insurmountable multiple testing 

burden (one million variants are involved in half a trillion variant-variant interactions), 

prohibit investigators from achieving reasonable statistical power to interrogate them 

systematically during GWAS [56]. A GWAS of 2,016 Han Chinese with young-onset 

hypertension yielded no significant single-locus associations but revealed an association 

with a SNP quartet downstream of LOC344371 and RASGRP3 on chromosome 2p22.3 [50]. 

Interactions between every pair of SNPs (>4.2 billion pairs) were examined. Potential 

epistasis was identified between a SNP intronic to IMPG1 on chromosome 6q14 (the same 

locus implicated in the VAGES study [48]) and an intergenic SNP on chromosome 20q12 

[50].

Similarly, no significant SNPs were discovered via a GWAS (using 329,091 SNPs) of SBP 

and DBP using 4,763 individuals born during 1966 in two of the most genetically isolated 

Finnish provinces [83]. However, several SNP-environment interactions were implicated. 

Two variants intronic to PCDH15 and one intergenic on chromosome 4q21.22 appeared to 

interact with sex (7.50×10–8<P<2.43×10–7) to influence DBP, while a SNP intronic to 

COL25A1 may interact with oral contraceptive use (P=3.6×10–7) to influence DBP [83]. 

One SNP intronic to MTHFS may interact with preterm birth (p-value=3.06×10–7) to 

influence SBP [83].
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Because of the large number of tests performed, the authors treat these results as hypothesis-

generating.

In 531 hypertensives and 417 controls from the HyperGEN study, evidence for association 

between several haplotypes and BP-related traits was stronger when considering 

interactions. Gu et al. [84] used a clustering technique (self-organizing maps, SOM) on their 

phenotypic data to identify latent classes interacting with haplotypes. An association in 

African Americans between a haplotype and DBP response to a grip challenge was stronger 

(P=0.002 vs 0.014) when considering SOM class membership, and an association between 

another haplotype and SBP grip response in whites was detected (P=0.03) when considering 

interaction with SOM class but was otherwise absent (P=0.21) [84].

Meta-analyses of Genome-wide Association Studies

With mounting evidence that common variants have small effects on BP, increased sample 

sizes have been necessary to achieve sufficient statistical power. Meta-analyses of two 

massive consortia of European ancestry, Cohorts for Heart and Aging Research in Genome 

Epidemiology (CHARGE) [85] and Global Blood Pressure Genetics (Global BPgen) [86], 

were published in 2009. CHARGE consisted of six population-based cohort studies totaling 

29,136 participants, and Global BPgen encompassed 17 cohorts (13 population-based 

cohorts with 4 case-control studies as controls) with 34,433 participants. Following meta-

analysis within each consortium, the SNPs representing the top 10 loci for every BP trait 

were exchanged for a joint meta-analysis; the joint meta-analysis guided by the top Global 

BPgen hits was supplemented with up to 71,225 individuals of European ancestry. 

Significant SNPs were found in or adjacent to ATP2B1, CACNB2, CSK-ULK3, CYP1A2, 

NT5C2CYP17A1, c10orf107, FGF5, MTHFR, PLCD3, PLEKHA7, SH2B3-ATXN2, 

TBX3-TBX5, ULK4, and ZNF652 [85, 86]. As noted by Ehret [3*], these 14 loci are in or 

near six enzymes, two solute channels, two transcription factors, a cell signaling protein, a 

growth factor, a structural protein, and a hypothetical gene.

Although the significant SNPs collectively explained less than 2% of BP variation, all loci 

except PLCD3 and ULK4 have been replicated in at least one of the following large 

samples: the Women’s Genome Health Study (WGHS; 23,019 North American women of 

European descent) [87], the Candidate Gene Association Resource consortium (CARe; 

7,473 African Americans) [82], KARE [88], a replication study of three Japanese 

population-based cohorts (JPN; 23,401 individuals) [89], and a meta-analysis of east Asians 

(eastA; 50,373 participants) [90]. FGF5 and CSK replicated in the Japanese [89] and Korean 

