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Abstract

Background

There is lots of evidence that maternal peri-gestational metabolic, genomic and environmen-

tal conditions are closely linked to metabolic and cardiovascular outcomes in their offspring

later in life. Moreover, there is also lotsof evidence that underlining mechanisms, such as

molecular as well as epigenetic changes may alter the intrauterine environment leading to

cardio-metabolic diseases in their offspring postnatal. But, there is also increasing evidence

that cardio-metabolic diseases may be closely linked to their paternal metabolic risk factors,

such as obesity, Type 2 Diabetes and other risk factors.

Objective

To analyse the evidence as well as specific risk factors of paternal trans-generational pro-

gramming of cardio-metabolic diseases in their offspring.

Methods

Within a systematic scoping review, we performed a literature search in MEDLINE

(PubMed) and EMBASE databases in August 2020 considering original research articles

(2000–2020) that examined the impact of paternal programming on metabolic and cardio-

vascular offspring health. Epidemiological, clinical and experimental studies as well as

human and animal model studies were included.

Results

From n = 3.199 citations, n = 66 eligible studies were included. We selected n = 45 epidemi-

ological as well as clinical studies and n = 21 experimental studies. In brief, pre-conceptional

paternal risk factors, such as obesity, own birth weight, high-fat and low-protein diet, under-

nutrition, diabetes mellitus, hyperglycaemia, advanced age, smoking as well as environ-

mental chemical exposure affect clearly metabolic and cardiovascular health of their

offspring later in life.
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Conclusions

There is emerging evidence that paternal risk factors, such as paternal obesity, diabetes

mellitus, nutritional habits, advanced age and exposure to environmental chemicals or ciga-

rette smoke, are clearly associated with adverse effects in metabolic and cardiovascular

health in their offspring. Compared to maternal programming, pre-conceptional paternal fac-

tors might also have also a substantial effect in the sense of trans-generational program-

ming of their offspring and need further research.

Introduction

Evidence suggests that maternal metabolic, molecular genomic and environmental conditions

might imprint metabolic and cardiovascular conditions in their offspring [1–6]. Hence, patho-

physiological changes in intrauterine environment might “program” and predict those devel-

opments in the offspring early on [5]. In this context, trans-generational programming

describes the perturbation at critical periods of development causing permanent lifelong alter-

ations with irreversible consequences [1]. Hales and Barker’s “thrifty phenotype hypothesis”

[7] is stating “that the epidemiological associations between poor fetal and infant growth and

the subsequent development of type 2 diabetes mellitus and the metabolic syndrome result

from the effects of poor nutrition in early life, which produces permanent changes in glucose-

insulin metabolism” [7]. Further, the “Predictive Adaptive Responses Hypothesis” outlines

that the fetus predicts the postnatal environment by “adapting” developmental processes in
utero [1]. Whereas an altered fetal environment through maternal influences is very likely

associated with the development of metabolic and cardiovascular diseases in later life, less is

known about paternal factors influencing offspring health [8]. Hence, the “advanced fetal pro-

gramming hypothesis” proposes that programming events related to paternal genes are affect-

ing the fetal phenotype independently of the fetal genome [9]. According to that hypothesis,

paternal environmental factors (e.g. body composition, endocrine function, nutritional habits,

and age) might influence the offspring‘s phenotype through epigenetic imprinting processes in

sperm as the alterations in the paternal germline epigenome are passed on to the offspring [8–

11]. Paternal under- and overnutrition can induce metabolic phenotypes in the offspring, and

the induced phenotype can affect multiple generations [12]. The transfer of metabolic disease

risk through male parentage implies an inheritable factor carried by sperm. Sperm-based

transmission offers a comprehensible system for querying heritable epigenetic factors that

influence the metabolism [12].

We conducted a systematic scoping review to summarize the updated evidence. We aimed

at reviewing the existing evidence on whether and which paternal risk factors affect trans-gen-

erational programming and thus lead to adverse metabolic and cardiovascular outcomes in

offspring. Then, we discuss the impact of paternal compared to maternal programming.

Materials and methods

Data sources, search and screening strategy

We performed a systematic scoping review to summarize the evidence available on the topic

for the purpose of identifying potential paternal risk factors and different cardio-metabolic

outcomes, outlining evidence gaps, reviewing various types of evidence and conveying the

breadth of the topic [13]. This review combines systematic and scoping approaches using
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systematic, explicit methods to explore and describe a broad evidence base. We followed

PRISMA for systematic reviews [14] (S1 Checklist) and Joanna Briggs Institute for systematic

scoping reviews guidelines [13].

