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INTRODUCTION
Multimodality imaging, including echocardiography, 
cardiac computed tomography (CCT), cardiac magnetic 
resonance (CMR) and nuclear cardiology [single-photon 
emission computed tomography (SPECT) and positron 
emission tomography (PET)], has fundamentally advanced 
the understanding and treatment of cardiovascular disease 
in the 21st century. These advances have impacted the 
non-invasive evaluation of coronary artery disease, struc-
tural heart disease, arrhythmias, and heart failure, as well 
as guided clinical management and improved patient 
outcomes. Several special populations are now better served 
as a result of the advancements in non-invasive imaging, 
such as patients with cardiac amyloidosis, women with 
coronary microvascular dysfunction, and high-risk individ-
uals with severe valvular heart disease. Additionally, the use 
of artificial intelligence and machine learning applications 
in cardiac imaging has identified previously unrecognized 
patterns of disease, refined the assessment of cardiovascular 
risk, and influenced clinical care in an actionable and more 
personalized way than ever before. The tremendous tech-
nological revolution in the last two decades has also given 

rise to new imaging subspecialities, such as interventional 
echocardiography, and increased the demand for dedicated 
cardiac imagers who are cross-trained in multiple modali-
ties. This state-of-the-art review summarizes the evolution 
of multimodality cardiac imaging in the 21st century and 
highlights the opportunities for future innovation.

ECHOCARDIOGRAPHY
Echocardiography is often the first-line evaluation for the 
assessment of cardiac structure and function given the 
high temporal and spatial resolution, portability, cost-
effectiveness and lack of ionizing radiation. In the last 
two decades, echocardiography has seen the rise of three-
dimensional (3D) echocardiography for the quantitative 
evaluation of left ventricular (LV) function and structural 
heart disease.1 Compared to two-dimensional (2D) echo-
cardiography, real-time full volume 3D echocardiography 
does not use geometric assumptions about LV geom-
etry making it a more accurate and reproducible means 
of measuring LV volumes and systolic function and has 
good correlation with CMR.2,3 Additionally, LV volumes 
and ejection fraction (EF) derived from 3D echocardi-
ography have been shown to have a stronger association 
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ABSTRACT

Cardiovascular imaging has significantly evolved since the turn of the century. Progress in the last two decades has 
been marked by advances in every modality used to image the heart, including echocardiography, cardiac magnetic 
resonance, cardiac CT and nuclear cardiology. There has also been a dramatic increase in hybrid and fusion modalities 
that leverage the unique capabilities of two imaging techniques simultaneously, as well as the incorporation of artifi-
cial intelligence and machine learning into the clinical workflow. These advances in non-invasive cardiac imaging have 
guided patient management and improved clinical outcomes. The technological developments of the past 20 years 
have also given rise to new imaging subspecialities and increased the demand for dedicated cardiac imagers who are 
cross-trained in multiple modalities. This state-of-the-art review summarizes the evolution of multimodality cardiac 
imaging in the 21st century and highlights opportunities for future innovation.
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with clinical outcomes than those derived from 2D echocardi-
ography.4 3D echocardiography is also ideally suited to assess 
valve function given the nonplanar anatomy and spatial alter-
ations resulting from valvular heart disease. Three-dimensional 
echocardiography has provided significant mechanistic insight 
about functional and ischemic mitral regurgitation by demon-
strating derangements in the complex relationship of the mitral 
valve leaflets, chordal attachments, papillary muscles and the LV 
myocardium.1 Interventional echocardiography, a new subspe-
cialty in cardiac imaging, frequently employs 3D transesophageal 
echocardiography for the real-time assessment of valve anatomy, 
which is integral to guiding percutaneous valvular interventions, 

particularly transcatheter aortic valve replacement (TAVR),5,6 
mitral valve clip repair,7,8 and most recently transcatheter mitral 
and tricuspid valve implantation (Figure 1).9–11