[88] cohorts, respectively, in spite of significant interethnic heterogeneity, and differences in 

effect size and/or allele frequency. Thus some loci may contribute to hypertension in 

multiple ethnicities [82] but with differential influence. Only two of the loci were near genes 

previously affiliated with BP (CYP17A1 and NPPA/NPPB near MTHFR) [71], so meta-

analyses of massive sample sizes may implicate novel BP pathways. To date, GWAS has 

implicated over 50 genes as influencing hypertension and BP. The International Consortium 

of Blood Pressure Genome-Wide Association Studies (ICBP-GWAS) has performed a 

GWAS of SBP, DBP, mean arterial pressure (MAP), and pulse pressure using massive 

sample sizes (discovery, N≈70,000; replication, N≈200,000 for SBP and DBP; replication, 
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N≈48,000 for MAP and PP) [91*, 92*]. The novel genes associated with SBP or DBP 

include MOV10, SLC4A7, MECOM, SLC39A8, GUCY1A3-GUCY1B3, NPR3-C5orf23, 

EBF1, HFE, BAT2-BAT5, PLCE1, FLJ32810-TMEM133, ADM, FES, GOSR2, JAG1, and 

GNAS-EDN3. The genes significantly associated with PP are CHIC2/PDGFRA1, PIK3CG, 

NOV, ADAMTS-8, and FIGN. The genes significantly associated with MAP include MAP4, 

ADRB1, and FIGN.

A meta-analysis of WGHS and CHARGE produced two novel, genome-wide significant 

SNPs associated with SBP, near CASZ1 and BLK-GATA4 [87]. The association with 

CASZ1 was confirmed in both JPN and eastA [89, 90]. A meta-analysis of 21,466 cases and 

18,240 controls from 15 different cohorts (including 10 from Global BPgen) identified a 

significant association between hypertension and a SNP in the promoter region of the 

uromodulin gene (UMOD) [93]. Uromodulin is expressed almost exclusively in the thick 

ascending limb of the loop of Henle in the kidneys, and clinical functional studies suggest 

that the variant may influence sodium reabsorption [93]. A meta-analysis of east Asians 

identified genome-wide significant associations between BP and ST7L-CAPZA1, 

FIGNGRB14, ENPEP, NPR3, and RPL6-PTPN11-ALDH2 [90]. The SNP associated with 

ALDH2 is not polymorphic in Europeans, highlighting the importance of including 

participants of diverse ancestries. The largest (N=7,473) meta-analysis of GWAS on African 

Americans (the CARe consortium) identified a significant association between DBP and a 

SNP in the intergenic region between GPR98 and ARRDC3, as well as a significant 

association between SBP and a SNP intronic to C21orf91 [82]. Further increases in sample 

size may uncover new variants [3*], but the small effect sizes may fail to explain much 

variance [94]. Functional studies will also be required to precisely identify causal variants 

and their mechanism of action.

Discussion

Decades of research using combinations of candidate gene studies, GWLS, and GWAS have 

uncovered genetic polymorphisms and environmental factors (such as age, sex, race, and 

diet) that influence BP. Polymorphisms involved in renal sodium reabsorption contribute to 

long-term BP regulation, as may variants in inflammation and vasoactive pathways. The 

identified polymorphisms collectively explain a small fraction of BP variance and often lack 

replication across studies. Phenotypic heterogeneity [8], genetic heterogeneity, differences in 

allele frequencies or LD patterns [95**], epistasis [96], and gene-environment interactions 

may explain the poor replication of implicated genetic variants across studies. Rodent 

models indicate that some loci are organized in epistatic modules that participate in 

pathways and cascades [96].

Replication failure can arise when a BP-influencing variant is masked by a polymorphism 

upstream or downstream in the same pathway or cascade [51, 96]. BP-influencing epistatic 

interactions in humans are supported by the synergistic interacting physiological pathways 

of BP regulation [51]. Genetic variants act in parallel on diverse biochemical and functional 

pathways, so the collective effects should not be expected to be linear [51]. Incorporating 

gene-environment interactions in the analysis may uncover variants expressed under specific 

conditions, such as a specific age or gender, thus increasing replicability across studies [57]. 
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Analyzing population isolates and populations of non-European ancestry capitalized on 

increased risk allele frequencies, more favorable LD patterns, and environments to enhance 

discovery of BP-associated genes (including population-specific variants).