The electronic databases MEDLINE (PubMed) and EMBASE were searched in August

2020 using the following keywords as Medical Subject Headings and Embase Subject Headings

terms and title/abstract terms:

• MEDLINE (PubMed): ((((((parental[Title/Abstract]) OR (paternal exposure[MeSH

Terms])) OR (male�[Title/Abstract])) OR (father�[Title/Abstract])) OR (paternal�[Title/

Abstract])) AND (((((preconception[Title/Abstract]) OR (prenatal[Title/Abstract])) OR

(transgenerational[Title/Abstract])) OR ("fetal development"[MeSH Terms])) OR

(programming�[Title/Abstract]))) AND ((cardiovascular disease[MeSH Terms]) OR (meta-

bolic disease[MeSH Terms])) AND ((english[Filter] OR german[Filter]) AND (2000:2020

[pdat]))

• EMBASE: ((((“paternal”:ti,ab) OR (“parental”:ti,ab) OR (“male”:ti,ab) OR (“father”:ti,ab)

(“paternal exposure”/exp))) AND (“transgenerational”:ti,ab) OR (“programming”:ti,ab) OR

“fetus development”/exp OR (“preconception”:ti,ab) AND (("cardiovascular disease"/exp

OR ("metabolic disorder"/exp)))) AND (([embase]/lim AND ([english]/lim OR [german]/

lim) AND [2000–2020]/py))

After database searching and elimination of duplicates, records were screened by title and

abstract. Then, studies with full-text were screened and eligible publications were selected for

inclusion. In addition, the reference lists of included studies were manually checked to identify

further publications. No protocol has been published and two independent reviewers selected

the publications.

Eligibility criteria

Peer-reviewed studies with full-text including original data on the impact of paternal risk fac-

tors (e.g. obesity, diabetes mellitus, nutrition, smoking) on metabolic and cardiovascular pro-

gramming in offspring were involved. We included studies published over the past 20 years

(January 2000 until August 2020) in English and German. To encourage our scope, we

included epidemiological (cross-sectional, cohort, case-control studies), clinical and experi-

mental trials as well as animal model and human studies. We excluded reviews and meta-ana-

lyzes as well as editorials, conference abstracts, letter, notes, and comments.

Data extraction and synthesis

We extracted the following information: author, publication date, study design, study popula-

tion, paternal risk factors, cardio-metabolic outcomes (offspring), and main findings. P-values

below 0.05 were considered statistically significant. Furthermore, P-values were taken

unchanged from the papers. First, studies were synthesized according to epidemiological and

clinical designs (1) and experimental designs (2). Second, they were organized regarding the

paternal factors examined:

1. Epidemiological and clinical studies: BMI/obesity, birth weight, nutrition, diabetes mellitus,

age, smoking and environmental chemical exposure.

2. Experimental studies: high fat diet and obesity, low protein diet, undernutrition, hyperglyce-

mia, and environmental chemical exposure.
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With the aim of providing an overview of the existing evidence regardless of quality, we

have not carried out a formal quality assessment in compliance with the guidelines for system-

atic scoping reviews [13].

Results

In total, n = 3.325 citations were identified. After the removal of the duplicates, n = 2.876 arti-

cles were screened by title and abstract, which led to the exclusion of n = 2.791 publications.

We screened n = 85 studies with full-text for eligibility. After manual research of reference lists

(n = 9 studies identified [15–21]), n = 66 studies were finally included in this systematic scop-

ing review. We selected n = 45 epidemiological and clinical studies and n = 21 experimental

studies. The search and selection process is shown in Fig 1. An overview of study characteris-

tics is provided in S1 File.

Table 1 summarizes selected paternal programming effects and the distinction between

female and male offspring.

Paternal risk factors: Epidemiological and clinical studies

BMI and obesity. Chen et al. (2012) [22] (examining n = 899 newborns) demonstrated

that the paternal BMI correlated with the birth parameters of male, but not female offspring

concluding that the paternal BMI presents a risk factor for cardiovascular diseases in male

adult offspring [22].

Sørensen et al. (2016) [20] reported a significant association between the pre-conceptional

parental BMI and the BMI of the children at birth, 12 months and 7 years of age. The results

showed that the association between anthropometrics of the mother and those of the offspring

is stronger than between father and offspring. However, the differences diminished with

advancing offspring age, becoming minor at 7 years of age [20]. In addition, Zalbahar et al.

(2016) [19] found a positive association between paternal BMI and BMI and waist circumfer-

ence (WC) in adult offspring.

