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INTRODUCTION
Interventional procedures are among the diagnostic medical 
practices with highest radiation doses. That is why, following 
the recommendations of the International Commission on 
Radiological Protection (ICRP),1,2 the European directive 
and national regulations stress the importance of optimiza-
tion in interventional practices.3 Optimization, which means 
enough diagnostic information for the clinical task but with 
the smallest possible radiation dose for patients and opera-
tors, is especially challenging for fluoroscopically guided 
procedures. Interventionists should therefore know the “price 
in dose” they are paying for each minute of fluoroscopy, 
each run of cine, of digital subtraction angiography (DSA) 
or of cone beam computed tomography (CBCT). The ICRP 
recommends adopting an integral approach for radiation 
protection during interventional procedures and auditing not 

only patient doses but also occupational doses,2 while never 
losing sight of the clinical outcome in any medical procedure.

In the last years, there has been considerable progress in the 
patient dose monitoring technology thanks to the Digital 
Imaging and Communication in Medicine (DICOM) stan-
dard and the radiation dose structured reports (RDSR). 
Most of the patient dose information at radiation event level 
is currently available in these RDSR and the possibility of 
managing all information through new automatic patient 
dose registries opened up a new era for the optimization of 
imaging procedures that would have been unthinkable only 
a few years ago.

The conventional personal dosimeter for interventionists 
(and other health professionals working in catheterization 
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Objectives: In fluoroscopy-guided interventional prac-
tices, new dose reduction systems have proved to be 
efficient in the reduction of patient doses. However, it 
is not clear whether this reduction in patient dose is 
proportionally transferred to operators’ doses. This work 
investigates the secondary radiation fields produced by 
two kinds of interventional cardiology units from the 
same manufacturer with and without dose reduction 
systems.
Methods:
Data collected from a large sample of clinical proce-
dures over a 2-year period (more than 5000 procedures 
and 340,000 radiation events) and the DICOM radiation 
dose structured reports were analysed.
Results: The average cumulative Hp(10) per procedure 
measured at the C-arm was similar for the standard 
and the dose reduction systems (452 vs 476 μSv 
respectively). The events analysis showed that the ratio 

Hp(10)/KAP at the C-arm was (mean ± SD) 5 ± 2, 10 ± 
4, 14 ± 4 and 14 ± 6 μSv·Gy−1·cm−2 for the beams with 
no added filtration, 0.1, 0.4 and 0.9 mm Cu respectively 
and suggested that the main cause for the increment 
of the ratio Hp(10)/KAP vs the “standard system” is the 
use of higher beam filtration in the “dose reduction” 
system.
Conclusion: Dose reduction systems are beneficial to 
reduce KAP in patients and their use should be encour-
aged, but they may not be equally effective to reduce 
occupational doses. Interventionalists should not over-
look their own personal protection when using new 
technologies with dose reduction systems.
Advances in knowledge: Dose reduction technology 
in interventional systems may increase scatter dose for 
operators. Personal protection should not be overlooked 
with dose reduction systems.
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rooms) was traditionally the “passive dosimeter” that would give 
the total cumulative occupational dose for 1 month without any 
possibility of discriminating the occupational dose for each indi-
vidual procedure. Today, electronic “active dosimeters” allow 
the level of occupational dose for each radiation event to be 
measured, archived and analyzed in an “occupational dose struc-
tured report” - in a similar way as with RDSR for patients - and 
the secondary radiation level (and the occupational doses) to be 
correlated with the patient doses.4,5

Manufacturers of X-ray and imaging systems have also made 
efforts to optimize their products by improving the post-
processing of the images and achieving a reduction of more than 
50% in patient doses while maintaining or improving the image 
quality.6–13 These dose reduction systems may require increasing 
the X-ray spectral filters to increase the mean beam energy in 
order to reduce the patient entrance dose. They also require 
the use of image post-processing algorithms to maintain image 
contrast at an acceptable level. A reduction in patient dose that 
keeps image quality and clinical information acceptable is always 
welcome. It is in general assumed that a reduction in patient dose 
leads to a reduction in occupational dose: this would be true if 
the radiation quality did not change but, in such dose reduction 
systems, the quantity of primary radiation is reduced but the 
quality (mean energy of the spectra) is increased. Then, how does 
the level of secondary radiation around the patients change for 
the operators? Do occupational doses also decrease in the same 
way as patient doses do?