Selection theory of quantitative genetic variation suggests that causal polymorphisms may 

be rare [97]. Although low frequency and rare variants outnumber common variants [98], 

they have not been fully interrogated for association with BP because of cost, as it is 

necessary to genotype rare alleles in massive sample sizes from the general population to get 

sufficient power [8]. Sequencing of three salt-handling genes (SLC12A3, SLC12A1, and 

KCNJ1) in 1,985 unrelated subjects and 1,140 relatives from the Framingham Heart Study 

(FHS) showed the large influence rare variants might have on BP [19]. Carriers of any of 30 

rare variants in the three salt-handling genes (with minor allele frequency less than 0.0005 in 

FHS) had mean reductions of 6.3 mm Hg in SBP and 3.4 mm Hg in DBP, compared with the 

entire cohort. Mutation carriers had mean SBP values 6.6 mm Hg less than their noncarrier 

siblings. These are large effects when compared with those of common variants, for which 

the effect size is usually 1 mm Hg or less [19]. Compared with noncarriers, mutation carriers 

had a 59% reduction in risk of developing hypertension by age 60. These three salt-handling 

genes could explain a nonnegligible proportion of BP variance, as an estimated 100 million 

people worldwide may harbor a functional mutation in one of these genes [19].

Because of all the barriers to replication, pathways are more robustly associated with BP 

across populations than individual polymorphisms. For example, Staessen et al. [99] and 

Yeh et al. [100] were unable to replicate previous associations of a particular polymorphism 

(−48A- > G) in the dopamine receptor but detected associations in the same gene and 

elsewhere in the dopamine signaling pathway. Pathway analysis allocates resources towards 

understanding how existing signals influence BP rather than simply accumulating more 

independent data [95**], which may yield diminishing returns or may be difficult to analyze. 

Interactions within the same regulatory network are likely to produce the molecular effects 

observed on BP, so interrogating the entire systems may elucidate the pathophysiology of 

hypertension better than single-polymorphism methods [8]. Unraveling the pathophysiology 

of hypertension should allow more effective treatment and prevention strategies [95**]. 

Pathway and network analyses may also help prioritize genes and loci for further focused 

investigations using small studies as opposed to extremely large case/control samples [81]. 

Nevertheless, although pathway analysis makes a compelling case from a biological 

perspective, it is no panacea, as it is challenged by several methodologic issues [101].

Future Directions

Candidate gene, GWLS, and GWAS are complementary tools that have significantly 

enhanced our understanding of the genetic underpinnings of BP regulation, but new 

approaches are needed to explain the missing variance. We believe that focused studies 

investigating epistasis, gene-environment interactions, and rare variants in systematic and 

biologically plausible ways (such as through emphasis on genes in pathways) constitute 

novel alternative approaches. Although exhaustive epistasis examination in GWLS and 

GWAS involves an unacceptable multiple testing burden, a focused investigation of gene-

environment interactions (e.g., gene-age, gene-sex, and gene-race) seems desirable and 
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feasible. Existing candidate gene studies can test epistasis and gene-environment 

interactions using all available genotype and phenotype information. We advocate beginning 

with examination of epistasis between functionally related genes clustered in pathways, in 

order to reduce the multiple testing burden, perhaps employing a two-stage method [102]. 

By focusing on one or more candidate pathways, investigators can test all gene-gene and 

gene-environment interactions in the spirit of hypothesis generation (i.e., even if there is no a 

priori belief that such combinations contribute to BP regulation).

Next-generation resequencing approaches will be vital to the discovery of rare variants with 

potentially larger effects that influence BP. Resequencing in linkage-informative families 

may help to identify rare and low-frequency variants associated with BP, as shown for the 

complex phenotype adiponectin [36] (see also [103] and [104]). It is generally expected that 

such rare variants will account for part of the unexplained variance for BP. (The low-

frequency variant for adiponectin explained 17% of the phenotypic variance in the sample.) 

Another approach to discovering rare variants is to resequence genes harboring common 

variants associated with BP (as identified in GWAS). Evidence suggests that genes harboring 

one trait-associated variant (of any allele frequency) are more likely to contain additional 

variants altering their expression and/or function [105]. A rare missense variant of large 

effect (odds ratio of 12.5) was discovered through whole genome sequencing followed by 

imputation of newly discovered variants in GWAS samples [106, 107].

