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abstract The landscape of structural variants (SV) in multiple myeloma remains poorly 
understood. Here, we performed comprehensive analysis of SVs in a large cohort 

of 752 patients with multiple myeloma by low-coverage long-insert whole-genome sequencing. We 
identified 68 SV hotspots involving 17 new candidate driver genes, including the therapeutic targets 
BCMA (TNFRSF17),  SLAM7, and MCL1. Catastrophic complex rearrangements termed chromothripsis 
were present in 24% of patients and independently associated with poor clinical outcomes. Templated 
insertions were the second most frequent complex event (19%), mostly involved in super-enhancer 
hijacking and activation of oncogenes such as CCND1 and MYC. Importantly, in 31% of patients, two 
or more seemingly independent putative driver events were caused by a single structural event, dem-
onstrating that the complex genomic landscape of multiple myeloma can be acquired through few key 
events during tumor evolutionary history. Overall, this study reveals the critical role of SVs in multiple 
myeloma pathogenesis.

Significance: Previous genomic studies in multiple myeloma have largely focused on single-nucleotide  
variants, recurrent copy-number alterations, and recurrent translocations. Here, we demonstrate the 
crucial role of SVs and complex events in the development of multiple myeloma and highlight the impor-
tance of whole-genome sequencing to decipher its genomic complexity.

See related commentary by Bergsagel and Kuehl, p. 221.
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Introduction
Whole-genome sequencing (WGS) studies have demon-

strated the importance of structural variants (SV) in the 
initiation and progression of many cancers (1–8). Functional 
implications of SVs include gene dosage effects from gain or 

loss of chromosomal material, gene regulatory effects such 
as super-enhancer hijacking, and gene fusions (9). The basic 
unit of SVs are pairs of breakpoints, classified as either dele-
tion, tandem duplication, translocation, or inversion, which 
can manifest as simple events or form complex patterns 
where multiple SVs are acquired together, often involving 
multiple chromosomes (1–8, 10).

In multiple myeloma, previous studies of SVs have had 
a narrow scope, usually limited to recurrent translocations 
involving MYC or the immunoglobulin loci (i.e., IGH, IGL, and 
IGK; refs. 11–17). The vast majority of established genomic 
drivers in multiple myeloma are single-nucleotide variants 
(SNV) and copy-number alterations (CNA), identified by 
whole-exome sequencing and array-based approaches (18–22). 
However, important aspects of tumor biology and evolution 
remain poorly explained by known genomic drivers, such as 
progression from precursor stages to active multiple myeloma 
and the development of drug resistance (12, 23–25).

We recently reported the first comprehensive study of SVs 
in multiple myeloma by WGS of sequential samples from 30 
patients (21). Despite the limited sample set and the absence of 
gene expression data, our findings indicated that SVs are a key 
missing piece to understand the driver landscape of multiple 
myeloma. Of particular interest, we found a high prevalence of 
three main classes of complex SVs: chromothripsis, templated 
insertions, and chromoplexy (21). In chromothripsis, chromo-
somal shattering and random rejoining results in a pattern of 
tens to hundreds of breakpoints with oscillating copy number 
across one or more chromosomes (Fig.  1A and B; ref. 26). 
Templated insertions are characterized by focal gains bounded 
by translocations, resulting in concatenation of amplified seg-
ments from two or more chromosomes into a continuous 
stretch of DNA, which is inserted back into any of the involved 
chromosomes (Fig. 1C and D; refs. 4, 21). Chromoplexy similarly 
connects segments from multiple chromosomes, but the local 
footprint is characterized by copy-number loss (Fig. 1E and F; 
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Figure 1.  Complex SV classes in multiple myeloma. A, Chromothripsis involving IGH and nine recurrent drivers across 10 different chromosomes (sample  
MMRF_1890_1_BM). B, Chromothripsis causing high-level focal gains on chromosome 17 (sample MMRF_2330_1_BM). The horizontal black line indicates 
total copy number; the dashed orange line indicates minor copy number. Vertical lines represent SV breakpoints, color-coded by SV class. Selected 
overexpressed genes (Z-score >2) are annotated in red, including the established multiple myeloma driver gene MAP3K14 and RAD51C, an oncogene 
commonly amplified in breast cancer (ref. 66; six copies). C, Templated insertion involving seven different chromosomes, causing a canonical IGH-CCND1 
translocation and involving at least two additional drivers in the same event (i.e., KLF2 and TNFRSF17; sample MMRF_1677_1_BM). D, Simpler templated 
insertion cycle (brown lines), involving IGL, MYC, and a hotspot on chromosome 15q24 (sample MMRF_1550_1_BM). Copy-number profile shown in blue, 
with active enhancers below in brown (H3K27Ac). E, Chromoplexy involving chromosomes 11, 13, and 14, simultaneously causing deletion of key tumor 
suppressor genes on each chromosome (sample MMRF_2194_1_BM). F, Zooming in on the translocations and associated large deletions, which make up 
the chromoplexy event depicted as a Circos plot in C; (sample MMRF_2194_1_BM). The Circos plots in panels A, C, and E each show the SV breakpoints of 
a single complex SV (colored lines; legend above panels), with bars around the plot circumference indicating copy-number changes (red, loss; blue, gain).
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ref. 27). Importantly, these complex SVs represent large-scale 
genomic alterations acquired by the cancer cell at a single point 
in time, potentially involving multiple drivers and shaping sub-
sequent tumor evolution (2, 27).

Here, we comprehensively characterized the role of 
genome-wide SVs in 752 patients with multiple myeloma, 
revealing novel SV hotspots, rare SVs with strong impact on 
gene expression, and complex events simultaneously causing 
multiple drivers.

Results
Genome-Wide Landscape of Structural Variation in 
Multiple Myeloma

To define the landscape of simple and complex SVs in mul-
tiple myeloma, we investigated 752 newly diagnosed patients 
from the CoMMpass study (NCT01454297; IA13) who 
underwent low-coverage long-insert WGS (median 4–8X) and 
whole-exome sequencing (Supplementary Table S1; Supple-
mentary Methods). RNA sequencing was also available from 
591 patients (78.6%). For each patient sample, we integrated 
the genome-wide somatic copy-number profile with SV data 
and assigned each pair of SV breakpoints as either simple or 
part of a complex event according to the three main classes 
previously identified in multiple myeloma (Fig. 1; Methods; 
ref. 21). Templated insertions involving more than two chro-
mosomes were considered complex. Events involving more 
than three breakpoint pairs that did not fulfill the criteria for 
a specific class of complex event were classified as unspecified 
“complex” (21).