There is an agreement among physicists that the secondary 
radiation level also increases when the primary beam quality 
is increased.14–17 Perisnakis et al18 reported an increment of a 
factor ≈1,5 at interventionalist location when the total beam 
filtration moved from 5 to 11 mm. Al. Sutton et al19 showed 
increments in a factor of ≈2.5 when the additional filtration is 
increased from 0 to 0.99 mm Cu. Using dose reduction systems, 
among other adjustments beam filtration is likely to increase. 
However, since the different fluoroscopy systems have different 
logics of automatic dose rate control and as their application in 
clinical practice may vary, their impact is difficult to predict. As 
a consequence, different or even conflicting results are found in 
the literature. Schueler et al20 reported a reduction in patient and 
operator doses when the spectral beam filtration was increased 
from 0.2 to 0.5 mm Cu, and at the same time a reduction in 
occupational dose half that of the patient dose. Buytaert et al21 
reported a patient and occupational reduction (at feet level) of 
more than 60% using a patient dose reduction system which 
increased the primary beam filtration, but they also said that 
secondary radiation increases with higher beam filtration. Salinas 
et al22 have recently analyzed a series of percutaneous interven-
tions on chronic total occlusions performed with and without 
dose reduction system and reached a patient dose reduction of 
36%, but no significant difference in occupational dose.

The aim of this work is to quantify the effect of one of these dose 
reduction systems on the secondary radiation measured by a 
reference dosimeter at the C-arm using a large sample of clinical 
procedures.

METHODS AND MATERIALS
Occupational and patient doses are routinely supervised by the 
medical physicists in the three interventional laboratories of the 
Interventional Cardiology Department at the Hospital Clínico 
San Carlos (Madrid, Spain). Two of the interventional labo-
ratories are Allura Xper models and the third one is an Allura 
Clarity (all from Philips Healthcare). All three have the same 
image detector and X-ray tube and quite a similar generator. The 
main difference between the Allura Xper model and the Allura 
Clarity is that the latter has an additional functionality (hardware 
and software) that can provide an important patient dose reduc-
tion.6–13,21,22 This dose reduction functionality requires the use 
of higher beam filtration, that has a default value of 0.4 mm Cu 
+1 mm Al for fluoroscopy and cine. In the Xper model, the cine 
is delivered with no additional filtration and the fluoroscopy has 
( in Hospital Clínico San Carlos) a default value of 0.9 mm Cu 
+1 mm Al. The operator can change the beam filtration if neces-
sary, which very rarely happens, and the most frequent operation 
modes are in general the default modes. When comparing these 
two different systems, we shall refer from now on to the Xper 
model with no added filtration in cine as the “standard” system 
and to Clarity with a patient dose reduction capability and with 
0.4 mm Cu +1 mm Al of added filtration in cine as the “dose 
reduction” system. Both systems use pulsed radiation beams with 
a frequency ranging from 7.5 to 25 pulses/s and a pulse width 
from 3 to 15 ms. The pulse frequency is fixed for each mode and 
selected by the user, 7.5 and 15 being the most used, but the 
pulse width is set by the automatic exposure control according 
to patient thickness.

Using the dose management system DoseWise Portal coupled 
with the DoseAware Xtend system (both from Philips Health-
Care), the patient dose records from the RDSR are archived 
along with the occupational dose measurements from the ODSR 
from all the electronic personal dosimeters model i3 (RaySafe, 
Sweden) used in the room (Figure  1). The dose information 
is recorded at event level and includes detailed data relative to 
beam quality (kV and filtration), beam angle, KAP, etc. as well 
as the quantity Hp(10) for those electronic dosimeters present in 
the room. An analysis of Hp(10)/KAP can therefore be made at 
room, procedure or event level.