Additional insights into the lack of BP variation may be explained through the study of 

ambulatory BP or other approaches that provide more frequent measurements [10, 108]. 

Epigenetic modifications (including DNA methylation, histone modification, and alteration 

of microRNA expression) are also likely to contribute, as microRNAs have already been 

implicated in hypertension (e.g., hsa-miR-155 may influence AGTR1 [109]) and could be 

key BP regulators by simultaneously influencing multiple genes [56]. Epigenetic 

modifications constitute one hypothesized mechanism by which environmental factors 

interact with genes to influence BP. For example, dietary factors cause epigenetic 

modifications [110, 111]. Therefore, increasing BMI through poor diet may influence BP 

through epigenetic modifications that alter expression patterns in the cell. Lastly, 

interrogating noncoding regions (such as regulatory elements) and structural variants by 

whole genome sequencing [112] may help reveal the “dark matter” of hypertension 

pathophysiology.
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Figure 1. 
From candidate genes to linkage to genome-wide association studies: What next for 

hypertension genetics?
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Table 1.

Mendelian hypertension genes

Syndrome Pathway Gene(s) Mechanism Reference

Glucocorticoid remediable 
aldosteronism

Steroid/aldosterone 
synthesis

11β-hydroxylase and 
aldosterone synthase 
(CYP11B1 and CYP11B2)

Unequal crossing over results in a 
chimera with aldosterone synthase 
activity driven by adrenocorticotropic 
hormone

[113]

Corticosterone methyloxidase II 
deficiency

Steroid/aldosterone 
synthesis

Aldosterone synthase 
(CYP11B2)

Enzyme dysfunction results in 
reduced aldosterone levels

[9]

Steroid 21-hydroxylase 
deficiency

Steroid/aldosterone 
synthesis

Steroid 21-hydroxlase 
(CYP21A2)

Enzyme dysfunction results in 
reduced aldosterone levels

[114]

Apparent mineralocorticoid 
excess

Steroid/aldosterone 
synthesis

11β-hydroxysteroid 
dehydrogenase (11B-HSD)

Impaired conversion of cortisol to 
cortisone results in cortisol-mediated 
hyperactivation of MR

[115, 116]

Familial glucocorticoid 
resistance

Steroid/aldosterone 
synthesis

Glucocorticoid receptor 
(NR3C1)

Glucocorticoid receptor dysfunction 
leads to increased cortisol and 
cortisol-mediated hyperactivation of 
MR

[117]

Steroid 11β-hydroxylase 
deficiency

Steroid/aldosterone 
synthesis

11β-hydroxylase 
(CYP11B1)

Enzyme dysfunction leads to 
increased levels of MR activating 
hormones

[118]

17 α-hydroxylase and/or 17,20-
lyase deficiency

Steroid/aldosterone 
synthesis

17-α-hydroxylase 
(CYP17A1)

Enzyme dysfunction leads to 
increased levels of MR activating 
hormones

[119]

Hypertension exacerbated by 
pregnancy

Aldosterone 
signaling

Mineralocorticoid receptor 
(MR)

Missense mutation makes MR active 
without ligand, further activated by 
progesterone in pregnancy

[120]

Pseudohypoaldosteronism type I Aldosterone 
signaling/renal ion 
channel

Mineralocorticoid receptor, 
or electrogenic sodium 
channel α, β or γ subunit 
(MR, SCNN1A, SCNN1B, 
SCNN1G)

Loss-of-function mutation leading to 
reduced ENaC activity

[121–123]

Pseudohypoaldosteronism type 
II

Ion channel 
regulation

With-no-lysine kinase 1 or 4 
(WNK1, WNK4)

Kinase mutations lead to upregulated 
SLC12A3

[124]

Liddle syndrome Renal ion channel Electrogenic sodium 
channel β or γ subunit 
(SCNN1B, SCNN1G)

C terminus deletion leads to reduced 
ENaC clearance and increased ENaC 
activity

[125, 126]

Gitelman’s syndrome Renal ion channel Na-Cl cotransporter 
(SLC12A3)

Loss-of-function mutation leads to 
lower sodium reabsorption

[127]

Bartter’s syndrome type I Renal ion channel Na-K-2Cl cotransporter 
(SLC12A1)

Loss-of-function mutations leads to 
lower sodium reabsorption

[128]