Our final SV catalog was obtained by integrating two SV 
calling algorithms, DELLY (10) and Manta (28), followed 
by a series of quality filters. First, we included all SVs called 
and passed by both callers. Then SVs called by a single caller 
were included in specific circumstances: (i) SVs supporting 
copy-number junctions, (ii) reciprocal translocations, and (iii) 
translocations involving an immunoglobulin locus (i.e., IGH, 
IGK, or IGL; Supplementary Methods). Using the final SV cata-
log, long-insert low-coverage WGS revealed a sensitivity of 91% 
to 92% and specificity of 97% to identify translocations involv-
ing IGH and the most common canonical drivers CCND1 
and WHSC1/MMSET. Recalculating performance metrics for 
canonical IGH translocations using the same SV filtering crite-
ria genome wide (i.e., without the relaxed quality requirements 
for immunoglobulin translocations), we observed no changes 
in specificity, and sensitivity of 91% for IGH-CCND1 (identical 
as before) and 88% for IGH-WHSC1/MMSET (down from 92%). 
Overall, these performance metrics were similar to what was 
recently described by the PCAWG consortium using standard-
coverage short-read WGS (Supplementary Methods; refs. 4, 
7). Furthermore, the genome-wide distribution of SV break-
points in the low-coverage WGS series corresponded with 
recent pan-cancer and myeloma genomes studies, showing 
enrichment in regions of early replication, accessible chroma-
tin, and active enhancer regions as defined by histone H3K27 
acetylation (H3K27ac; Supplementary Fig. S1; Methods; refs. 
4, 7, 21). Taken together, this suggests that low-coverage long-
insert WGS provides a representative view of the SV landscape.

We identified a median of 16 SVs per patient [interquartile 
range (IQR) 8–32; Fig.  2A]. Chromothripsis, chromoplexy, 

and templated insertions involving >2 chromosomes were 
observed in 24%, 11%, and 19% of patients, respectively, con-
firming previous observations (21); 38% of patients had an 
unspecified complex event. One or more complex events were 
identified in 63% of patients (median 1; range 0–11).

In patients with newly diagnosed multiple myeloma, dif-
ferent SV classes showed distinct patterns of co-occurrence, 
mutual exclusivity, and association with recurrent molecular 
alterations (Fig.  2A–C). Templated insertions showed a par-
ticularly striking pattern of positive correlation with single 
tandem duplications (Spearman ρ = 0.55, P < 2.2 × 10−16) 
and negative correlation with most other SV classes (Fig. 2B). 
Templated insertions and single tandem duplications were 
both strongly enriched in patients with hyperdiploidy and 
MYC alterations (Fig. 2C). Chromothripsis accounted for the 
greatest proportion of SVs among all classes (33%), and the 
burden of chromothripsis SVs in each patient correlated with 
the number of single deletions, inversions, and unspecified 
complex events (Fig.  2B). Presence of chromothripsis or a 
deletion burden in the 4th quartile showed striking asso-
ciations with known high-risk molecular features in multi-
ple myeloma, including primary translocations of IGH with 
MMSET, MAF, or MAFB; high APOBEC mutational burden, 
and most of the recurrent aneuploidies (Fig. 2C; refs. 19, 29, 
30). The strongest association was observed between chro-
mothripsis and biallelic inactivation of TP53 [OR 6.6; 95% 
confidence interval (CI), 2.7–17.15, P = 4.84 × 10−6]. Chro-
mothripsis was previously reported as a rare event in 10 of 
764 patients with multiple myeloma (1.3%) using array-based 
copy-number analysis, and half of these patients relapsed 
within 10 months (31). Despite the 18-fold higher prevalence 
in our WGS data, the presence of chromothripsis was asso-
ciated with poor clinical outcomes and retained its signifi-
cance after adjustment for established clinical and molecular 
risk factors, in terms of both progression-free survival (PFS; 
adjusted HR = 1.42; 95% CI, 1.08–1.87; P = 0.014) and over-
all survival (OS; adjusted HR = 1.81; 95% CI, 1.23–2.65; P = 
0.002; Fig. 2D–F; Supplementary Fig. S2; Methods).

Structural Basis of Recurrent Translocations and 
Copy-Number Alterations

To define the structural basis of canonical translocations 
in multiple myeloma, we identified all translocation-type 
events (single and complex) with one or more breakpoints 
involving the immunoglobulin loci (i.e., IGH, IGK, and IGL) 
or canonical IGH partners (e.g., CCND1, MMSET, and MYC; 
Fig. 3A and B; ref. 18). Templated insertions emerged as the 
cause of CCND1 and MYC translocations in 26% and 72% 
of cases, respectively (Fig.  3A). In line with its mechanism 
of connecting and amplifying distant genomic segments, 
oncogenes, and regulatory regions (e.g., super-enhancers), 
templated insertions of CCND1 and MYC were associated 
with focal amplification in 81% and 98% of cases, respectively, 
and involved more than two chromosomes in 42% and 44% 
of cases. Complex SVs involving MYC were first described 
in 2000 (32), including insertions of the MYC gene into a 
partner locus or insertion of partner loci near MYC, consist-
ent with the current definition of templated insertions (4). 
Although rare, we also found examples of chromothripsis 
and chromoplexy underlying canonical IGH translocations, 
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canonical translocations involving CCND1, MMSET, MAF, MAFA, MAFB, and MYC (Supplementary Fig. S2).

resulting in overexpression of the partner gene consistent 
with a driver event (Fig. 3B).

Next we went to investigate the prevalence and landscape of 
rare noncanonical IGH translocation partners. These events 
were first described in the 1990s (17), but data from a large 
and uniformly analyzed series have been lacking. Considering 
the 591 patients in our study with WGS and RNA sequenc-
ing, where aberrant gene expression could be confirmed, 
31 patients (5.2%) had translocations involving at least one 

immunoglobulin locus (IGH = 19, IGL = 12 and IGK = 1) 
and a noncanonical oncogene partner, most of which were 
key regulators of B-cell development (e.g., PAX5 and CD40; 
Fig. 3B; refs. 33, 34). Noncanonical IGH translocations most 
commonly occurred in patients without another primary 
IGH translocation (15 of 19 patients, 79%), raising the pos-
sibility of noncanonical disease-initiating events. Of these, 
translocations involving MAP3K14 had similar prevalence 
(1%) as those involving CCND2 (0.8%) and MAFA (0.5%) and, 
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which are considered among established initiating events, 
and showed a similar breakpoint distribution in the IGH 
class-switch recombination regions (Fig. 3B; Supplementary 
Fig. S3). Taken together, we show that different mechanisms 
of SV converge to aberrantly activate key driver genes in mul-
tiple myeloma, including rare events potentially involved in 
cancer initiation.