The personal dosimeter used for this study is the one located at a 
point of the C-arm (Figure 1). This point is defined by the intersec-
tion of a straight line with the C-arm from the isocentre, forming 
a 45° angle with C-arm rotation axis. It receives high secondary 
radiation dose rate from patient backscatter and describes the 
dose rate in the worst cases, e.g. in those radiation events where 
the tube and the professional are on the same side of the patient.23 
Depending on the protection level, in particular if a protection 
screen is being used, the cumulative dose per procedure over the 
apron at chest level is expected to under 2% of the secondary radi-
ation dose measured by the C-arm reference dosimeter.24 For the 
model of dosimeters used in this work, the manufacturer declares 
an energy dependence of less than 25%*(N40-N150), a dose rate 
uncertainty of 10% for dose rates between 40 and 150 mSv/h and 
*	 https://www.raysafe.com/products/real-time-dosimetry-sys-
tems/raysafe-i3-real-time-radiation-dosimeter
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of 20% for dose rates between 150 and 300 mSv/h. Regarding 
angular dependence, their response can drop to less than 20% 
for incidence angles under 60°. He also warns that the dosime-
ters may have temperature dependence of 5% between 15 and 
26°C but this dependence could reach 20% for temperatures over 
26°C. Some authors25–29 have brought up an issue regarding the 
response of electronic personal dosimeters with pulsed radiation 
fields and the high instantaneous dose rates present during these 
radiation pulses. That is why the Medical Physics Service in our 
hospital routinely tests (at least once a year) the performance of 
their electronic personal dosimeters with pulsed radiation beams 
and a reference personal dosimeter (EPD Mk2 from Thermo-
Fisher Scientific, Walltman, Massachusetts, USA) calibrated in 
a secondary laboratory. This reference dosimeter was tested26,29 
with acceptable results in cumulative dose measurements for dose 
rates under 1.8 Sv/h and pulsed frequencies under 20 s−1. In the 
in-house verification performed by the Medical Physics Service, 
dosimeters are irradiated with the scatter radiation produced by 
a PMMA phantom located over the examination couch on an 
interventional C-arm, with beams typically used in interventional 

radiology and cardiology on several kVs and filtrations (60–120 
kV), and pulse frequencies from 3 to 25 p/s. The Medical Physics 
Service routinely also tests the accuracy of the KAP meter inte-
grated in the C-arms: to this end, a calibrated semiconductor 
detector is used to measure the incident air kerma and a computed 
radiography (CR) plate to measure the radiation field size, as 
recommended by national and international protocols.30,31 The 
DoseWise portal allows the user to introduce a correction factor 
for the KAP, and this factor is rounded to the first decimal figure by 
the system. Based on this information and considering the energy 
dependence of the KAP meters as the main source of uncertainty, 
10% was considered to be the uncertainty for the KAP provided by 
the modality in this experiment.

Considering the uncertainty of both measurement quantities, 
Hp(10) at the C-arm and KAP, the global uncertainty will be 
dominated by the measurement of Hp(10) whose uncertainty 
depends on several factors as described previously and could be 
estimated (with the square root of the quadratic sum) from 27 to 
37% in the worst case. The uncertainty of the ratio Hp(10)/KAP 
would then range between 30 and 40%.

A statistical analysis was carried out with SPSS 25 (IBM, USA). 
The Student’s t and two-way ANOVA tests were used as hypoth-
esis tests when distributions could be considered normal and 
variance homogeneity could be assumed, otherwise Mann–
Whitney U and Kruskal–Wallis tests were used.

The ethics committee of the Hospital Clínico San Carlos gave a 
favourable opinion on this work (C.I.19/377E).

RESULTS
First, results at event level are presented to investigate how the 
scatter radiation changes with the beam quality (spectral filters 
and kV). Secondly, results at procedure level are presented 
showing the impact in clinical practice.

Table 1 shows the sample sizes managed in this study in the three 
interventional rooms and the percentage of KAP delivered with 
the different beam filtrations (ΣKAPfilter/ΣKAPtotal).