Gaillard et al. (2014) [27] showed that paternal pre-conceptional BMI contributed to an

adverse cardiometabolic profile in consecutive generations by showing a significant positive

association between paternal and childhood BMI [27]. Offspring of obese fathers showed

higher values of total body and abdominal fat mass as well as higher triglyceride, insulin and

C-peptide levels in comparison to offspring from fathers with normal weight [27]. Similar

findings were reported by McCarthy et al. (2015) [28] finding a significant positive association

between paternal BMI and BMI, WC, and triglyceride levels of the offspring. Santos Ferreira

et al. (2017) [16] and Labayen et al. (2010) [29] also found that both maternal and paternal

BMI could be linked to an detrimental cardiometabolic profile in later life of the offspring.

A study by Magnus et al. (2018) [30] indicated that maternal and paternal pre-conceptional

obesity was clearly associated with an increased risk of developing type 1 diabetes in the child-

hood. Within a prospective cohort study, Veena et al. (2013) [31] found that maternal and

paternal obesity showed a positive correlation to obesity and fasting insulin concentrations in

offspring [31]. Paternal obesity was associated with an increased childhood BMI and WC, a

higher sum of skin folds, an elevated body fat percentage, and led to higher offspring fasting

blood glucose levels and the development of an insulin resistance [31].

Soubry et al. (2013) [32] determined clear associations between pre-conceptional obesity

and DNA methylation patterns of the imprinted Insulin-Like Growth Factor 2 (IGF2) in the

offspring. They found a significant decrease in methylation at the differentially methylated

regions (DMRs) of the IGF2 gene among newborns of obese fathers [32] and identified an

inverse relationship between DNA methylation in offspring and paternal obesity. As low
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Fig 1. Flow diagram of the literature search and selection.

https://doi.org/10.1371/journal.pone.0244826.g001
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methylation at this DMR had already been linked with negative health outcomes, the authors

assumed a pre-conceptional impact of paternal adiposity on the reprogramming of imprint

marks during spermatogenesis [32].

Birth weight. McCowan et al. (2011) [33] (investigating n = 2002 couples) demonstrated

that men who fathered SGA infants (= defined as a weight below the 10th percentile for the

gestational age) showed actually lower birth weights than men who fathered non-SGA infants

[33]. Therefore, birth size appears to be heritable through the paternal germ line. However,

McCowan et al. could not confirm a strong inverse association between paternal birth weight

and paternal obesity. Rather, the authors noted under consideration of varied populations that

the relationship between birth weight and obesity in adulthood differed depending on gender

and age [33]. Furthermore, Derraik et al. (2019) [34] reported that the likelihood of having an

baby, which is large for gestational age (LGA), increased with a higher paternal birth weight

and the father being tall [34].

Nutrition and nutritional habits. Kaati et al. (2002) [35] showed that if the father was

exposed to a famine during his slow growth period, the offspring were protected against deaths

caused by cardiovascular diseases. If the paternal grandfather experienced a famine during his

slow growth period, the grandchildren tended to be safe from developing diabetes [35]. In con-

trast, if the paternal grandfather had access to a surfeit of food during their slow growth period,

their grandchildren had a fourfold higher risk of dying from diabetes. Also, the food supply of

the paternal grandfather could only be linked to the mortality of their grandsons, whereas the

granddaughter‘s mortality was associated with the paternal grandmother’s food supply [35].

According to Li et al. (2017) [36], at the exposure of famine, there was a significant increase

in the risk of developing hyperglycemia and Type 2 Diabetes mellitus (T2DM) in adult off-

spring of the first generation, and the hyperglycemia risk increased significantly in the second

generation, whereas a significantly increased risk of T2DM could not be confirmed [36].

Diabetes mellitus. Penesova et al. (2010) [37] demonstrated that fathers with an onset of

diabetes before the age of 35 had leaner children, which further showed a decreased early insu-

lin secretion [37]. Silva et al. (2017) [38] support this hypothesis as the authors were able to

Table 1. Paternal programming effects.