Advances in image-based analysis of local myocardial dynamics, 
including Doppler tissue imaging (DTI) and speckle-tracking 
echocardiography (STE), have allowed for the quantitative 
assessment of subclinical myocardial dysfunction.12 Myocardial 
deformation, measured by strain and strain rate using DTI and 
STE, has demonstrated that early decreases in radial and longi-
tudinal strain and strain rate among patients treated with cardio-
toxic oncologic treatments, such as anthracyclines, taxanes and 
trastuzumab, precede decreases in EF and are therefore capable 
of detecting prognostically important subclinical LV dysfunc-
tion.13 Similarly, global longitudinal strain (GLS) on STE has 
been useful in risk stratifying patients with asymptomatic severe 
aortic stenosis (AS) and preserved EF, such that impaired LV GLS 
has been associated with a higher risk of developing symptoms 
and needing aortic valve intervention as compared to patients 
with normal LV GLS.14 Detection of LV dyssynchrony with DTI 
or STE has been associated with long-term survival and is used 
to optimize cardiac resynchronization therapy in patients with 
advanced systolic heart failure (Figure  2).15,16 Regional differ-
ences in myocardial dynamics as assessed by STE has been 
insightful for the detection of cardiac involvement in systemic 
disease, such as amyloidosis, which exhibits a characteristic 
apical-sparing pattern.17 Furthermore, the use of STE for strain 
and strain rate analysis to quantitate myocardial contraction and 
relaxation during stress echocardiography is an active area of 
clinical investigation.18

Finally, cardiac point-of-care ultrasound (POCUS), with its 
compact size, exceptional portability and ease of use, is increas-
ingly utilized in settings such as emergency rooms and critical 
care settings to provide rapid bedside diagnosis of cardiovas-
cular pathology.19 This technology has also been successfully 
deployed to improve access to care in remote regions with limited 

Figure 1. Three-dimensional transesophageal echocardiography performed during percutaneous mitral valve repair for severe 
mitral regurgitation secondary to mitral valve prolapse. (a) Mitral valve (surgeon’s view) with myxomatous mitral valve, prolapse 
of the anterior mitral valve leaflet and large regurgitant orifice. (b) Catheter deploying mitral valve clip between anterior and pos-
terior mitral valve leaflets.

Figure 2. Regional strain analysis with speckle-tracking 
echocardiography in the apical 4-chamber, 2-chamber, and 
3-chamber views demonstrates left ventricular dyssynchrony 
in a patient with LBBB. The characteristic LBBB contraction 
pattern on strain imaging includes early terminated shorten-
ing in the septal wall, early (pre-stretch) contraction in the lat-
eral wall, and late lateral peak contraction. LBBB, left bundle 
branch block.

http://birpublications.org/bjr


Br J Radiol;94:20200780

BJR  Daubert et al

3 of 15 birpublications.org/bjr

resources, as well as a means to decrease transmission while 
evaluating cardiac complications during the recent COVID-19 
pandemic.20

CARDIAC COMPUTED TOMOGRAPHY
The use of CCT in clinical practice has dramatically increased 
in the 21st century. The introduction of multidetector computed 
tomography (MDCT) in 1998 was an evolutionary leap for 
anatomic imaging and led to the exponential growth in MDCT 
technology in the subsequent decade. The current minimum 
standard for cardiac CT angiography (CCTA) is 64-slice MDCT, 
which was first available in 2005. By 2008, advancements in CT 
technology had resulted in 256- and 320-slice MDCT scanners 
capable of capturing the whole heart in one to two rotations, 
which significantly decreased both acquisition time and image 
artifact.21 Furthermore, the high spatial and temporal resolu-
tion of CCTA is ideally suited for the evaluation of coronary 
artery disease (CAD). Similar to cardiac catheterization, CCTA 
provides an anatomic assessment of CAD and the degree of 
luminal stenosis, but unlike invasive angiography, CCTA also 
reveals the burden and composition of plaque within the vessel 
wall (Figure 3). These capabilities make CCTA highly sensitive 
(sensitivity 95–99%) for the identification of both obstructive 
and non-obstructive CAD and affords a high negative predic-
tive value (NPV 97–99%) for the exclusion of CAD.22,23 This 
non-invasive insight about CAD burden can be effectively 
used to manage and prognosticate patients. For example, non-
obstructive CAD, which would not elicit ischemic changes on 
functional imaging, but is readily identified by CCTA, has been 
associated with increased adverse cardiac events, particularly 
among women, even in the absence of obstructive CAD.24–26 
Additionally, the demonstration of non-obstructive disease 

would effectively reclassify these patients as needing secondary, 
rather than primary CAD prevention, which has implications 
for medical management, such as statin therapy, and is currently 
being studied in the WARRIOR trial (https://​clinicaltrials.​gov/​
ct2/​show/​NCT03417388). CCTA also permits the quantification 
and characterization of atherosclerotic plaque. High-risk plaque 
characteristics such as positive remodeling, spotty calcification, 
and low attenuation (<30 HU) plaque have been shown to identify 
vulnerable coronary lesions that are associated with an increased 
risk of acute coronary syndrome (ACS).27–29 Currently, research 
is being conducted on novel analytical techniques to facilitate 
the detection and quantification of pericoronary inflammation 
and atherosclerotic plaque activity on CCTA, which may serve 
to further improve cardiac risk prediction and optimize clinical 
outcomes in patients with CAD.30