Next, we addressed the structural basis of recurrent CNAs 
(Supplementary Table S2). Aneuploidies involving a whole 
chromosome arm were most common (56% of 2,889 events). 
Among intrachromosomal CNAs, 83% could be attributed to 
a specific SV (Fig. 3C). There was considerable variation in the 
proportion and class of SVs causing gains and losses between 
different loci, indicating the presence of distinct underlying 
mechanisms being active at these sites (Fig. 3C). Highlighting 
the importance of complex SVs in shaping the multiple mye-
loma genome, 47% of all chromothripsis events resulted in 
the acquisition of at least one recurrent driver CNA (n = 116); 

the corresponding numbers for chromoplexy and templated 
insertions involving >2 chromosomes were 44% (n = 43) and 
21.7% (n = 46), respectively.

SVs may exert their effect through altered gene dosage (i.e., 
the number of copies of a gene) or through indirect mech-
anisms such as the well-known super-enhancer hijacking 
involving the immunoglobulin loci (Fig. 3B; refs. 14, 35). To 
quantify the effect of SVs on gene expression independently 
from copy number, we fit a multivariate linear regression 
model including all expressed genes on autosomes from all 
patients (Fig.  3D; Supplementary Methods; ref. 36). Struc-
tural events involving immunoglobulin loci were excluded. 
As expected, copy number had the strongest average effect, 
with an increase or decrease in expression Z-score of 0.31 for 
each gain or loss of a gene copy (P < 2.2 × 10−16). Nonethe-
less, all SV classes showed significant gene expression effects 
independent from copy number, and these effects were in the 
direction expected from the consequences of each SV class 

Figure 3. SVs associated with recurrent translocations, copy-number changes, and altered gene expression. A, Relative contribution (y-axis) of simple 
and complex SV classes to canonical translocations (TRA) involving IGH as well as translocations of MYC with canonical and noncanonical partners 
(x-axis). “Non-IG” includes MYC translocations that do not involve IGH, IGL, or IGK. B, Gene expression of canonical and noncanonical partners of trans-
locations involving IGH (left), either light chain gene locus (center), or MYC (right). Each point represents a sample, colored by the translocation class 
involved or absence of a translocation (gray). Boxplots shows the median and IQR of expression across all patients, with whiskers extending to 1.5 * IQR. 
The templated insertion of IGH and MAF with low expression was part of a multichromosomal event involving and causing the overexpression of CCND1. 
TPM, trancripts per million. C, Structural basis of established multiple myeloma CNA drivers, showing the relative contribution of whole-arm events and 
CNAs associated with a specific SV. Intrachromosomal events without a clear causal SV were classified as “unknown” (7% of CNAs overall). D, Impact 
of copy number and SV involvement on normalized gene expression values (Z-scores), estimated by multivariate linear regression. Estimates with 95% 
CI for each parameter are shown. Pooled analysis was performed for all expressed genes on autosomes across all patients, excluding structural events 
involving immunoglobulin loci.
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(36, 37). Chromothripsis is associated with both gain and 
loss of function (38), and the presence of high-level gains 
causing outlier gene expression may have skewed our model 
estimates. However, chromothripsis maintained a positive 
effect on gene expression when limiting our analysis to genes 
with less than four copies (estimate = 0.11, P < 2.2 × 10−16; 
Supplementary Fig.  S4). Although the specific implications 
of individual SVs may be difficult to predict, these data dem-
onstrate that the average effects of SVs on gene expression 
are considerable.

Hotspots of Structural Variation
Twenty recurrently translocated regions have been previ-

ously reported in multiple myeloma, defined by a transloca-
tion prevalence of >2% within 1 Mb bins across the genome 
(11). These included the canonical immunoglobulin trans-
locations, as well as MYC and recurrent partners, such as 
BMP6/TXNDC5, FOXO3, and FAM46C (11, 14, 39). We were 
motivated to expand the known catalog of genomic loci 
where SVs play a driver role in multiple myeloma and are 
therefore positively selected (i.e., SV hotspots), considering 
all classes of single and complex SVs. To accomplish this, 
we applied the Piecewise Constant Fitting (PCF) algorithm, 
comparing the local SV breakpoint density to an empirical 
background model, accounting for the propensity of com-
plex SVs to introduce large numbers of clustered breakpoints 
(Methods; Supplementary Methods; Supplementary Data S1; 
refs. 3, 40). Overall, we identified 68 SV hotspots after exclud-
ing the immunoglobulin loci (i.e., IGH, IGL, and IGK) and 
five known fragile sites that are prone to focal deletions (e.g., 
FHIT, CCSER1, and PTPRD; Figs. 4A–D and 5; Supplemen-
tary Table S3). Fifty-three SV hotspots had not been previ-
ously reported in multiple myeloma. Two of the previously 
reported regions of recurrent translocation were not reca-
pitulated by our hotspot analysis: 19p13.3 and the known 
oncogene MAFB on 20q12. This may be explained by the 
behavior of the PCF algorithm, which favors the identifica-
tion of loci where breakpoints are tightly clustered compared 
with neighboring regions as well as the expected background. 
Indeed, SVs involving MAFB and 19p13.3 were identified in 
1.5% and 8.1% of patients, but the breakpoints did not form 
distinct clusters (Supplementary Fig. S5). While MAFB is an 
established driver that was missed by our analysis, the impli-
cations of SVs involving 19p13.3 are unclear.