Bartter’s syndrome type II Renal ion channel Potassium inwardly 
rectifying channel (KCNJ1)

Reduced potassium recycling leads to 
impaired sodium reabsorption

[129]

Bartter’s syndrome type III Renal ion channel Chloride channel kb 
(CLCNKB)

Reduced chloride transport leads to 
impaired sodium reabsorption

[130]

Insulin resistance and 
hypertension

Transcriptional 
regulation

Peroxisome proliferator 
activated receptor gamma 
(PPARγ)

Loss-of-function mutation leads to 
insulin resistance and hypertension; 
vascular effects postulated

[131]

Hypertension, 
hypercholesterolemia, and 
hypomagnesemia

Protein synthesis Mitochondrially encoded 
tRNA isoleucine (MT-TI)

Mutation in conserved base near anti-
codon impairs ribosome binding

[132]

ENaC epithelial sodium channel; MR mineralocorticoid receptor; tRNA transfer RNA.
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Table 2.

Selected essential hypertension candidate genes

Pathway Gene(s) References confirming 
association

References refuting 
association

Aldosterone signaling Renin (REN) [133–135] [136, 137]

Aldosterone signaling Angiotensinogen (AGT) [10, 11, 138] [139–141]

Aldosterone signaling Angiotensin-converting enzyme (ACE) [11, 12, 142] [143–145]

Aldosterone signaling Angiotensin II receptor, type 1 (AGTR1) [146–148] [149–151]

Renal ion channel Na-Cl cotransporter (SLC12A3) [19, 152] [153–155]

Renal ion channel Na-K-2Cl cotransporter (SLC12A1) [19, 156, 157] [135]

Renal ion channel Potassium inwardly rectifying channel, subfamily 
J, member 1 (KCNJ1)

[19, 158] [159]

Ion channel regulation With-no-lysine kinase 1 (WNK1) [108, 160–162] [154]

Ion channel regulation With-no-lysine kinase 4 (WNK4) [154, 160] [163, 164]

Ion channel regulation Serum/glucocorticoid regulated kinase 1 (SGK1) [165–167] [168, 169]

Renal ion channel Electrogenic sodium channel, α, β, and γ 
subunits (SCNN1A, SCNN1B, SCNN1G)

[169–171] [172, 173]

Renal ion channel Chloride channel kb (CLCNKB) [174, 175] [155, 159, 176]

Ion channel regulation Adducin 1 (ADD1) [15–17, 177] [178–180]

Ion channel regulation Adducin 2(ADD2) [15, 181] [177, 182]

Ion channel regulation/
vasoconstriction

Tyrosine hydroxylase (TH) [183] [184]

Ion channel regulation/
vasoconstriction

Dopamine receptor D1 (DRD1) [99, 185, 186] [187, 188]

Ion channel regulation/
vasoconstriction

Dopamine receptor D2 (DRD2) [189] –

Ion channel regulation/
vasoconstriction

Catechol-O-methyltransferase (COMT) [100, 190] –

Ion channel regulation/
vasoconstriction

Dopamine beta-hydroxylase (DBH) [100, 191] –

Ion channel regulation G protein-coupled receptor kinase 4 (GRK4) [192] [99]

Ion channel regulation/
vasoconstriction

Adrenergic receptor, beta 2 (ADRB2) [135, 193] [194]

Ion channel regulation/
vasoconstriction

Adrenergic receptor, alpha 1A (ADRA1A) [195, 196] [135, 197]

Ion channel regulation/
vasoconstriction

Adrenergic receptor, beta 1 (ADRB1) [135, 198] [199]

Ion channel regulation/
vasoconstriction

Adrenergic receptor, beta 3 (ADRB3) [200, 201] –

Vasoconstriction Nitric oxide synthase 3 (NOS3) [201, 202] [203, 204]

Vasoconstriction Endothelin 1 (EDN1) [205, 206] [207]

Vasoconstriction Endothelin receptor type A (EDNRA) [163, 208] –

Vasoconstriction Cytochrome P450, family 2, subfamily C, 
polypeptide 8 (CYP2C8)

[14, 209] [210]

Inflammation Interleukin 6 (IL6) – [24]

Inflammation Transforming growth factor beta 1(TGFB1) [24, 25] –
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