Compared to 20 years ago, improvements in scanner technology, 
acquisition techniques, and iterative reconstruction software 
have collectively and significantly minimized radiation exposure 
during CCTA.31 Furthermore, although CCTA was only initially 
capable of yielding an anatomic assessment of CAD, the appli-
cation of computational fluid dynamics and machine learning 
to CCTA data sets provides a non-invasive estimation of frac-
tional flow reserve (CT-FFR) and identification of flow-limiting, 
hemodynamically significant lesions (Figure  4).32 CT-FFR 
assesses resistance and flow along the coronary arteries to iden-
tify lesion-specific ischemia and has been validated in multiple 
trials with good correlation with invasive FFR.33–35 The integra-
tion of CT-FFR with CCTA allows for an anatomical and func-
tional assessment of CAD with a single test and results in higher 
diagnostic accuracy and increased specificity for classification 
of flow-limiting coronary stenosis than CCTA alone, which is 

Figure 3. Coronary artery disease on CCTA reveals severity of luminal stenosis and composition of atherosclerotic plaque in the 
vessel wall: (a) non-calcified plaque; (b) mixed plaque with calcified and non-calcified components; (c) densely calcified plaque. 
CCTA, cardiac CT angiography.
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important for guiding patient management.34,35 The combined 
use of CCTA and CT-FFR has been shown to act as an effec-
tive gatekeeper to the catheterization laboratory by reducing the 

need for invasive evaluation of patients without lesion-specific 
ischemia.36 Additionally, CT-FFR has prognostic implications, 
such that patients with CAD and normal CT-FFR (>0.80) have 
lower rates of adverse cardiac events than those with abnormal 
CT-FFR values of ≤0.80.37 Furthermore, when adverse plaque 
characteristics on CCTA are integrated with CT-FFR results, the 
prognostic stratification is superior to either component alone.38

Myocardial CT perfusion (CTP) with pharmacologic stress 
provides a combined assessment of cardiac anatomy and phys-
iology. Similar to CMR, CTP imaging performed immediately 
after contrast administration can reveal hypoenhancement corre-
sponding to perfusion defects while delayed imaging, acquired 
5–10 min after contrast administration, may show regional hype-
renhancement indicating areas of myocardial necrosis or scar.39 
Compared to CCTA alone, CTP increases the diagnostic accu-
racy for the detection or exclusion of ischemia.40 CTP performs 
comparably with CMR and PET and outperforms SPECT for the 
evaluation of hemodynamically significant CAD.41 Despite these 
advantages however, operational challenges, variation in quan-
titative values, scanner availability and the requisite expertise 
have limited the widespread adoption of CTP in routine clinical 
practice.

Cardiac CT has also played an integral role in the evaluation and 
treatment of structural heart disease. The isotropic resolution of 
cardiac CT allows image manipulation in any plane or orienta-
tion without distortion, yielding a true 3D imaging assessment of 
the heart and surrounding anatomy. This robust capability has led 
to the increased utilization of cardiac CT to guide percutaneous 
interventions for valvular heart disease, congenital heart disease 
and atrial fibrillation. In patients with severe aortic stenosis, 
cardiac CT has significantly improved the pre-procedural plan-
ning process prior to TAVR and provided unique insight about 
post-TAVR complications, such as acute and subacute throm-
bosis and infection (Figure  5).42–45 More recently, cardiac CT 
has also been employed in patients with mitral and tricuspid 
valve disease prior to transcatheter interventions.46 Cardiac CT 
provides highly detailed information about cardiac anatomy and 
dimensions to optimize device sizing, as well as reveal anatomic 
considerations that can determine vascular access routes and 
reduce the risk of procedural complications.47,48 In patients with 
atrial fibrillation, cardiac CT is used to delineate the pulmonary 
vein anatomy prior to ablation, assess for intracardiac thrombus, 
and visualize left atrial appendage morphology. Pre-procedural 
CT measurements are critical to the successful deployment of 
appendage exclusion devices among patients with contraindica-
tions to long-term anticoagulation.49 Finally, cardiac CT is also 
showing promise for the detection of cardiac allograft vascu-
lopathy after heart transplantation and identification of cardio-
mechanical complications among patients with suspected left 
ventricular assist device (LVAD) malfunction.50,51

