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ABSTRACT:
Listeners differ widely in the ability to follow the speech of a single talker in a noisy crowd—what is called the

cocktail-party effect. Differences may arise for any one or a combination of factors associated with auditory sensitiv-

ity, selective attention, working memory, and decision making required for effective listening. The present study

attempts to narrow the possibilities by grouping explanations into model classes based on model predictions for the

types of errors that distinguish better from poorer performing listeners in a vowel segregation and talker identifica-

tion task. Two model classes are considered: those for which the errors are predictably tied to the voice variation of

talkers (decision weight models) and those for which the errors occur largely independently of this variation (internal
noise models). Regression analyses of trial-by-trial responses, for different tasks and task demands, show over-

whelmingly that the latter type of error is responsible for the performance differences among listeners. The results

are inconsistent with models that attribute the performance differences to differences in the reliance listeners place

on relevant voice features in this decision. The results are consistent instead with models for which largely stimulus-

independent, stochastic processes cause information loss at different stages of auditory processing.
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I. INTRODUCTION

In social gatherings, noise from the crowd can chal-

lenge one’s ability to converse with a partner, yet most of

us manage fairly well. This ability, to hear out and follow

the speech of one talker separately from others speaking at

the same time, has long fascinated researchers of hearing

and is known as the cocktail-party effect, after Cherry

(1953). Cherry was interested in the larger problem of

speech recognition but understood talker separation to be

an essential part of that problem. His early experiments,

using both speech and non-speech signals, would identify

important factors for talker separation, and research since

has built on this work. We now know that differences in

the pitch, timbre, location, and rhythm of the voice serve

as salient stimulus cues for talker separation (Wang et al.,
2018; Middlebrooks et al., 2017; Bronkhorst, 2000, 2015;

Kidd and Colburn, 2017). We know that the statistical

properties of stimulus cues are important and that certain

combinations of cues have synergistic effects (Brungart,

2001; Brungart and Simpson, 2004, 2007; Lutfi et al.,
2013a; Rodriguez et al., 2019). Importantly, we also know

that listeners rarely make optimal use of the acoustic infor-

mation that serves to distinguish talker voices (Gilbertson

and Lutfi, 2014, 2015; Lutfi et al., 2013a; Lutfi et al.,
2013b; Lutfi et al., 2018).

These observations and others have explanations in

models, but one finding continues to perplex—it is the unex-

pectedly large variation in performance observed among

young, healthy, adults whose hearing is evaluated to be nor-

mal. Consider that for the simplest task, requiring only that

talkers be heard separately from one another, performance

levels of normal-hearing listeners can vary from near chance

to perfect within the same condition (Lutfi et al., 2018); sim-

ilar variability is observed for tasks involving the identifica-

tion of talkers (Best et al., 2018). Identification accuracy for

words across listeners with normal hearing commonly

ranges over 40 percentage points within a condition

(Getzman et al., 2014; Johnson et al., 1986; Kidd et al.,
2007; Oberfeld and Kl€ockner-Nowotny, 2016; Ruggles and

Cunningham, 2011; Ruggles et al., 2011), and word identifi-

cation thresholds for constant performance differ by as

much as 20 dB (Kubiak et al., 2020; F€ullgrabe et al., 2015;

Hawley et al., 2004; Kidd et al., 2007; Swaminathan et al.,
2015). The differences are specific to performance with

speech interferers; performance in quiet in these studies

shows no such variation; and where test-retest measures

have been made in these studies, the differences are found

to be reliable, even after periods of considerable training.

The research findings are reinforced by observations

made in the audiology clinic. The most common complaint

of individuals visiting the clinic is difficulty listening in sit-

uations where there is background noise. Yet, for many of

these individuals, hearing is evaluated to be normal as isa)Electronic mail: rlutfi@usf.edu
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their ability to communicate in quiet. The condition is given

the nonspecific label of auditory processing disorder

(Chermak and Musiek, 1997), admitting current ignorance

of cause. Estimates are that as many as 1 in 10 of all individ-

uals seeking the services of an audiologist meet the criteria

for this classification (Kumar et al., 2007; Zhao and

Stephens, 2007); the estimate is higher when considering

that many individuals likely do not recognize their difficulty

and so never consult an audiologist (Gatehouse and Noble,

2004).