Given that SVs and CNAs reflect the same genomic events, 
we hypothesized that functionally important SV hotspots 
would be associated with a cluster of CNAs (4). We there-
fore performed independent discovery of driver CNAs using 
Genomic Identification of Significant Targets in Cancer  
(GISTIC; ref. 41). This algorithm identifies peaks of copy 
number gain or loss containing driver genes and/or regulatory 
elements based on the frequency and amplitude of observed 
CNAs (Fig.  4A; Supplementary Tables S4 and S5). In addi-
tion, we generated cumulative copy number profiles for the 
patients involved by SV at each hotspot. Finally, we evalu-
ated the impact of SV hotspots on the expression of nearby 
genes (Supplementary Table S6) and the presence of oncogene 
fusion transcripts. By integrating SV, CNA, and expression 
data, we went on to determine the most likely consequence 
of each hotspot in terms of gain of function, loss of function, 

and potential involvement of driver genes and regulatory 
elements. Individual SVs within hotspots were considered 
as likely driver events if their functional implications corre-
sponded to the putative driver role of that hotspot (i.e., gain or 
loss of function); SVs with incongruous effects were removed 
as likely passenger events (Supplementary Methods).

Gain-of-function hotspots (n = 49) were defined by clus-
tered SVs associated with copy number gains as well as trans-
location-type events with or without oncogene fusions (Figs. 
4 and 5; Supplementary Fig.  S6; Supplementary Table S3). 
There was a strong tendency for templated insertions and tan-
dem duplications to co-occur (Spearman ρ = 0.71, P = 1.56 ×  
10−8) across hotspots, with a similar pattern being observed 
genome wide (ρ = 0.57, P < 2.2 × 10−16), supporting a strong 
association between these events. Strikingly, gain-of-function 
hotspots showed 8.4-fold enrichment of super-enhancers as 
compared with the remaining mappable genome (2.5 vs. 0.3 
super-enhancers per Mb, Poisson test P < 2.2 × 10−16) and 
10.5-fold enrichment of transcription factors involved in key 
regulatory networks in multiple myeloma (Poisson test P = 
1.64 × 10−8; ref. 42). Among gain-of-function hotspots, 16 
were associated with well-defined myeloma oncogenes (e.g., 
WHSC1/MMSET, CCND1, IRF4, and MAP3K14; refs. 11, 18) 
and 17 involved a novel putative driver gene. Of particular 
interest, TNFRSF17 was involved by SVs in 2.5% of patients 
(n = 19) and encodes B-Cell Maturation Antigen (BCMA), a 
therapeutic target of chimeric antigen receptor T-cells (CAR-
T), as well as monoclonal and bispecific antibodies (Fig. 4B; 
refs. 43, 44). Furthermore, we report two novel SV hotspots 
on chromosome 1q23 involving putative driver genes with 
therapeutic implications: SLAMF7 (involved by SV in 2.8%, 
n = 21), target of the mAb elotuzumab (Fig. 4C; refs. 43, 45), 
and MCL1 (3%, n = 23), an apoptotic regulator implicated in 
resistance to the BCL2 inhibitor venetoclax (46, 47) and a 
promising therapeutic target in its own right (48). Additional 
novel putative driver genes were BTG2, CCR2, PRKCD, FBXW7, 
IRF2, NRG2/UBE2D2, SOX30, NEDD9, GLCCI1, TBXAS1/
HIPK2, POU2AF1, KLF13, USP3/HERC1, and TNFRSF13B. We 
also confirmed previous reports that virtually all SVs involv-
ing MYC resulted in its overexpression, including deletions 
and inversions acting to reposition MYC next to the super-
enhancers of NSMCE2 roughly 2 Mb upstream (16).

Loss-of-function hotspots (n = 19) were defined by SVs 
causing copy number loss, most commonly single deletions, 
but also inversions and complex SVs (Figs. 4 and 5; Supple-
mentary Fig. S6; Supplementary Table S3). We identified loss 
of 12 known tumor suppressor genes in multiple myeloma, 
including CDKN2C, SP3, SP140, RPL5, and CYLD. FAM46C 
stood out as involved by both SVs causing copy-number 
loss and translocation-type events, which sometimes resulted 
in gene fusions. This is consistent with its known role as a 
tumor suppressor while also serving as a target for super-
enhancer hijacking (39, 49).

Taken together, we identified 29 SV hotspots involving 
genes with established tumor suppressor or oncogene func-
tion in multiple myeloma; 17 additional hotspots, all gain 
of function, involved novel putative driver genes (Supple-
mentary Table S3; all putative driver hotspots are shown in 
Fig.  4B–D; Supplementary Fig.  S6; individual patient sum-
mary is in Supplementary Table S7; ref. 50).
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Figure 4.  Genome-wide distribution of structural variation breakpoints and hotspots. A, Top, genome-wide density of SV breakpoints shown sepa-
rately for each class (legend above figure); simple classes are above the x-axis and complex classes below. Middle, distribution of SV hotspots (green) 
and recurrent copy-number changes (red/blue) identified by the GISTIC algorithm. Bottom, all copy number-changes caused by SV breakpoints, showing 
cumulative plots for gains (blue) and losses (red). B–D, Zooming in on three SV hotspots and showing the breakpoint density of relevant SV classes 
(colors indicated in legend above A) around the hotspot; active enhancers (H3K27Ac) and supporting GISTIC peaks (middle); and cumulative copy number 
(bottom). The SV density plots are annotated with the location of key driver genes as vertical gray dashed lines. B, Gain-of-function hotspot centered on 
TNFRSF17 (BCMA), dominated by highly clustered templated insertions, associated with focal copy-number gain of TNFRSF17. C, Gain-of-function hot-
spot involving four genes in the Signaling Lymphocyte Activation Molecule (SLAM) family of immunomodulatory receptors, including the gene encoding 
the mAb target SLAMF7. D, Deletion hotspot associated with copy-number loss centered on the cyclin dependent kinase inhibitors CDKN2A/CDKN2B.
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Each patient had a median of two hotspots involved by a 
putative driver SV (IQR 1–3), and the number of hotspots 
involved was strongly associated with the overall SV burden 
(Spearman ρ = 0.46; P < 2.2 × 10−16). This association became 
even stronger when SV breakpoints associated with a single 
event were considered together (Spearman ρ = 0.51; P < 2.2 × 
10−16). Reanalyzing published data from tandem duplication 
hotspots in breast cancer revealed similar results (Spearman ρ 
of 0.7 and 0.62 for rearrangement signatures 1 and 3, respec-

tively; P < 2.2 × 10−16; Supplementary Fig. S7A–S7C; ref. 40). 
Extending this observation beyond SVs, there was a strong 
correlation between SNV burden in multiple myeloma and the 
number of SNVs in known driver genes (refs. 20, 21; ρ = 0.38,  
P < 2.2 × 10−16), which remained significant when restricting 
the analysis to established SNV hotspots within driver genes  
(ρ = 0.11, P = 0.001). These data indicate that genomic driv-
ers continue to accumulate and provide selective advantage 
through the disease course despite multiple drivers already being  
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present, consistent with our recent observations from recon-
structing the timeline of driver acquisition in multiple myeloma 
(21, 51, 52) and multiregion WGS performed at autopsy (53).