Analysis at event level
Figure  2 shows the average and the standard deviation of the 
sample for Hp(10)/KAP measured at the C-arm for events from 

Figure 1. Dose management system used in this experiment, 
managing occupational and patient dose. The dosimeter 
located at the C-arm used in this experiment is shown bigger. 
ODSR, occupational dose structured report.

Table 1. Sample sizes for the “standard” systems (rooms 1 and 2) and the “dose reduction” system (room 3)

Room 1 Room 2 Room 3
X-ray system Standard Standard Dose reduction

No. clinical procedures 1659 2683 667

No. total radiation events 110,676 159,849 70,522

% of total KAP with No added filtration 74% 72% 10%

0.1 mm Cu +1 mm Al 2% 2% 20%

0.4 mm Cu +1 mm Al 4% 4% 70%

0.9 mm Cu +1 mm Al 20% 22% 0%

The use of the different filtrations in the three rooms in this sample is shown as the % of the total KAP delivered.
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clinical procedures performed in the three rooms, with 75 < kV 
< 85, C-arm angles between −10 and 10 degrees and the four 
different beam filtrations used in clinics. Differences resulted 
statistically significant under Kruskal–Wallis (p < 0.001), even in 
the two last groups (0.4 mm Cu +1 Al and 0.9 mm Cu +1 Al) that 
resulted with p < 0.001 under Mann–Whitney U test, probably as 
a consequence of the high sample sizes (n1 = 6241 and n2 = 3882 
radiation events).

Figure 3 shows the average and standard deviation of the sample 
for Hp(10)/KAP measured at the C-arm vs the kV, for the events 
with C-arm angles between −10 and 10 degrees. For simplicity’s 

sake, only the most frequent spectral filtrations (Table  1) are 
shown. All differences can be considered statistically significant 
(p ≤ 0.004 under Kruskal–Wallis and Mann–Whitney tests) with 
the exception of groups (60,70), (70–80) and (80–90) kV for no 
filter and groups (60–70) and >100 for 0.4 mm Cu +1 mm Al.

Analysis at procedure level
Figure  4 shows the ratio Hp(10)/KAP per cardiac procedure, 
graphed with boxes, for the two types of systems discussed in 
this investigation: the “dose reduction” system with high filtra-
tion (with a default added filtration of 0.4 mm Cu in cine) and 
the “standard” system with low filtration (with no added filtra-
tion in cine). The boxes represent the percentiles 5, 25, 50, 75 and 
95%. The cross-point is the average. The sample sizes were the 
ones shown in Table 1. Both distributions are quite symmetric 
and present similarities with normal distribution at Q-Q graphs 
(not shown in this paper). The average ± standard deviation 
resulted in 7 ± 2 μSv·Gy−1cm−2 for the “standard” and 13 ± 3 
μSv·Gy−1cm−2 for the “dose reduction” system (p < 0.001 under 
Student’s t test).

Figure  5 shows the cumulative KAP and Hp(10) at the C-arm 
per procedure for both models of X-ray systems. Student t test 
resulted in significant differences (p < 0.001) even for Figure 5b 
because of the high sample size.

DISCUSSION
Our results show (Figure  2) an increase of the scatter dose to 
patient dose ratio Hp(10)/KAP by a factor of up to 2.6 when 
increasing the spectral filtration from 0 to 0.4 mm Cu +1 mm 
Al. This result is consistent with those phantom measure-
ments published in the literature.19 Similarly, Figure  3 shows 
an increase of Hp(10) to KAP ratio with a factor of 2.5 when 
changing the tube voltage from below 60 kV to above 100 kV, and 
a similar variation when the beam filtration is increased from no 

Figure 2. Hp(10) at C-arm/KAP vs beam filtration for the sam-
ple of events with restricted kV and C-arm close to PA pro-
jection (±10°). Each point represents the mean value and the 
standard deviation of the sample for radiation events with 75 
< kV < 85 and −10° < C arm angles < 10°. Sample sizes ranged 
from a minimum of 223 to 6241 radiation events.