This narrative seems at odds with the conventional

view of hearing loss. In the clinic, the gold standard for

evaluating hearing is the pure-tone audiogram. The audio-

gram, however, is a poor predictor of difficulty listening in

noise, even for some whose thresholds fall well above the

normal range. This naturally raises the question as to what

extent the causes of the difficulty are specific to hearing.

Early work on this problem established the importance of

central nonauditory factors related to how listeners selec-

tively attend to targets in noise [see Kidd et al. (2008) for a

review], and recent advances have been made in the devel-

opment of models to predict such effects (Lutfi et al., 2013a;

Chang et al., 2016). Working memory and lapses in atten-

tion are also nonauditory factors that can be expected to

impact speech recognition performance in noise, but the

extent to which they contribute to individual differences in

performance has not been widely investigated (Calandruccio

et al., 2014; Calandruccio et al., 2017; Conway et al., 2001;

Kidd and Colburn, 2017). More recent work suggests a role

of peripheral factors associated with processing in the

cochlea. Normal irregularities in micromechanics unique to

individual healthy cochleae have been shown to influence

performance in psychophysical tasks (Lee and Long, 2012;

Long, 1984; Long and Tubis, 1988; Mauermann et al.,
2004, Lee et al., 2016). Abnormal elevations in threshold

can be missed if measured only at the audiometric frequen-

cies (Lee and Long, 2012; Dewey and Dhar, 2017). Even at

the audiometric frequencies, wide variation in thresholds

falling within the normal range may reflect varying degrees

of hair cell health that could affect listening in noise at

supra-threshold levels (Plack et al., 2014). Finally, in a sig-

nificant recent development, animal studies have identified a

cochlear pathology not detected by conventional audiometry

but possibly affecting listening in noise (Kujawa and

Liberman, 2009). The animal work and reduced neural

counts from temporal bone in humans have raised the spec-

ter that the pathology could be widespread in the population

[Bharadwaj et al., 2015; Kujawa and Liberman, 2009;

Furman et al., 2013; Liberman et al., 2016; Makary et al.,
2011; also see Kobel et al. (2017) and Plack and L�eger

(2016) for reviews].

To date, there have not been wide-ranging efforts to

understand which, if any, of these factors are responsible for

the huge variation in the cocktail-party effect. What studies

do exist have tended to focus on one or another of these fac-

tors in isolation (Kubiak et al., 2020; Bharadwaj, 2015;

Oberfeld and Kl€ockner-Nowotny, 2016; Lee et al., 2016;

Kidd et al., 2007). An exception is a study by Lutfi et al.
(2018). These investigators stepped back somewhat from

the challenge of testing specific accounts and focused

instead on evaluating the general classes of models in which

these accounts fall. The authors drew attention to the fact

that, while listener performance may differ for any number

of reasons, errors in judgement can only be of two types:

those that are predictably tied to the variation in talker voi-

ces (the stimulus) and those that are not. Knowing which

type of error is responsible for the individual differences

implicates certain types of explanations while ruling others

out. The authors applied this approach to a task in which lis-

teners judged whether two alternating streams of vowels

were spoken by the same or different talkers (a segregation

task). Large individual differences in performance were

observed, and the results overwhelmingly showed that the

types of errors responsible for these differences were those

not tied to the variation in talker voices. The authors con-

cluded that the results are inconsistent with accounts attrib-

uting the performance differences to differences in the

relative reliance or decision weight listeners place on differ-

ent voice features. They proposed, instead, that the perfor-

mance differences are due to information loss resulting from

various stochastic processes, internal noise, associated with

different stages of auditory processing.

This conclusion seems counter to some popular

accounts of why individuals perform so differently in these

studies, so it is worth reviewing the authors’ reasoning. Key

here is the often-made distinction in psychophysics between

what a listener hears and what they do with what they hear

[see Watson (1973) for a review, Dai and Shinn-

Cunningham (2016) as applies to auditory physiology, and

Berg (1990) for an analytic development]. What a listener

hears on any trial is a representation of the signal that has

lost information due to random noise inherent in the nervous

system’s processing of signals—so-called internal noise.