CARDIAC MAGNETIC RESONANCE IMAGING
CMR imaging is a highly versatile modality for the evaluation of 
cardiac pathology. Historically, CMR has been reserved for the 
evaluation of complex congenital heart disease, cardiac tumors 
and pericardial disease.52–54 However, over time CMR has been 

Figure 4. The degree of stenosis of the left anterior descend-
ing artery at the take-off of the first diagonal branch appears 
similar in the curved planar reformation CCTA images in 
these two patients. However, CT-FFR analysis demonstrates 
that the atherosclerotic plaque in the upper row is a flow-
limiting stenosis with a CT-FFR value of less than 0.8 after the 
lesion, while the plaque in the bottom row does not result in 
a hemodynamically-significant obstruction of coronary blood 
flow on CT-FFR. CT-FFR, CT-fractionalflow reserve; CCTA, car-
diac CT angiography.

Figure 5. CCTA demonstrating thrombus (arrow) on aortic 
valve leaflet after TAVR. CCTA, cardiac CTangiography; TAVR, 
transcatheter aortic valve replacement.
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shown to be superior to other non-invasive modalities for the 
assessment of biventricular morphology and function and is 
considered the reference standard for quantitation of ventricular 
volumes.2,55 Additionally, CMR is unique for its tissue charac-
terization capabilities and the identification of myocardial scar, 
fibrosis, edema and inflammation. As a result, the leading indi-
cations for a CMR evaluation include: 1. Investigation of myocar-
ditis and cardiomyopathies; 2. evaluation of CAD and ischemia; 
and 3. assessment of myocardial viability.56

CMR imaging is an unparalleled diagnostic tool in the evaluation 
of cardiomyopathies and myocarditis. The presence and extent 
of late gadolinium enhancement (LGE) imaging serves as a crit-
ical sequence in the differentiation of ischemic vs non-ischemic 
heart disease.57 Non-ischemic cardiomyopathies demonstrate 

distinct LGE patterns, such as LGE in a non-coronary distribu-
tion involving the mid-myocardium, epicardium, and or diffuse 
subendocardial locations. In addition to LGE imaging, advances 
in T1, T2, and T2* imaging and mapping, which are capable 
of detecting infiltrative disorders, inflammation and edema, 
also provide insight into non-ischemic etiologies. For instance, 
myocardial T2 imaging correlates with myocardial free water 
content, which can be particularly valuable in identifying patients 
with acute myocarditis (Figure 6).58,59 The sensitivity of CMR for 
the detection of acute myocarditis has also been increased by 
T1 and T2 parametric maps that outperform the original Lake 
Louise Criteria, which predominantly rely on LGE imaging.60 
In recent years, T1 mapping has also gained clinical application 
for the detection of cardiac amyloidosis.61,62 While LGE is useful 
in the diagnosis of cardiac amyloid, the characteristic pattern of 

Figure 6. Acute myocarditis and follow-up evaluation by CMR imaging. (a) LGE imaging demonstrates mid-myocardial and epi-
cardial enhancement involving the lateral and inferolateral left ventricular wall (arrows), in a pattern most characteristic of myo-
carditis. (b) T2 weighted imaging reveals hyperintensity in the lateral LV wall (arrows), indicating edema and suggesting active 
myocardial inflammation. Follow-up CMR imaging was performed 1.5 years later: (c) LGE imaging demonstrates myocardial scar-
ring, as indicated by epicardial and mid-myocardial enhancement in the lateral and inferolateral walls (arrows). (d) T2 weighted 
imaging is normal, which indicates that the previously seen myocardial edema has resolved, suggesting the absence of active 
inflammation. CMR, cardiac magnetic resonance; LGE, late gadolinium enhancement; LV, left ventricular.
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diffuse subendocardial enhancement may not always be present 
or may occur late in the disease process. Whereas non-contrast 
T1 mapping can be valuable for identifying amyloid infiltration 
at an early stage and also has benefit in patients with renal failure, 
in whom gadolinium may be contraindicated. Quantitative T1 
mapping yields significantly higher T1 times in individuals with 
cardiac amyloid compared with normal controls (Figure 7). With 
a 1.5 T CMR, a non-contrast myocardial T1 threshold of 1020 ms 
has greater than 90% accuracy for cardiac involvement in patients 
with amyloid.61 These quantitative mapping techniques have also 
been shown to have application in the diagnosis of heart trans-
plant rejection; hypertrophic cardiomyopathy; myocardial iron 