Paternal Risk

Factor

Offspring Main Findings p-value

BMI Female Paternal BMI could not be associated with birth parameters of female offspring [22] 0.224

Male Paternal BMI was associated with birth weight in male offspring [22] 0.006

Nutrition Female Female offspring of high-fat diet fed fathers were heavier than offspring in control group, gained more weight and were

insulin resistant [23]

<0.05

Female offspring of obese fathers, induced by HFD, showed adiposity and insulin resistance; further, the females presented a

reduced β-cell and islet area [24]

0.09

Male Male offspring of diet restricted fathers showed reduced fat mass, but an increased number of adipocytes, increased

circulating lipids and free fatty acids; at 14 weeks insulin sensitivity was improved [25]

<0.05

Diabetes mellitus Female Positive association between a paternal history of diabetes and prediabetes in female offspring [26] 0.038

Male No significant association could be determined between a diabetic father and prediabetes in male offspring [26] 0.162

Smoking Female Early-onset paternal smoking was not significantly associated with female offspring BMI [21] 0.587

Male Paternal mid-childhood smoking is significantly associated with an increased BMI in boys at 9 years [21] 0.015

Age Female No significant influence of paternal age on female offspring regarding the function of the Renin-Angiotensin-Aldosterone-

System or the pituitary-adrenal axis [22]

0.339

Male Paternal age has a significant influence on key hormone systems for cardiovascular diseases in male offspring (e.g. Renin-

Angiotensin-Aldosterone-System or pituitary-adrenal axis) [22]

0.138

P-values below 0.05 were considered statistically significant.

https://doi.org/10.1371/journal.pone.0244826.t001
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clearly link T2DM to an increased offspring BMI and elevated triglyceride levels. Wang et al.

(2015) [39] also found a clearly positive association between parental diabetes and T2DM inci-

dence in offspring. T2DM incidence in overweight subjects showed a stronger association

with paternal than with maternal diabetes [39].

In the study by Praveen et al. (2012) [40], the offspring with a family history of T2DM

showed clearly higher BMI values and higher plasma insulin, C-peptide and proinsulin levels

as well as lower insulin sensitivity and β-cell compensation in the offspring [40]. There were

no significant differences between offspring of diabetic mothers and those of diabetic fathers

[40].

Furthermore, Linares Segovia et al. (2012) [41] reported the highest BMI values of the off-

spring in families, in which both parents were diabetic, whereas the lowest glucose and total

cholesterol levels were determined in offspring of healthy parents. Almari et al. (2018) [26]

outlined that parental history of diabetes did not clearly increase the prevalence of prediabetes,

but parental history of diabetes in addition to obesity in offspring [26]. Maternal diabetes was

solely related to prediabetes among male offspring [26]. Shields et al. (2006) [42] demonstrated

that paternal insulin resistance influenced the umbilical cord insulin concentrations in a way

which was clearly contributing to the development of a fetal insulin resistance, independent of

maternal factors [42].

In addition, Myklestad et al. (2012) [43] (n = 14,000 families) found a link between low

birth weight in offspring and an increased cardiovascular risk among fathers, as well as a rela-

tion between low offspring birth weight and unfavorable glucose levels, increased blood pres-

sure and high BMI values among fathers [43]. Hillman et al. (2013) [44] showed that fathers of

offspring with a fetal growth-restriction were more likely to be insulin resistant, hypertensive

and obese compared to fathers of normal grown offspring [44]. Furthermore, Moss et al.

(2015) [45], Hyppönen et al. (2003) [46] and Veena et al. (2006) [47], showed that paternal dia-

betes was obviously associated with low offspring birth weight. Lindsay at al. (2000) [48] deter-

mined that the development of paternal diabetes can be predicted by the offspring’s birth

weight. Thereby, the highest diabetes risk was identified in fathers of children in the lowest

quintile of birth weight. They found a distinct association between low birth weight and an ele-

vated diabetes risk in the offspring itself. Lauenborg et al. (2011) [49] could demonstrate that

adult offspring with low birth weight and diabetic fathers showed decreased insulin sensitivity

as well as increased plasma glucose levels in the state of fasting and after oral glucose load [49].

Age. Advanced paternal age has been associated with a higher risk of spontaneous abor-

tions, stillbirth, preterm birth as well as with congenital malformations, childhood cancer, epi-

lepsy, autism and schizophrenia in offspring [50]. Zhu et al. (2008) identified a U-shaped

association between paternal age and mortality rates of children [50]. Urhoj et al. (2014) [51]

reported that the risk of an under-five mortality increased significantly if the father was older

than 40 years at the time of child birth by increased likelihood of dying from congenital mal-

formations or malignancies [51]. In addition, Zhu (2005) [52] found that the prevalence of

malformations of extremities and syndromes of multiple systems (e.g. Down´s syndrome)

increased with advancing paternal age [52]. Althrough Su et al. (2015) [53] showed no overall

association between the father’s age and heart defects in offspring, advanced paternal age

could be linked to an elevated prevalence of patent ductus arteriosus in the offspring, which is

a subtype of congenital heart defects [53]. Khandwala et al. (2018) [54] linked advanced pater-

nal age to an increased risk of premature birth and a low offspring birth weight.