The internal noise, because of its stochastic nature, makes it

difficult to reliably predict from the stimulus on any trial

when a listener will make an error because of what they

hear. Contrast this with the error that results from what the

listener does with what they hear. A listener who hears

clearly the distinguishing features of a talker’s voice but

chooses, for whatever reason, to ignore many of these fea-

tures will often make confusions. These errors, unlike those

resulting from internal noise, can be reliably predicted from

the stimulus because the listener’s particular reliance on

voice features (their decision weights) ties their response to

the trial-by-trial variation in those features. Knowing, then,

the relative extent to which these predictable and unpredict-

able errors are responsible for the individual differences in

performance can be a first step in understanding the reason

for those differences.

The present work was undertaken as a follow-up to the

study of Lutfi et al. (2018). The goal was to test the general-

ity of the authors’ conclusions by broadening the application

of their approach. We begin with a detailed description of

the approach followed by four studies. The first replicates
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the Lutfi et al. study, but for a different task involving the

identification of talkers. The second provides comparable

results involving different levels of task difficulty. The third

evaluates the role of individual differences in response bias.

Finally, the fourth tests a further subdivision of model clas-

ses involving different sources of internal noise. The results

of all four experiments replicate those of Lutfi et al. (2018)

and support their conclusions in showing near exclusive

dependence of the individual differences in performance on

errors not tied to the trial-by-trial variation in voice features.

II. GENERAL APPROACH

The theoretical/methodological approach entails three

elements: (1) a general decision rule for evaluating different

model classes, (2) an experimental method for estimating

the parameters of the rule, and (3) a theoretical framework

for quantifying individual limits on listener performance

from these parameter estimates. To appreciate exactly how

these elements work together, we revisit in more detail the

study of Lutfi et al. (2018). As mentioned, the listener’s task

was to judge whether two interleaved sequences of ran-

domly selected vowels were spoken by the same or different

talkers. The talkers had different fundamental frequencies,

F0, and spoke from different azimuthal locations, h [simu-

lated using Kemar head-related transfer functions (HRTFs)].

These two cues were selected because they are the two that

have been most extensively researched in the literature and

produce some of the largest effects [see Bronkhorst (2015)

for review]. Small random perturbations in these parameters

were deliberately added on each presentation as part of the

methodological approach, but also to represent the natural

variation that occurs in these features. Let the 1-by-8 vector

f denote the z-score differences in the values of F0 and h for

the two vowel sequences played on a given trial. Then, for

any monotonic transformation of f, a general decision rule

for the task is given by

Respond‘‘TwoTalkers’’if and only if w � ðfþeÞ0þe0�b;

(1)

where the vector w gives the decision weights representing

the listener’s relative reliance on the differences in F0 and

h, e is a vector of random deviates representing internal

noise occurring prior to the application of the decision

weights (peripheral internal noise), e0 is a random deviate

representing internal noise occurring after the application of

the decision weights (central internal noise), and b is a

response criterion.

The decision rule allows us to identify the different fac-

tors responsible for the individual differences in the listen-

er’s performance. Each parameter in rule (1) represents the

effect of one of these factors as explicitly expressed or

implied in the literature: the decision weights, w, with the

selective attention to and reliance on voice features; the

peripheral internal noise, e, with cochlear pathology and

hair cell health; and the central internal noise, e, with lapses

in attention, criterion variance, memory, and other non-

auditory factors. Empirical estimates of these parameters are

obtained by performing a logistic regression of the listener’s

trial-by-trial responses (R¼ 1 vs 2 talkers) on the perturbed

values of the voice features,

logit P R � 2ð Þ½ � ¼ c0 þ c � f 0 þ err; (2)

where the regression coefficients, c, are determined by the

decision weights, w, and the residual error term, err, cap-

tures the pooled sources of peripheral and central internal

noise. Note that the residual error tells us how unsuccessful

we are in predicting the listener’s trial-by-trial errors from

knowledge of the voice features. The greater this value, the

greater we attribute a role to internal noise.

In the final step of this approach, the relative influence of

the decision weights and internal noise on performance is

determined by an efficiency g-analysis (Berg, 1990). The anal-

ysis expresses the listener’s overall obtained performance rela-

tive to that of a maximum-likelihood (ML) observer,

gobt ¼ d0obt=d0ML

� �2
; (3)

where d0obt is the listener’s obtained performance, and d0ML

is the performance of the ML observer. The value of gobt

ranges from 0 (chance performance) to 1 (optimal perfor-

mance). The ML observer is an “internal noise-free”