accumulation in hemochromatosis, sickle cell disease and beta-
thalassemia major; and cardiac involvement in systemic diseases, 
such as sarcoidosis and Fabry disease.63–65

LGE in a coronary artery distribution is the hallmark feature of 
myocardial infarction in CAD (Figure 8). With prolonged coro-
nary artery occlusion, a subendocardial infarct may progress in 
a transmural fashion, thereby exhibiting transmural enhance-
ment. In the setting of CAD, LGE burden can provide important 
prognostic information prior to revascularization therapy. The 
turn-of-the-century landmark publication by Kim et al, revealed 
that the extent of transmural LGE is inversely proportional to the 

Figure 7. Cardiac amyloidosis diagnosed by CMR imaging. (a) LGE imaging demonstrates diffuse subendocardial enhancement, 
as well as patchy mid-myocardial enhancement (arrows). The diffuse subendocardial pattern of enhancement, in conjunction with 
the black blood pool, is characteristic for cardiac amyloidosis. (b) Non-contrast T1 mapping demonstrates heterogenous high 
T1 values in the myocardium. The measured average T1 time was 1407 ms (normal reference = 950 ± 21 ms). CMR, cardiac mag-
neticresonance; LGE, late gadolinium enhancement.

Figure 8. Late gadolinium enhancement in a coronary artery distribution is the hallmark feature of myocardial infarction. (a) Sub-
endocardial infarct in the LAD territory, spanning less than 25% myocardial wall thickness (arrows). (b) Myocardial infarction of the 
left circumflex artery. LGE CMR imaging in the short axis plane demonstrates myocardial wall thinning and transmural enhance-
ment in the inferolateral wall of the left ventricle (arrow). CMR, cardiac magneticresonance; LAD, left anterior descending; LGE, 
late gadolinium enhancement.
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likelihood of functional myocardial recovery following revas-
cularization therapy.66 These findings have been validated in a 
number of subsequent studies, which have shown that myocar-
dium with subendocardial infarct (LGE spanning ≤25% wall 
thickness) has a higher association with functional recovery after 
revascularization than myocardium demonstrating transmural 
infract (LGE spanning ≥75% wall thickness), with the latter 
group experiencing almost no improvement in contractility 
despite revasculariation.67,68 Hence, LGE provides a valuable 
non-invasive method of stratifying individuals with myocardial 
infarct in whom revascularization may offer potential benefit.

Stress CMR has excellent diagnostic and prognostic value.69 
Although stress CMR accounts for less than 5% of stress 
imaging, CMR has been shown to be more sensitive than other 
perfusion modalities for the detection of significant CAD and 
a CMR-guided management strategy for ischemia-inducing 
CAD has been associated with a lower incidence of coronary 
revascularization than an invasive FFR-guided strategy with no 
difference in major adverse events after 1 year.70,71 Furthermore, 
CMR perfusion can provide insight on alternative etiologies 
of chest pain. Due to the high spatial and temporal resolution, 
CMR perfusion can identify microvascular disease, which may 
manifest as diffuse subendocardial hypoperfusion on first-pass 
perfusion CMR.72 In patients with ACS who are found to have 
myocardial infarction with non-obstructive coronary arteries 
(MINOCA), early CMR can narrow the differential diagnosis in 
84% of cases, thus distinguishing between myocarditis, myocar-
dial infarction (type II or spontaneous thrombolysis), and Takot-
subo cardiomyopathy.73

Despite all of these capabilities and the lack of ionizing radiation, 
the main limitations for greater utilization of CMR remain the 
need for highly trained experts for acquisition and interpreta-
tion, the requisite equipment, and the long exam duration. The 
presence of an implantable cardiac device, such as a pacemaker 
or internal defibrillator, was also a contraindication to CMR 
until recently. Newer devices have been developed to be MRI 
compatible, but still require reprogramming into an MRIsafe 
mode and artifacts that affect LGE and functional evaluations 
may persist.74 Finally, artificial intelligence applications for CMR 
that minimize scan times, improve reproducibility through auto-
mated segmentation, and identify scar on non-contrast images 
for patients with contraindications to gadolinium contrast may 
make implementation of this highly versatile imaging modality 
more widespread.75,76