Smoking and environmental chemical exposure. Marczylo et al. (2012) [55] were able to

show that cigarette smoke induced differential microRNA expression in the spermatozoa of

smokers (compared to non-smokers). These altered microRNAs mediate pathways were

essential for sperm and embryo development [55].
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Pembrey et al. (2006) [42] focused on cigarette-induced transgenerational effects on off-

spring growth. Thereby, the authors found out that there is a transgenerational effect of pater-

nal mid-childhood smoking on offspring BMI at 9 years. However, this effect was only

observed in boys (see Table 1). Based on their observation that exposure in the slow growth

period can lead to a transgenerational effect, Prembrey et al. proved the existence of a sex-spe-

cific, male-line transgenerational response system in humans, which is presumably mediated

by the gonosomes. Further, the authors assumed that this male transgenerational response is

carried by the sperm´s chromosomes e.g. through viruses, prions, RNA molecules or respon-

sive DNA sequences [42].

De Jonge et al. (2013) [56] reported that paternal smoking of 15 cigarettes per day or more

was associated with an increased risk of hypertension in adult offspring. Further, Dior et al.

(2014) [57] displayed a positive association between maternal and paternal smoking and off-

spring weight, height and BMI at the age of 17 and a negative association with pulse rates. Sim-

ilar findings were found at the age of 32 if at least one parent was smoking [57].

Golding et al. (2019) [56] demonstrated that regular paternal cigarette smoking before the

age of 11 was strongly associated with an elevated fat mass in adulthood of the respective chil-

dren [58]. However, these findings do not agree with the study results of Carslake et al. (2016)

[59] which found no clear association between paternal early-onset smoking (before the age of

11) and higher BMI values in offspring [59]. Instead, another study by Dougan et al. (2016)

[60] could show that grand-paternal smoking during pregnancy of the grandmother was asso-

ciated with a higher risk for granddaughters at the age of 12 to be overweight or obese. A link

between grand-paternal smoking and the BMI of the grandson was not established [60]. Deng

et al. (2013) [61] and Cresci et al. (2011) [62] reported that paternal smoking was associated

with conotruncal heart defects.

Beside cigarette smoke, there are various other chemicals, which also represent transgenera-

tional risk factors for offspring health. In this context frequently mentioned chemicals are per-

sistent organic pollutants (e.g. dioxins or insecticides), which belong to the group of

developmental toxicants [63, 64]. Robledo et al. (2015) [63] were able to show that birth size

and weight of the offspring was affected by the pre-conceptional paternal exposure to persis-

tent organic pollutants. In contrast, Lawson et al. (2004) [64] did not found an association

between paternal exposure to dioxins and adverse pregnancy outcomes. Other studies, which

focused on occupations of fathers that involve contact with toxic substances, also provide con-

flicting and no clear results regarding the effects on offspring health [65, 66].

Paternal risk factors: Experimental studies

High-fat diet and obesity. Ng et al. (2010) [24] investigated the effect of an induced high-

fat-diet on F1 female offspring. They hypothesized that an intergenerational transmission of

obesity and metabolic diseases can be initiated by the father through exposure to a high-fat-

diet. The authors analyzed male rats (high-fat-diet or control diet) with females (control diet).

The high-fat-diet fed male rats exhibited increased body weight, energy intake, adiposity,

plasma leptin and liver mass, as well glucose intolerance and insulin resistance compared to

rats on control diet, and their female litter showed adiposity and insulin resistance similar

according their fathers [24]. Female progeny presented increased blood glucose, reduced insu-

lin secretion as well as reduced β-cell and islet area [24] (see Table 1).

Masuyama et al. (2016) [67] demonstrated that offspring of high-fat diet fed male rates

showed a metabolic syndrome-like phenomena, which includes weight and fat gain, glucose

intolerance as well as elevated total triglyceride, decreased adiponectin, and increased leptin

levels. This phenomena could be observed across two generations [67]. In addition, Ornellas
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et al [68] showed an impaired glucose metabolism and lipogenesis (without an influence on

beta-oxidation) and enhanced hepatic steatosis in male high-fat diet fed mice.

In accordance with Ng et al. (2014) [69], McPherson et al. (2015) [23] outlined that paternal

obesity in mice, which was induced by a high-fat diet prior to conception, caused insulin resis-

tance and increased the accumulation of adipose tissue in their female offspring. Short-term

diet and exercise interventions in fathers improved the metabolic health of the female offspring

[23] (see Table 1).