observer whose decision weights optimize performance for

the task. For the case considered, the ML observer gives

equal weight to each value of f, since each value is equally

diagnostic regarding the task.1 In practice, the performance

of the ML observer is determined by making response pre-

dictions for each stimulus played on each trial using the

optimal decision weights and optimal response criterion in

decision rule (1). Next, this overall performance efficiency

is broken down into two components, one affected by the

listener’s decision weights and the other affected by all sour-

ces of internal noise. The effect of the listener’s decision

weights is given by a weighting efficiency,

gwgt ¼ d0wgt=d0ML

� �2
; (4)

where d0wgt is the performance predicted from the previously

obtained estimates of the listener weights. In practice, d0wgt

is determined from the trial-by-trial stimuli in the same way

as d0ML, except that the optimal decision weights are

replaced with the estimated values for individual listeners

from the logistic regression. The effect of the pooled sources

of internal noise is given by a noise efficiency,

gnos ¼ d0obt=d0wgt

� �2
; (5)

and is determined from the proportion of responses not pre-

dicted by the listeners’ decision weights. The product of the

weighting and noise efficiencies gives the overall perfor-

mance efficiency,

gobt ¼ gwgt � gnos: (6)

4016 J. Acoust. Soc. Am. 148 (6), December 2020 Lutfi et al.

https://doi.org/10.1121/10.0002961

https://doi.org/10.1121/10.0002961


If listeners differ in amounts of internal noise, the proportion

of the not-predicted errors will differ across listeners, yield-

ing different values of gnos. If listeners differ in how effec-

tively they weight the distinguishing voice features of

talkers, then the proportion of the predicted errors will dif-

fer across listeners, yielding different values of weighting

efficiency, gwgt. Finally, if both factors contribute or interact

in some way to affect overall performance, then the relative

influence of each will be given by the relative magnitudes of

gnos and gwgt.

III. STUDIES

A. Study 1: Segregation vs identification

In experiments investigating the cocktail-party effect,

the stimuli are often streams of vowels or words spoken by

two or more talkers. The speech of one of the talkers is iden-

tified as the target, and the speech of the other talker(s) is

identified as interference. From the perspective of an ML

observer, there are two versions of the experiment involving

two fundamentally different tasks. In the first, called the seg-
regation task, the listener is asked simply to judge when the

target speech is heard separately from the interference. In

the second, called the identification task, the listener must

report on some property of the target: who they are, where

they are, what they said. Chang et al. (2016) provide an ana-

lytic comparison of the two tasks underscoring their differ-

ences and similarities. In real-world conditions, both tasks

are required, but Lutfi et al. (2018) report only on the segre-

gation task. They may have gotten a different result for an

identification task because identification places greater

attentional demands on the listener; the listener must attend

to the information distinguishing talkers as well as the infor-

mation to be identified. In the present experiment, we report

data from both tasks obtained under conditions comparable

to those of Lutfi et al. (2018).

We begin with the segregation task. Let A and B be ran-

dom vowels forming two sequences in the pattern

ABA_ABA_ABA_ABA. This pattern was chosen to corre-

spond to related studies of auditory streaming where A and

B are complex tones that appear to split into separate

streams as they diverge from one another in pitch (Bregman,

1990). On each trial, the listener was asked to judge whether

the two sequences (heard over headphones) were spoken by

the same or different talkers; BBB. vs ABA. The talkers had

nominally different fundamental frequencies (A: F0¼ 150

and B: F0¼ 120 Hz) and spoke from nominally different

azimuthal locations (A: h¼ 30 and B: h¼ 0� azimuth). The

azimuthal locations were simulated using Kemar head-

related transfer functions (Knowles Electronics Manikin for

Acoustic Research). A small, random perturbation (normally

distributed with zero mean and standard deviation r¼ 10 Hz

and 10�) was added to the nominal values of F0 and h inde-

pendently for each vowel on each trial. The perturbations

simulated the natural variation in these parameters that

occurs in real-world listening and were required to estimate

the regression coefficients c and, hence, the decision

weights, w. For the identification task, the conditions were

the same except that the sequence of B vowels with the

same values as before was made to be the interference and

the listener was required to identify on each trial which of

two target talkers spoke the sequence of A vowels, A1BA1.

vs A2BA2. (A1: F0¼ 105 Hz and h¼�15�; A2:

F0¼ 135 Hz and h¼þ15�). The corresponding values of r
were 15 Hz and 15� as in the Lutfi et al. (2018) study. In all

cases, the difference D in the nominal (mean) values for

each cue and their corresponding values of r were selected

so that the D/r ratio was the same for both cues.