NUCLEAR CARDIOLOGY
Nuclear cardiology is the most frequently used functional 
imaging test and as a result has a wealth of evidence related to 
diagnosis and long-term prognosis. Radionuclide myocardial 
perfusion imaging is currently dominated by SPECT, which 
evaluates the relative distribution of coronary blood flow in the 
myocardium (Figure 9). The sensitivity and specificity of SPECT 
for the diagnosis of CAD is 87–79 and 73–75%, respectively, 
varying by the radionuclide and stress modality employed.77 
Since its inception in 1980, SPECT imaging has evolved consider-
ably. Recent developments have included cadmium zinc telluride 

(CZT) detectors, γ cameras, iterative reconstruction and ½ dose 
or ½ time software that decrease radiation exposure, expedite 
image acquisition, and improve image resolution.78–80 However, 
despite these technological advances, SPECT remains limited by 
the qualitative, or at best semi-quantitative, methods for iden-
tifying myocardial ischemia. In patients with multivessel CAD, 
SPECT may underestimate the true extent of disease since the 
likelihood of detection is highest with severe lesions but lower 
with milder stenosis. Additionally, because of the reliance upon 
relative differences in counts on SPECT, patients with a balanced 
reduction in myocardial blood flow may have a paradoxical 
normal or near-normal scan despite the presence of extensive 
high-risk CAD.

In contrast to SPECT, PET myocardial perfusion imaging is 
capable of true quantification of myocardial perfusion both glob-
ally and regionally. Quantifying regional perfusion is useful in 
patients with diffuse, multivessel CAD where the relative assess-
ment of myocardial perfusion by SPECT may fail to reveal under-
lying disease.81 The sensitivity of PET for the diagnosis of CAD 
is 90–93% with a specificity of 89–92%.82 PET is also capable of 
generating absolute measurements of myocardial blood flow. This 
capability is not only useful for the detection of epicardial CAD, 
but quantitative PET measurements of blood flow are playing an 
increasingly important role in the evaluation and management 
of patients with suspected coronary microvascular dysfunction. 
Specifically, the inability to increase stress myocardial blood flow 
>2.0 to 2.4 mL × min−1 × g−1 in the absence of obstructive epicar-
dial disease is indicative of coronary microvascular disease.83 
Additionally, PET has been applied to assess coronary endothe-
lial function in response to pharmacologic therapies (i.e. statin), 
toxins (i.e. tobacco), and disease states, such as diabetes mellitus, 
obesity, and hypertension.82,84 PET is also capable of assessing 
myocardial viability using the glucose analogue and metabolic 
tracer fludeoxyglucose, FDG (Figure 10). Although the utility of 
myocardial viability in guiding clinical care remains uncertain, 
a pooled analysis demonstrated a weighted mean sensitivity and 
specificity of 92 and 63%, respectively, for regional functional 
recovery.85

Finally, cardiovascular molecular imaging is a rapidly evolving 
discipline that aims to visualize specific molecular targets and 
pathways to provide insight about morphology and pathophys-
iology. Examples include neuronal imaging to identify patients 
at risk for ventricular arrhythmia, imaging compounds that 
target vulnerable plaque prior to ACS, and identifying molec-
ular imaging markers that reflect adverse LV remodeling before 
the development of overt heart failure.86–88 Despite the many 
advantages of PET, its widespread use in clinical care has been 
limited by the relatively high costs, technical complexities, and 
requisite professional expertise that was previously restricted to 
specialized cardiac centers. However, the increasing evidence 
base combined with the ability to perform myocardial blood flow 
imaging has led to considerable growth and utilitization of PET 
in clinical practice.