Fullston et al. (2013) [70] could demonstrate that paternal exposure to a high-fat diet in

mice, which caused obesity, induced a specific transgenerational phenotypic constellation of

impaired glucose tolerance, insulin resistance in both male and female offspring [70]. Another

study by Fullston et al. (2015) showed that both paternal obesity at conception and a consump-

tion of a high-fat diet by an individual animal caused the development of a metabolic syn-

drome and subfertility.

A growth deficit in mate rat offspring of high-fat diet fed fathers, which led to a body weight

reduction of 10% at the age of six months and which resulted in smaller fat pads and less mus-

cle mass was detected by Lecomte et al. (2017) [71]. Krout et al. (2018) [70] showed that pater-

nal exercise before conception can reduce the offspring’s risk of developing T2DM, which was

induced by the fathers high-fat diet, assuming epigenetic alterations in sperm DNA. Further,

Consitt et al. (2018) noted that a pre-conceptional paternal high-fat diet enhances skeletal

muscle insulin sensitivity as well as whole-body insulin sensitivity in the early life of the off-

spring [72]. Offspring of high-fat diet fed fathers were more susceptible to gain body fat in the

early stage of adulthood [72]. Further, Fullston et al. [73] indicated a high fat diet-induced

paternal initiation of subfertility in offspring of two generations of mice.

Low protein diet. In the study by Watkins and Sinclair (2014) [74], adult offspring of low

protein diet-fed male mice developed a significantly impaired cardiovascular and metabolic

homeostasis, vascular dysfunction, impaired glucose tolerance as well as elevated adiposity in

adulthood [74].

Paternal low protein diet in mice especially affected the signaling pathways of the lipid

metabolism according to Carone et al. (2010) [75]. A significant increase in the relative con-

centration of saturated cardiolipins, saturated free fatty acids and saturated and monounsatu-

rated triacyl-glycerides was observed in the progeny [75].

Undernutrition. Referring to Anderson et al. (2006) [76], paternal food deprivation in

male mice caused a consistent decrease in average serum glucose and changes in corticoste-

rone and insulin-like growth factor 1 in both male and female offspring [76].

McPherson et al. (2016) [25] noted that undernutrition in mice led to dyslipidemia, accu-

mulation of adipose tissue, an altered expression of pancreatic genes, and reduced weight in

male and female offspring [25] (see Table 1). In addition, vitamin and antioxidant supplements

given to undernourished fathers normalized offspring weight and growth [25].

Hyperglycemia. Grasemann et al. (2012) [77] indicated in mice, that metabolic parame-

ters were affected more by maternal than paternal hyperglycemia, and the skeletal develop-

ment (changes in bone mineral content, trabecular structure, and cortical bone properties)

was more affected by paternal hyperglycemia [77]. According to Shi et al. (2017) [78], the adult

offspring of hyperglycemic male rats showed a significant weight gain, larger body size and an

extensive expansion of adipose tissue resulting in obesity of the offspring. Glucose intolerance,

reduced insulin sensitivity and impaired hypothalamic leptin signaling was identified in male

offspring [78]. Similar conclusions were drawn by Li et al. (2019) [79] showing an increased

liver weight, elevated plasma total cholesterol, triglyceride as well LDL levels as an accumula-

tion of triglycerides in the liver in adult rat offspring of hyperglycemic fathers. Furthermore,
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the authors detected epigenetic alterations affecting the PPAR-alpha promoter in the liver of

the offspring [79].

Wei et al. (2014) [80] determined that paternal prediabetes affected the overall methylation

patterns in pancreatic islets of offspring and in sperm of the father [80].

Environmental chemical exposures. Lane et al. (2014) [81] observed in mice that an

increased level of reactive oxygen species (ROS) in sperm and/or seminal fluid influences off-

spring health outcome in a negative way by poorer embryo development and reduced fetal

growth. The ROS concentration was significantly increased in relation to cancer, smoking,

obesity, chemical exposure and ageing [81]. Daughters from exposed fathers were smaller,

developed a glucose intolerance and exhibited an increased adipose tissue accumulation [81].

Referring to McPherson et al. (2016), ROS mediated sperm DNA lesions could be reduced by

vitamin and antioxidant supplementation, which increased the sperm health and correlated

negatively with the postnatal growth of the male offspring [25].

Genotoxic agent benzo[a]pyrene (B[a]P) is a component of diesel emissions, tobacco

smoke and smoked food products [82]. Godschalk et al. (2018) [82] observed a down-regula-

tion of mitochondrial proteins in offspring of B[a]P exposed mice, and specially in male off-

spring an additional reduction of mitochondrial DNA copies could be identified [82].