Templated Insertions and Chromothripsis 
Exemplify Highly Clustered versus Chaotic 
Breakpoint Patterns

SVs of different classes showed different propensities to 
form hotspots. Templated insertion breakpoints were the 
most likely to be in a hotspot (logistic regression OR 4.04; 
95% CI, 3.65–4.49, P < 2.2 × 10−16), with chromothripsis 
breakpoints being the least likely (OR 0.48; 95% CI, 0.43–
0.54; P < 2.2 × 10−16; Fig. 6A and B). This difference remained 
when considering structural events instead of individual 
breakpoints, with 66% of 544 templated insertions involv-
ing one or more hotspot versus 43% of 244 chromothripsis 
events (Fisher test OR, 2.66; 95% CI, 1.91–3.65; P = 7.14 × 
10−10) despite the vastly higher complexity of chromothrip-
sis events as compared with templated insertions (median  
17 vs. 2 breakpoint pairs in each event, Wilcoxon test P <  
2.2 × 10−16).

The differences between templated insertions and chro-
mothripsis could be clearly illustrated by the genome-wide 
distribution of breakpoints and association with number 
changes (Fig.  6A). Templated insertions were associated 
mainly with focal copy-number gain in 80.1% of cases (95% 
CI, 78%–82%) and only rarely with copy-number losses 
(5.6%; 95% CI, 4.6%–6.7%). Gains were almost exclusively sin-
gle copy (92.3% of 1,317 gains), highlighting the stability of 
these events. In contrast, an important feature of chromo-
thripsis is its ability to cause both gain and loss of function 
as part of the same event (38). Indeed, the breakpoints of 

chromothripsis were associated with chromosomal loss in 
53.8% of cases (95% CI, 52%–55.6%) and gain in 37.6% (95% 
CI, 36%–39.4%). Templated insertions were predominantly 
associated with gain of a single copy (Fisher test OR 2.25 
vs. chromothripsis; P < 2.2 × 10−16), while chromothripsis 
dominated for gains of two (OR 1.7, P = 7.07 × 10−5), 3 (OR 
13.9, P < 2.03 × 10−14) or more than three copies (OR 40.7, 
P < 2.2 × 10−16; Fig.  6C). The probability that focal gains 
involved a multiple myeloma super-enhancer was highest 
when associated with templated insertions (55%, logistic 
regression OR 2.76; P < 2.2 × 10−16) and lowest when associ-
ated with chromothripsis (21%, logistic regression OR 0.61; 
P = 7.43 × 10−5; Fig. 6D). In contrast to solid tumors, where 
chromothripsis may result acquisition of >50 copies (1, 4, 6, 
54), we observed no segments with more than nine copies in 
this series (Fig. 1B).

Consistent with widely different underlying mechanisms, 
the genome-wide distribution of templated insertion break-
points could be predicted from genomic features such as 
active enhancer regions, replication time, and open chroma-
tin, but this was not the case for chromothripsis (Supple-
mentary Methods). To test whether the clustered nature of 
templated insertion breakpoints can be explained solely by 
the local sequence context (e.g., active enhancers) or consti-
tute real hotspots subjected to positive selection, we repeated 
our PCF-based hotspot analysis for templated insertions 
alone. Despite the considerably lower power of this analysis 
as compared to the combined analysis presented above, 75% 
of hotspots containing six or more templated insertions were 
confirmed (21 out of 28), including novel putative drivers 
such as FBXW7 and TNFRSF17 (BCMA; Fig. 6A; Supplemen-
tary Table S8).

Figure 5.  Summary of SV hotspots. Summary of all 68 SV hotspots, showing (from the top) absolute and relative contribution of SV classes within 
100 kb of the hotspot; involvement of active enhancers in multiple myeloma, and presence of putative driver gene fusions and copy-number changes; dif-
ferential expression of putative driver genes by copy-number changes and/or SV involvement by linear regression; total number of genes in each hotspot 
differentially expressed by SV involvement (FDR < 0.1) after adjustment for copy-number changes; and known and candidate driver genes.
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Because the distribution of chromothripsis breakpoints 
did not follow a predictable pattern, we performed sepa-
rate hotspot analysis searching for regions that violated the 
assumption of a uniform distribution across the genome. 
In contrast to templated insertions, where hotspots were 
strongly clustered on key driver genes and regulatory regions, 
hotspots of chromothripsis were much larger, spanning from 
a few to tens of megabases (Fig. 6A; Supplementary Table S9). 
This is consistent with mechanisms where templated inser-
tions exert gene regulatory effects disproportionate to the 
level of copy-number gain, while the effects of chromothrip-

sis manifest as large deletions involving recurrent regions as 
well as high-level amplifications and local regulatory effects 
(Fig. 3C and D).

Multiple Driver Alterations Caused by the Same 
Structural Event

In 31% of patients (n = 235), two or more seemingly inde-
pendent recurrent CNAs or putative driver translocations 
were caused by the same SV (Fig. 7A and B). The most com-
mon event classes were templated insertions causing chains of 
gain-of-function events in 12.7% of patients, most commonly 