In addition to the detection of CAD, myocardial perfusion 
imaging has also been employed in the detection of cardiac 
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manifestations of systemic disease. Transthyretin cardiac amyloi-
dosis (also known as ATTR cardiac amyloidosis) is an increas-
ingly recognized cause of heart failure with preserved ejection 
fraction (HFpEF). With newly targeted therapies available for 
the treatment of ATTR cardiac amyloidosis, it is critical to have 
a non-invasive imaging test to identify and differentiate among 
HFpEF patients with cardiac amyloidosis. Planar and SPECT 
imaging using Tc 99m PYP, Tc 99m DPD, or Tc 99m HMDP are 
useful for the detection of ATTR amyloid fibrils in the myocar-
dium (Figure 11).89 A recent multicenter study, confirmed that 
Tc 99m PYP cardiac imaging has a sensitivity of 88% and speci-
ficity of 88% for the differentiation of ATTR cardiac amyloidosis 
from light-chain-related amyloidosis and nonamyloid HFpEF.90 
Furthermore, a heart to contralateral (H/CL) ratio of ≥1.6 was 
associated with worse survival among patients with ATTR 
cardiac amyloidosis.

HYBRID AND FUSION IMAGING
There is a complex relationship between coronary stenosis and 
myocardial ischemia. A number of landmark studies in the last 
two decades have consistently demonstrated that the angiographic 
severity of coronary lesions is a poor predictor of hemodynamic 
relevance.91–93 Importantly, stenosis alone is insufficient to identify 
flow-limiting lesions among patients with stable CAD. A compar-
ison study of CCTA and SPECT showed that only 32% of obstruc-
tive coronary lesions, defined as ≥50% stenosis, were associated with 
perfusion defects on SPECT.94 Similarly, the FAME trial demon-
strated that stenoses of 50–70% on coronary angiography can be 
functionally significant according to a FFR of ≤0.8, while coronary 
lesions with >70% stenosis may not be ischemia-inducing based on 
a FFR value of >0.8.95 Thus, in the last two decades there has been 
a paradigm shift in the treatment of CAD with emphasis on the 
importance of myocardial ischemia to guide clinical management.

Figure 9. Exercise stress (top) and rest (bottom) myocardial perfusion imaging study with SPECT. Reversible changes in the 
septum, anterior, inferior and apical segments compatible with ischemia. Transient ischemic dilatation is noted with TID index of 
1.3. Cardiac catheterization demonstrated proximal 90% LAD stenosis and 90% mid-RCA stenosis. LAD, left anterior descending; 
RCA, right coronary artery; SPECT, single-photon emission computed tomography; TID, transient ischemic dilation.
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Hybrid cardiac imaging, which combines morphologic and 
anatomic results with functional evaluations of myocardial 
perfusion, has the ability to detect the presence of coronary 
lesions and their hemodynamic significance and therefore has 
superior diagnostic performance compared with anatomic or 
functional modalities alone. A hybrid approach utilizing SPECT 
or PET and cardiac CT has allowed for the simultaneous identifi-
cation of flow-limiting coronary stenosis and ischemia quantifi-
cation in a single assessment, which may be useful for informing 
clinical management.96 Furthermore, when nuclear myocardial 
perfusion imaging is used in conjunction with CT, the hybrid 
imaging approach minimizes attenuation artifact and dramati-
cally improves diagnostic and prognostic robustness.97,98 Image 
coregistration and fusion of 3D information about myocardial 
territories and their coronary supply can accurately identify the 
culprit ischemic lesion in multivessel CAD, which is important 
since there is evidence that perfusion defects do not correspond 
to the expected coronary distribution in >50% of cases.99,100 
Hybrid imaging with PET and CT or CMR has also been 
utilized in the evaluation of cardiac sarcoidosis, which permits 
the simultaneously evaluation of myocardial inflammation 
with LGE sequences and correlative metabolic activity on PET 
images that aids in the differentiation of inflammation and scar 
(Figure 12).101

The 21st century has also seen the rise of fusion imaging, whereby 
images obtained separately with different modalities are fused 

into a composite image. Harmonizing two modalities provides 
a better understanding of the 3D relationship of anatomy and 
devices, increases procedural efficiency, and improves clin-
ical outcomes.102 The overlay of TEE or CT images and fluo-
roscopy have significantly aided the successful deployment of 
percutaneous interventions for congenital and structural heart 
disease.103,104 CCTA or CMR images superimposed on elec-
trical mapping systems in the electrophysiology laboratory have 
improved the success of radiofrequency ablation for atrial fibril-
lation and the placement of LV leads to decrease dyssynchrony 
with cardiac resynchronization therapy.102,105