Discussion

Principal findings

This systematic scoping review identified possible paternal risk factors affecting trans-genera-

tional cardio-metabolic programming such as obesity, birth weight, high-fat and low-protein

diet, undernutrition, diabetes mellitus, hyperglycaemia, advanced age, smoking as well as envi-

ronmental chemical exposure (Fig 2).

As one of the most common adverse life style factors, paternal obesity could be pointed out

as initiator of changes in sperm epigenetics, such as alterations in sperm DNA methylation

and acetylation patterns [73]. Paternal obesity can lead to metabolic disturbances and changes

in the transcriptome of genes in pathways regulating cellular response to stress, cell death and

cell growth in adipose tissue of consecutive generations [23]. Further, male pre-conceptional

obesity is able to reduce fetal growth, causes cardiovascular diseases and might be responsible

for alterations in the glucose metabolism of the offspring. Also, an increased risk of developing

obesity and insulin resistance in the offspring’s later life is associated with a high paternal BMI

[16, 22, 27, 28]. Metabolic impairments in offspring are often associated with the paternal diet

(high fat or low protein) and his nutrition status. For example, a high-fat diet of fathers in the

time of conception is related to an impaired glucose metabolism, insulin resistance, weight

gain, elevated triglyceride and increased leptin levels in the following generation [24, 67, 68]. A

diet based on foods with low protein can also lead to an impairment of the cardiovascular and

metabolic homeostasis [74]. In addition, the nutrition status of the father plays an important

role in the context of metabolic offspring health. So, a prenatal exposure to a famine might

increase the offspring’s risk of developing diabetes in later life [36]. In conclusion, obesity and

the nutrition status of the father might play an important role in the context of metabolic off-

spring health [36].

Paternal diabetes was associated with a higher probability of developing diabetes in off-

spring [39]. Furthermore, children with diabetic fathers displayed an impaired insulin sensitiv-

ity and higher BMI values than children of non-diabetic fathers [40, 41]. In addition, advanced

paternal age has been shown to induce DNA damage and de novo mutations. These factors

entail considerable health risks for the offspring of aged fathers, e.g. low birthweight, preterm
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birth, congenital malformations, mental disorders or an increased overall mortality risk under

the age of five [50–53].

Furthermore, smoking induces alterations in spermatozoa microRNA which are essential

for sperm and embryo development [55]. Tobacco smoke initiates cardiovascular diseases,

cancer, chronic lung diseases and increases the risk of adult-onset hypertension and over-

weight in offspring [56, 58, 61, 83]. In addition, the indirect harm done by maternal passive

smoking has to be taken into account [83]. At last, the results of paternal exposure to different

chemicals, which may trigger DNA mutations through increased ROS level in sperm, have

been summarized. Amongst others, the exposure of paternal sperm to toxic chemicals led to

poorer embryo development and reduced fetal growth [63, 81]. Further, negative alterations in

the mitochondrial metabolism could be detected [82].

Fig 2. Life cycle of paternal programming.

https://doi.org/10.1371/journal.pone.0244826.g002
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Our findings are in line with other reviews. Bodden et al. (2019) [84] reported that paternal

obesity as a result of an excessive consumption of high calorie foods, leading to metabolic and

neurobiological changes, can predict adverse offspring health outcomes. In addition, Sharp

and Lawlor (2019) [85] linked paternal factors (e.g. paternal age, environmental exposures,

high-fat-diet-induced obesity) to offspring development of obesity and type 2 diabetes. Like-

wise, Li et al. (2016) [86] indicated that paternal under and overnutrition, environmental toxin

exposure, paternal diabetes, and grandfather’s nutritional status can program cardio-metabolic

diseases in offspring via germ cell-mediated transmission. Further, Campbell and Mcpherson

(2019) [87] found that increased paternal BMI clearly affected pregnancy and offspring health

outcome, for example leading to an increased BMI in childhood.

Furthermore, epigenetic mechanisms linking paternal well-being to offspring health have

been analyzed. Watkins et al. [88] highlighted the role of the seminal plasma for offspring pro-

gramming independent from that of the sperm. Chen et al. (2016) [89] indicated that tsRNA

isolated from sperm from obese male mice recapitulates the paternal programming of off-

spring ill-health when compared to interact sperm. Lambrot et al. (2013) [90] found that epige-

netic transmission may contain sperm histone H3 methylation or DNA methylation.