Figure 3. The ratio Hp(10) at C-arm/KAP vs kV for a sample 
of events for C-arm angles close to PA projection. Each point 
represents the average and standard deviation (of the sam-
ple) for radiation events with −10°< C arm angles < 10°. Mini-
mum sample sizes were of 5 events (for no filter, kV > 100), 17 
events (for no filter 90–100 kV) and 56 events (for no filter, kV 
<60). The rest of the points had sample sizes greater than 100 
up to 7474 radiation events.

Figure 4. Ratios of Hp(10) at C-arm/KAP for interventional 
procedures performed with the two X-ray systems used in this 
survey. The standard system has a cine mode with no added 
filtration. The “dose reduction” X-ray unit has patient dose 
reduction system that uses a cine X-ray beam with 0.4 mm Cu 
+1 mm Al added filtration (default filtration).

http://birpublications.org/bjr
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filter to 0.4 mm Cu +1 mm Al. This is consistent with previous 
publications.14,15

Therefore, the factor that affects the most the ratio Hp(10)/KAP 
measured at the C-arm is the beam quality, in particular when 
using higher beam filtration: a higher Hp(10)/KAP ratio is then 
produced.

In Figure 4, the analysis of Hp(10)/KAP is made at procedure level 
for the two systems investigated. The samples corresponding to 
rooms 1 and 2 are treated as the “standard” system. As seen from 
Table 1, the standard system used in rooms 1 and 2 delivers 70% 
of the KAP with no filtration. In the case of the “dose reduction” 
system used in room 3, the 70% of the KAP was delivered with 
0.4 mm Cu +1 mm Al, which permits to reduce the patient KAP 
by 50–75% as shown in literature.6–13,21,22 But this leads to an 
increment of the ratio of Hp(10)/KAP by a factor of almost two as 
shown in Figure 4. Therefore, the important reduction in patient 
dose obtained by the “dose reduction” system is not directly 
transferred to the scatter radiation dose to the operators as the 

reduction in KAP is compensated with the increase in Hp(10). 
In fact, in this sample, the average for the cumulative Hp(10) 
per procedure measured at the C-arm was quite similar in both 
systems: for the standard and dose reduction system, the average 
was 452 and 476 μSv respectively, while the average KAP was 
higher in the standard system, 63 vs 40 Gy·cm2 (Figure 5a and b).

In the analysis of the cumulative Hp(10) at procedure level, the 
complexity of the procedures, that has not been considered here, 
might be different in different rooms and can affect the results. 
Salinas et al22 presented an analysis using the same X-ray systems 
considering the complexity of the procedures: in a sample of 
chronic total occlusions, a reduction by almost 36% in patient 
dose was observed, but no reduction in occupational dose was 
found, neither at the C-arm, nor at operators.

Our study has limitations, the most important of which is that 
the measurement of secondary radiation was based at a partic-
ular point at the C-arm. It certainly gives a general idea of the 
secondary radiation level present in an interventional laboratory, 
but the results in operators can behave differently depending 
on the distance to the source of secondary radiation, the C-arm 
orientation and the proper use of suspended protection screens 
during all the procedures.

CONCLUSION
In interventional practices, “dose reduction” systems using high 
filtration X-ray beams can provide an important reduction in 
patient dose indicators. Their use should be encouraged in inter-
ventional rooms whenever the image quality provided gives 
enough clinical information. But it is also important to note that 
they may not provide the same reduction in scatter radiation 
dose for operators. Therefore, interventionalists must not over-
look personal protection even when working with patient dose 
reduction systems.
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Figure 5. The KAP per procedure and the Hp(10) per proce-
dure measured at the C-arm. Box graph shows the percentiles 
5, 25, 50, 75 and 95%. The cross-point shows the average. As 
shown in Table 1, in the “dose reduction” system, 70% of the 
KAP was delivered with 0.4 mm Cu + 1 mm Al of added filtra-
tion. In the standard system, 70% of the KAP was delivered 
with no added filtration.
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