ARTIFICIAL INTELLIGENCE AND MACHINE 
LEARNING IN CARDIAC IMAGING
The most recent advancement in cardiac imaging in the 21st 
century is the application of artificial intelligence (AI) for the 
integration of cardiovascular imaging and “big data,” which is 
likely to result in new discoveries, better characterize disease 
and uniquely personalize therapy. The increasing use of AI may 
also reduce cost and enhance value during image acquisition, 
interpretation, reporting, and decision management. Machine 
learning (ML) is a subset of AI wherein information is acquired 
autonomously by extracting patterns from large databases 
giving AI the ability to learn and deep learning is a means of 
informing associations based on previous experience, effectively 
training the process so that the probability of correct classifica-
tion increases.106,107 Uses of AI and ML that have been applied 

Figure 10. PET assessment of myocardial viability in patient with triple vessel obstructive coronary artery disease and reduced 
ejection fraction. Top rows: N-13 ammonia at rest show diminished perfusion in the lateral wall. Lower rows: F-18 FDG reveal pre-
served metabolic FDG uptake in the corresponding lateral segments, as well as the remaining myocardium, which signifies the 
presence of viable myocardium. FDG, fludeoxyglucose; PET, positron emission tomography.
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to cardiac imaging include automating quantitative measuring, 
generating problem notifications and providing diagnostic 
support tools. Examples of these applications have included: 
(1) the fully automated LV segmentation and volume measure-
ment on CMR75,108; (2) identification of three different echocar-
diographic phenotypes among patients with diabetes mellitus 
Type 2 and the associated distinct clinical profiles109; and (3) 
automated analysis of the myocardium on CCTA to identify 

hemodynamically significant coronary stenosis.110 Integrating 
clinical data and imaging measures has also improved predic-
tion of prognostic outcomes. ML of combined clinical and CCTA 
data was more predictive of mortality than either clinical or 
CCTA metrics alone.111 Similarly, compared to automated perfu-
sion quantification alone, ML had higher predictive accuracy 
for major adverse cardiac events using a combination of clin-
ical information and SPECT perfusion assessments.112 Finally, 

Figure 11. Tc-99m Pyrophosphate planar and SPECT imaging for cardiac amyloid. (a) Increased activity is seen over the heart on 
planar imaging. (b) Quantitative analysis of H/CL ratio is 1.95 (Negative <1.5), strongly suggestive of TTR amyloidosis. C. SPECT 
imaging confirms intense diffuse uptake in the left ventricular myocardium and to a lesser degree in the visible aspect of the right 
ventricle. Fine needle aspiration biopsy of the abdominal fat was positive for extracellular amyloid deposition. H/CL, heart-to-
contralateral lung; SPECT, single photon emission tomography.

Figure 12. Cardiac PET: N-13 ammonia rest images (top rows) demonstrate a perfusion defect in the basal and mid inferoseptum, 
extending from the epicardium to the subendocardium. F-18 FDG images (lower rows) demonstrate focal hypermetabolism in 
the areas of perfusion defect, consistent with active inflammation in this area. Hybrid CT and F-18 FDG images of the chest show 
hyperemtabolic hilar and mediastinal lymphadenopathy, compatible with active chest sarcoidosis. The integration of the chest 
and cardiac findings are consistent with sarcoidosis. FDG, fluorodeoxyglucose; PET,positron emission tomography.
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research using radiomics, the process of obtaining quantitative 
metrics from images to create big-data data sets, such as where 
each coronary lesion is characterized by hundreds of different 
parameters, may further improve cardiac risk prediction and 
optimize clinical outcomes in patients with CAD.30 Future devel-
opment of AI with large imaging registries and repositories will 
increase diagnostic and prognostic performance, as well as indi-
vidualize the value of cardiac imaging in clinical medicine.

CONCLUSIONS
The tremendous technological evolution achieved in non-
invasive imaging techniques over the last two decades, including 

echocardiography, CCT, CMR, and nuclear cardiology have 
provided clinicians with a large non-invasive armamentarium for 
the assessment of cardiac disease. Best practice, appropriate use, and 
clinical guidelines are constantly being updated with this evolving 
new data. The complementary information gained from different 
imaging modalities has yielded new insights about cardiovascular 
pathology and disease progression, guided and optimized patient 
care, and ultimately improved clinical outcomes. The cardiac 
imaging of today offers diagnostic, prognostic and risk stratifica-
tion capabilities that were unimaginable only two decades ago.
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