Figure 6.  Templated insertions and chromothripsis exemplify highly clustered versus scattered breakpoint patterns. A, Distribution of templated 
insertions (top) and chromothripsis (bottom) across the genome, with each displaying SV breakpoint density above the x-axis and SV-associated cumula-
tive copy-number changes below. Results from templated insertion and chromothripsis-specific hotspot analysis drawn as black bars at y = 20. Hotspots 
from the main hotspot analysis that contained six or more templated insertions are drawn in green. Key putative driver genes involved by hotspots are 
annotated. Numbers are annotated where peaks extend outside of the plotting area. B, The probability that a given SV breakpoint belonging to each class 
will fall within a hotspot region, expressed as ORs with 95% CI from logistic regression analysis where single deletions were used as the reference level. 
C, The proportion of focal gains (<3 Mb) associated with each SV class, divided by the number of copies acquired relative to the baseline (x-axis). D, The 
probability that focal gains displayed in C contain a multiple myeloma super-enhancer, expressed as OR with 95% CI from a logistic regression model 
adjusted for copy number. Asterisks in B and D indicate statistical significance (**, P < 10−8; *, P < 0.01).
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Figure 7.  Two or more putative driver alterations caused by a single SV. Putative driver alterations recurrently involved by multi-driver events (involved 
in 5 or more patients). A, Number of multidriver events involving each gene colored by the SV class responsible. B, Heatmap showing the number of times 
each pair of putative drivers co-occurs. Co-occurrence was defined by at least two drivers on different chromosomal copy-number segments caused by 
the same event. Axis legends are colored according to the gain-of-function (blue) or loss-of-function (red) status of each driver.
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including MYC. Chromothripsis caused two or more driver 
alterations in 7.2% of patients, commonly involving large 
deletions as well as translocation and/or amplification of 
oncogenes. Unbalanced translocations simultaneously caus-
ing oncogene translocations and large deletions involving 
tumor suppressor genes were identified in 4.4% of patients. 
Notably, 12 patients with canonical IGH-MMSET transloca-
tions had large deletions of 14q caused by the same unbal-
anced translocation, including TRAF3 (14q32) and often 
MAX (14q23; n = 10), contributing to the known association 
between these events (21). Overall, SVs represents a recurrent 
mechanism for tumors to acquire multiple drivers simulta-
neously, demonstrating that the full genomic landscape of 
multiple myeloma can be acquired through a few key events 
during tumor evolutionary history (27).

Discussion
We describe the first comprehensive analysis of SVs in a 

large series of multiple myeloma patients with paired WGS 
and RNA sequencing. Previous studies of SVs in multiple 
myeloma have focused on translocations without considera-
tion of complex events (11, 15, 55, 56), and our previous WGS 
study of 30 patients lacked both the expression correlate and 
the power to perform comprehensive driver discovery (21). 
Here, applying a robust statistical approach (40), we identi-
fied 68 SV hotspots, 53 of which have not previously been 
reported. Integrated analysis of copy-number changes, gene 
expression and the distribution of SV breakpoints revealed 17 
new potential driver genes, including the emerging therapeu-
tic targets TNFRSF17 (BCMA; refs. 43, 44), SLAMF7 (43, 45) 
and MCL1 (48), the latter of which has also been implicated 
in resistance to the BCL2 inhibitor venetoclax (46). With all 
of these targets either currently or imminently in clinical use, 
it will be of great clinical importance to determine the impact 
of these genomic alterations as predictive biomarkers for 
treatment response.

From a pan-cancer perspective, the SV landscape of multi-
ple myeloma is characterized by a lower SV burden and less 
genomic complexity than in many solid tumors (1, 4, 7). For 
example, we did not find any classical double minute chromo-
somes with tens to hundreds of amplified copies or any of the 
recently proposed complex SV classes pyrgo, rigma, and tyfonas 
(1). Nonetheless, we found that complex SVs play a crucial 
role in shaping the genome of patients with multiple mye-
loma, most importantly chromothripsis, chromoplexy, and 
templated insertions. A common feature of these SV classes 
is simultaneously deregulating multiple driver genes as part 
of a single event. Such multi-driver events are of particular 
importance in myeloma progression, as they can provide an 
explanation for the rapid changes in clinical behavior that 
are frequently seen in the clinic (23). In myeloma precursor 
disease, understanding these evolutionary patterns will be 
crucial for early diagnosis of those patients who are on a 
trajectory toward progression and may benefit from early 
intervention (23).

Of immediate translational relevance, chromothripsis 
emerged as a strong independent predictor for high-risk dis-
ease, detectable in 24% of newly diagnosed patients by WGS, 
providing a rationale for the inclusion of chromothripsis 

in clinical risk scores. The prevalence of chromothripsis in 
multiple myeloma is higher than what has been reported in 
previous studies likely for two reasons: (i) use of WGS resolu-
tion able to integrate SV and CNA data, and (ii) applying the 
most updated criteria to define chromothripsis (4, 21, 57).

The use of low-coverage long-insert WGS is a potential limi-
tation of this study. We have applied extensive quality control 
measures to ensure specificity of our SV calls but may have 
overlooked a fraction of real SVs, particularly those present at 
the subclonal level. Thus, the results reported in this study will 
be skewed toward events acquired in the early phases of tumor 
evolutionary history, driving tumor initiation and progres-
sion, and going on to be present in the dominant tumor clone 
at diagnosis. Future studies using higher coverage WGS may 
reveal greater SV burden and additional hotspots, including 
subclonal events that may be selected at relapse.

Gene deregulation by SV is a major contributor to the biol-
ogy of multiple myeloma, constituting a hallmark feature of 
its genome. For decades, the defining features of multiple 
myeloma pathogenesis and heterogeneity has been hijacking 
of the IGH super-enhancers to oncogenes such as CCND1 and 
MMSET. Our findings reveal how simple and complex SVs 
shape the driver landscape of multiple myeloma, with events 
ranging from common CNAs and canonical translocations to 
a large number of SV hotspots. These results focus attention 
on the importance of SVs in multiple myeloma and on the 
use of WGS analyses to fully understand its driver landscape 
and identify novel therapeutic targets.

Methods
Patients and Somatic Variant Calling

We analyzed data from 752 patients with newly diagnosed multiple 
myeloma enrolled in the CoMMpass study (NCT01454297; IA13). 
Each sample underwent low-coverage long-insert WGS (median 4–8X) 
and whole-exome sequencing. The median physical coverage was 39 
(5th percentile = 28 and 95th percentile = 53). The median insert size 
was 852 bp (5th percentile = 701 and 95th percentile = 949). Paired-
end reads were aligned to the human reference genome (HRCh37) 
using the Burrows Wheeler Aligner (BWA; v0.7.8). SV calling was per-
formed using DELLY (v0.7.6; ref. 10) and Manta (v.1.5.0; ref. 28) Simi-
larly to recent PCAWG articles, we developed a filtering process based 
on different criteria (see Results and Supplementary Methods; ref. 7).

tCoNuT was used to call CNAs (https://github.com/tgen/MMRF_
CoMMpass/tree/master/tCoNut_COMMPASS). To externally vali-
date the tCoNuT workflow, we compared our results to copy-number 
profiles generated using controlFREEC (Supplementary Methods; 
refs. 20, 58). The final catalog of high-confidence SVs was obtained 
by integrating DELLY and Manta calls with copy-number data and 
applying a series of quality filters (Supplementary Methods).