Adequate paternal dietary folate is substantial for offspring health. In addition, according to

Chan et al. (2020) [91], extracellular vesicles as a normal process in sperm maturation can per-

form roles in intergenerational transmission of paternal environmental experience.

Furthermore, limitations might have an impact on our findings. To the best of our knowl-

edge and considering our inclusion and exclusion criteria, we involved all eligible studies. The

publications were heterogeneous regarding study population, and evidence on some individual

risk factors is limited. In some sections, such as the risk factor nutrition, we could only identify

a few studies.

Maternal vs. paternal programming. The transmission of parental phenotypes to the off-

spring can be influenced by different environmental factors that induce epigenetic changes in

oocytes and sperm [80, 92]. Epigenetic changes include variations in levels of DNA methyla-

tion, histone modification and the regulation of non-coding RNAs [23, 80]. Male individuals

can affect offspring health through the quality of their sperm [80]. In case of female individu-

als, different environmental and lifestyle factors can shift epigenetic conditions leading to an

adverse intrauterine environment. Lifestyle factors affect epigenetic modifications in genes of

oocytes and decrease the oocytes’ quality. Alterations of the maternal intrauterine environ-

ment and reduction of the quality of oocytes may result in impaired fetal growth or develop-

mental defects [93, 94].

A high maternal pre-conceptional BMI is known to be an important risk factor for adipos-

ity, insulin resistance, impaired glucose tolerance and cardio-metabolic disease risk in the off-

spring [95, 96]. Other than maternal obesity, the father’s obesity seems to greatly affect the

amount and distribution of bodyfat as well as adipokine levels in offspring of the next two gen-

erations [20, 27, 28]. Especially female offspring showed an impaired glucose-insulin homeo-

stasis, which was transmitted via paternal lineage [23]. In male offspring, paternal obesity was

associated with decreased fertility [73].

Both maternal and paternal diet high in fat and sugar seem to lead to impaired glucose and

insulin metabolism, higher risk developing T2DM, adiposity, hypertension and hepatic disease

in the offspring’s later life [67, 97].

Maternal diabetes was strongly associated with an increased birth weight and elevated dia-

betes risk in the offspring [47] and maternal transmission of T2DM is threefold higher than

paternal transmission [98]. Paternal diabetes was clearly linked to low birth weight in the off-

spring, lower gestational age [47], influencing glucose and insulin levels, and increased risk of

T2DM in adulthood [80].
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In utero exposure to maternal smoking was linked to obesity, T2DM and cardiovascular

diseases in adult offspring [57]. In comparison with maternal smoking, pre-conceptional

paternal smoking as well as paternal smoking during pregnancy were associated with an

increased risk of congenital malformations and heart defects in the offspring [61, 62]. Studies

also showed an association between paternal smoking and an elevated risk of hypertension in

later offspring life as well as increased BMI [21].

Furthermore, advanced maternal age was linked to an elevated risk of pregnancy complica-

tions, preterm birth and cardiovascular diseases in adult offspring [99]. Velazquez et al. (2016)

could demonstrate that offspring from aged mice was prone to hypertension and showed

higher weight gain in post-natal life than offspring of young female mice [100]. One explana-

tion for these adverse pregnancy outcomes might be a decreased egg quality and an altered

uterine environment of the mother [101]. In comparison with maternal age, there was also an

obvious association between aged fathers and an increased risk for stillbirth, preterm birth,

congenital malformations and offspring death [50, 51, 53, 54].

In general, comparable to maternal programming, paternal factors also have a substantial

effect on trans-generational programming leading to adverse metabolic and cardiovascular

outcomes in their offspring.

Conclusions

In total, the evidence from several epidemiological, clinical, and experimental human and ani-

mal model studies indicates that paternal risk factors such as obesity, high-fat and low-protein

diet, undernutrition, diabetes mellitus, hyperglycemia, advanced age, smoking as well as envi-

ronmental chemical exposure might affect offspring health leading to adverse metabolic and

cardiovascular outcomes (Fig 2). Comparable to maternal programming, pre-conceptional

paternal factors might also have a substantial “programming” effect. Additional research on

paternal risk factors, the underlying physiological mechanism of paternal programming, and

the trans-generational inheritance is needed.

Considering our findings, an appropriate pre-conception care including medical, beha-

vioural and social health interventions is very important to reduce the risk of epigenetic disor-

ders and negative environmental exposures in order to improve offspring health as well as the

parental health status [102]. Preventive and educational approaches clearly include both,

mothers and fathers (to be), to reduce adverse health outcomes in their offspring caused by

modifiable lifestyle and environmental risk factors effectively.
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