Skip to main content
. 2020 Dec 23;147(24):dev194498. doi: 10.1242/dev.194498

Fig. 9.

Fig. 9.

Irf6 and Esrp1/2 interact to modify palate phenotypes. Mice compound heterozygous for Irf6R84C, Esrp1 and Esrp2 were generated by breeding Irf6R84C/+ with Esrp1+/−; Esrp2−/− mice. The triple heterozygotes were then inter-crossed and embryos were collected at E18.5. (A) Representative lateral, frontal and oral images of embryos, comparing WT (Irf6+/+; Esrp1+/+; Esrp2+/+), Irf6R84C heterozygote (Het) (Irf6R84C/+; Esrp1+/+; Esrp2+/+), Esrp1/2 double heterozygote (Irf6+/+; Esrp1+/−; Esrp2+/−) and triple heterozygote (Irf6R84C/+; Esrp1+/−; Esrp2+/−). (B) Measurements of palate length (L) relative to width (W). Irf6R84C/+ embryos tend to have a shorter palate compared with WT; however this genotype on an Esrp1+/−; Esrp2+/− background results in significantly increased palate length relative to Irf6R84C/+; Esrp1+/+; Esrp2+/+ (one-way ANOVA, *P<0.05; n=3,5,6,9). (C) Representative frontal and oral images of embryos, comparing Irf6+/+; Esrp1−/−; Esrp2+/− with Irf6R84C/+; Esrp1−/−; Esrp2+/− and Irf6+/+; Esrp1−/−; Esrp2/− with Irf6R84C/+; Esrp1−/−; Esrp2−/−. Scale bars: 50 μm. (D) Hematoxylin and Eosin staining of coronal sections through the vomeronasal cavity and primary palate of the same embryos. Irf6R84C heterozygosity modifies the Esrp1 knockout (KO) and Esrp1/2 double KO cleft lip and palate such that the cleft space between adjacent elements is narrower (arrowheads; C,D), and, in some cases, we noticed epithelial adhesions that limited the cleft. Scale bars: 100 μm.