RNA-Sequencing Analysis and Fusion Calling
RNA sequencing of 591 samples was performed to a target cover-

age of 100 million reads. Paired-end reads were aligned to the human 
reference genome (HRCh37) using STAR v2.3.1z (59). Transcript per 
million (TPM) gene expression values were obtained using Salmon 
v7.2 (60). For fusion calling, we employed TopHat2 v2.0.11 with the 
TopHat-Fusion-post module (61).

Classification of SVs
Each pair of SV breakpoints (i.e., deletion, tandem duplication, 

inversion, or translocation) was classified as a single event or as part 
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of a complex event (i.e., chromothripsis, chromoplexy, or unspecified 
complex), as described previously (4, 21).

Translocation-type events were classified as single when involving 
no more than two breakpoint pairs and two chromosomes, sub-
divided into reciprocal translocations, unbalanced translocations, 
templated insertion, or unspecified translocation, as described previ-
ously (4, 21). Templated insertions could be either simple or com-
plex, depending on the number of breakpoints and chromosomes 
involved, but was always defined by translocations associated with 
copy-number gain. Chromothripsis was defined by the presence of 10 
or more interconnected SV breakpoint pairs associated with: (i) clus-
tering of breakpoints, (ii) randomness of DNA fragment joins, and 
(iii) randomness of DNA fragment order across one or more chro-
mosomes (4, 26, 57). The thresholds of 10 breakpoints was imposed 
as a stringent criterion to avoid overestimating the prevalence of 
chromothripsis. Chromoplexy was defined by interconnected SV 
breakpoints across >2 chromosomes associated with copy-number 
loss. Patterns of three or more interconnected breakpoint pairs 
that did not fall into either of the above categories were classified as 
unspecified “complex” (21).

Mutational Signature Analysis
SNV calls from whole-exome sequencing were subjected to muta-

tional signature fitting using the previously described R package 
mmsig (51, 52). High APOBEC mutational burden was defined by 
an absolute contribution of APOBEC mutations (mutational signa-
tures 2 and 13) in the 4th quartile among patients with evidence of 
APOBEC activity (51).

Structural Basis for Recurrent CNAs in Multiple Myeloma
We applied the following workflow to determine the structural 

basis for each recurrent CNA in multiple myeloma (Supplementary 
Table S2). First, we identified in each patient every genomic segment 
involved by recurrent copy-number gain or loss. Gains were defined 
by total copy number >2; loss as a minor copy number = 0. Second, 
whole-arm events were defined when >90% of the arm had the same 
copy-number state. Third, for segments that did not involve the 
whole arm, we searched for SV breakpoints responsible for the CNA 
within 50 kb of the copy-number segment ends. Finally, and intra-
chromosomal CNAs without SV support were classified as unknown.

Gene Expression Effect of SV Involvement
We used multivariate linear regression to determine the independ-

ent effect of SV involvement on gene expression after accounting for 
the effect of gene dosage (i.e., copy number). All expressed genes on 
autosomes were included in the analysis, defined as genes with >0 
TPM expression in >25% of patients and a median expression level 
of >1. Gene expression values then underwent Z-score normalization. 
Genes involved by SVs were defined separately for deletion/tandem 
duplication–type SVs and translocation/inversion types. For deletions 
and tandem duplications, genes were considered involved if overlap-
ping the SV ± 10 kb. For translocations and inversions, genes within 
1 Mb to either side of each breakpoint were considered involved. All 
single and complex SVs with one or more breakpoints within 1 Mb of 
either immunoglobulin loci were excluded to prevent the results from 
being dominated by the effects of immunoglobulin enhancers. Linear 
regression was performed for all patients and all genes pooled together, 
including the total copy number of each gene as a linear feature.

Copy-Number Changes Associated with SV Breakpoints
To determine the genome-wide footprint of copy-number changes 

resulting from SVs, we employed an “SV-centric” workflow, as 
opposed to the CNA-centric workflow described above. For each SV 
breakpoint, we searched for a change in copy number within 50 kb. If 

more than one CNA was identified, we selected the shortest segment. 
Deletion and amplification CNAs were defined as changes from the 
baseline of that chromosomal arm. As a baseline, we considered the 
average copy number of the 2 Mb closest to the telomere and cen-
tromere, respectively. This is important because deletions are often 
preceded by large gains, particularly in patients with hyperdiploidy 
(21). In those cases, we are interested in the relative change caused by 
deletion, not the total copy number of that segment (which may still 
be ≥2). We estimated the proportion of breakpoints associated with 
copy-number gain or loss across patients, collapsing the data in 2 Mb  
bins across the genome. Confidence intervals were estimated using 
bootstrapping and the quantile method. For the purposes of plot-
ting (Figs. 4A and 6A), we divided the SV-associated CNAs into bins 
of 2 Mb. The resulting cumulative CNA plot shows the number of 
patients with an SV-associated deletion or amplification.

Hotspots of SV Breakpoints
To identify regions enriched for SV breakpoints, we employed the 

statistical framework of PCF. In principle, the PCF algorithm identi-
fies regions where SVs are positively selected on the basis of enrich-
ment of breakpoints with short inter-breakpoint distance compared 
with the expected background and surrounding regions. We used the  
computational workflow previously described by Glodzik and col-
leagues (40). In brief, negative binomial regression was applied to 
model local SV breakpoint rates under the null hypothesis (i.e., 
absence of selection), taking into account local features such as 
gene expression, replication time, nonmapping bases, and histone 
modifications. The PCF algorithm can define hotspots without the 
use of binning, based on a user-defined smoothing parameter and 
threshold of fold enrichment compared with the background. This 
allows identification of hotspots of widely different size, depend-
ing on the underlying biological processes. Moreover, there was no 
global threshold for the inter-breakpoint distance required to define 
a hotspot; instead, the genome was searched for local regions with 
higher than expected breakpoint density compared with local con-
text and the background model. To avoid calling hotspots driven by 
highly clustered breakpoints in a few samples, we also set a minimum 
threshold of eight samples involved (∼1% of the cohort) to be consid-
ered hotspot, as reported previously (40). Despite this threshold, we 
found that complex SVs with tens to hundreds of breakpoints in a 
localized cluster (particularly chromothripsis) came to dominate the 
results. To account for this, we ran the PCF algorithm in two differ-
ent ways: (i) considering all breakpoints of nonclustered SVs (simple 
classes and templated insertions) and (ii) including all SV classes but 
randomly downsampling the data to include only one breakpoint 
per 500 kb per patient. The random downsampling followed by PCF 
analysis was repeated 1,000 times, requiring >95% reproducibility to 
define a hotspot. Final output from both approaches was merged for 
downstream analysis.

The full SV hotspot analysis workflow is provided in Supplementary 
Data S1, drawing on generic analysis tools that we have made availa-
ble on GitHub (https://github.com/evenrus/hotspots/tree/hotornot- 
mm). Additional details about nomination of SV hotspots by the PCF 
algorithm and downstream analysis are provided in Supplementary 
Methods.

Functional Classification of SV Hotspots
SV hotspots were classified on the basis of local copy number and 

gene expression data as gain of function or loss of function; hotspots 
without clear functional implications were removed.

Copy-number data were integrated from two complementary 
approaches. First, we applied the GISTIC v2.0 algorithm to identify 
wide peaks of enrichment for chromosomal amplification or deletion 
(FDR < 0.1), using standard settings (41). Second, we considered the 
cumulative copy-number profiles of each hotspot, considering only 
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the patients with SV breakpoints within the region, looking for more 
subtle patterns of recurrent CNA that were not picked up in the 
genome-wide analysis.

To determine the effects of SV hotspot involvement on gene 
expression, we applied multivariate linear regression analysis for each 
gene within 500 kb to either side of a hotspot (36). Genes were con-
sidered involved by SV if there was an SV breakpoint within 100 kb to 
either side of the corresponding hotspot. All SV classes were consid-
ered together, and the expression level of each gene was adjusted for 
the total copy number of that gene in each patient. Genes differen-
tially expressed at FDR < 0.1 were considered statistically significant.

Identification of Putative Driver Genes Involved  
by SV Hotspots

Multiple lines of evidence were considered to identify driver genes 
involved by SV hotspots. Evidence of a putative driver gene included: (i) 
involved by driver SNVs in multiple myeloma (20, 21), (ii) included 
in the COSMIC cancer gene census (https://cancer.sanger.ac.uk/census),  
(iii) designated as putative driver gene in The Cancer Genome Atlas 
(62–65), (iv) enrichment of SV breakpoints in or around the gene, (v) 
nearby peak of SV-related copy-number gain or loss, (vi) SV classes 
and recurrent copy-number changes corresponding to a known role 
of that gene in cancer (i.e., oncogene or tumor suppressor), and (vii) 
differential gene expression. Having identified candidate driver genes 
involved by SV hotspots, we reviewed the literature for evidence of a 
role in multiple myeloma (Supplementary Table S3).

Histone H3K27ac, Super-enhancers, and Multiple Myeloma 
Transcription Factor Networks

Active enhancer (H3K27ac) and super-enhancer data from primary 
multiple myeloma cells, as well as key gene regulatory networks 
in multiple myeloma, were obtained from Jin and colleagues (42). 
Enrichment of super-enhancers and key multiple myeloma transcrip-
tion factors in hotspots was assessed using a Poisson test, comparing 
the density within 100 kb of hotspots with the remaining mappable 
genome.

Templated Insertion Hotspot Analysis
We developed an empirical background model for templated inser-

tions, which strongly outperformed a random model to predict the 
genome-wide distribution of templated insertion breakpoints. We 
then performed PCF-based hotspot analysis for templated inser-
tions alone, searching for regions of enrichment as compared with 
the templated insertion background model, as described above for 
nonclustered SVs.

Chromothripsis Hotspot Analysis
Empirical background models showed very poor ability to predict 

the distribution of chromothripsis breakpoints, as may be expected 
if DNA breaks in chromothripsis tend to be random. To identify 
regions enriched for chromothripsis, we applied the PCF algorithm 
with a uniform background, only adjusting for nonmapping bases.

Enrichment of SV Classes Within Hotspots
We used logistic regression analysis to determine the relative prob-

ability that breakpoints of different SV classes are located within 100 
kb of a hotspot. Each breakpoint was considered individually. Single 
deletions were considered as the reference class, and results shown as 
OR with 95% CI.

SV Classes Associated with Copy-number Gains
To determine the SV classes associated with focal copy-number 

gains, we selected all copy-number segments smaller than 3 Mb 
with a total copy-number of >2 and a relative change of ≥1 from the 

baseline of that chromosome arm (as described above). Each copy-
number segment was assigned to the associated SV class or as “No 
SV” if no breakpoints could be found within 50 kb.

Amplification of Multiple Myeloma Super-enhancers
To determine the relative probability of super-enhancer amplifica-

tion associated with different SV classes, we applied multivariate 
logistic regression analysis. Focal copy-number gains were assigned 
as associated with a super-enhancer if one was found within 100 kb 
of the copy number segment. Copy-number segments were grouped 
according to the associated SV classes: templated insertion, tandem 
duplication, chromothripsis, other SV, or no SV. Gains associated 
with other SVs were used as the reference level, and copy number was 
included as a continuous variable. Results were provided as OR and 
95% CI for each SV category, adjusted for the effect of copy number.

Multi-driver Events
Multi-driver events were defined by the involvement of two or 

more independent driver copy-number segments and/or SV hotspots 
caused by the same simple or complex SV. For example, the associa-
tion between MMSET and MAX/TRAF3 deletion was often an unbal-
anced translocation causing two deletions: the first involving MMSET 
and FGFR3 on chromosome 4p and the second involving the majority 
of chromosome 14q (including MAX/TRAF3). Each copy-number 
segment was counted only once, even if more than one driver was 
deleted or amplified.

Data and Software Availability
All the raw data used in the study are already publicly available 

[database of Genotypes and Phenotypes (dbGap): phs000748.v1.p1 
and EGAS00001001178]. Analysis was carried out in R version 3.6.1. 
Unless otherwise specified, we used Wilcoxon rank-sum test to test 
for differences in continuous variables between two groups; Fisher 
exact test for 2 × 2 tables of categorical variables; and the Bonferroni–
Holm method to adjust P values for multiple hypothesis testing. The 
full analytic workflow in R to identify hotspots of structural variants 
is provided in Supplementary Data S1. All other software tools used 
are publicly available.
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