The vowels were selected at random for each triplet

from a set of 10 exemplars having equal probability of

occurrence (the 10 vowels identified by their international

phonetic alphabet names were i, I, E, æ, ˆ, A, O, U, u, T̆).
Although selected at random for each triplet, the first and

last vowel of each triplet were the same with the same value

of the perturbation. The vowels were synthesized using the

Matlab program Vowel_Synthesis_GUI25 available on the

MATLAB exchange. Each vowel was 100 ms in duration and

was gated on and off with 5-ms cosine-squared ramps. A

silent interval of 100 ms separated each vowel triplet. The

vowel sequences were played over Beyerdynamic DT990

headphones to listeners seated in a double-wall, sound-atten-

uation chamber located in a quiet room. They were played

at a 44 100-Hz sampling rate with 16-bit resolution using an

RME Fireface UCX audio interface.

Lutfi et al. (2018) have performed simulations of lis-

tener performance for the segregation task to ensure sensi-

tivity to the predictions of model factors and their

interaction (see Fig. 3 of that paper). Our conditions differed

from theirs only in that r was made slightly smaller (10 vs

15 Hz and degrees), thus making our segregation task

slightly easier by decreasing the overlap in the distributions

of F0 and h. As this was the only difference, we take their

simulation results to apply to our segregation task. We did,

however, perform comparable simulations for our identifica-

tion task. Three different scenarios were simulated: differ-

ences in performance due to (a) internal noise, (b) decision

weights, and (c) an interaction where internal noise affects

the selection of decision weights. For (a), internal noise was

chosen to produce performance from near chance to perfect

levels across listeners with decision weights having roughly

the same near optimal weighting efficiency. For (b), internal

noise was roughly the same for all listeners with decision

weights varying from near optimal to near exclusive weight

on the last two vowels (a recency effect). Finally, for (c),

internal noise was simulated to affect the choice of decision

weights by varying together the decision weights as in (a)

and internal noise as in (b). Note, in this last case, either

source of internal noise, peripheral or central, could possibly

affect the decision weights. Peripheral internal noise, say

associated with an undetected cochlear pathology, might

cause a listener to favor one segregation cue over another.

Central internal noise, say associated with information over-

load or lapses in attention, similarly might cause a listener

to focus only on the last few vowels heard. For the purpose
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of this simulation, we did not distinguish between the two

sources of internal noise. We only considered, as we do for

real listeners, the pooled effects of the two sources on the

error term in Eq. (2) and thus gnos.

The results for the three scenarios are shown in the dif-

ferent panels of Fig. 1. Overall performance efficiency gobt

is plotted against weighting efficiency gwgt (unfilled sym-

bols) and internal noise efficiency gnos (filled symbols) with

the different symbols representing the results from the dif-

ferent hypothetical listeners. To simplify the representation,

the values of g are converted to natural log units so that the

values add. The two dashed lines give the bounds on the val-

ues of g (0 	 g 	1); values are expected to fall in the region

between these two lines. To interpret this figure, consider a

separate line drawn through each set of points corresponding

to the predictions of each model, decision weights (unfilled

symbols) and internal noise (filled symbols). For a model

that contributes exclusively to the individual differences

(gobt¼ gwgt, or gobt¼ gnos), the slope of the line will be

unity. Hence, the closer the slope of this line is to unity, the

greater the corresponding model’s contribution to the indi-

vidual differences in performance. The results show clearly

different outcomes for the three scenarios consistent with

their predictions in each case: essentially an exclusive con-

tribution of internal noise in panel (a), an exclusive contri-

bution of decision weights in panel (b), and a combined

influence in panel (c). We take this simulation as showing

that if listeners behave in the way given by the simulation,

our results with real listeners should show similar patterns.

Sixty-one students at the University of South

Florida–Tampa (USF) participated as listeners in the experi-

ment, 38 for the segregation task (9 male, 29 female, ages

18–29 yr) and 50 (11 male, 38 female, ages, 18–27 yr) for

the identification task. Twenty-seven of the listeners partici-

pated in both tasks. All listeners had normal hearing by stan-

dard audiometric evaluation. Prior to data collection, the

listeners received three blocks of training trials. If after the

first three blocks their average performance was less than

60% correct, they received an additional three blocks of

training trials. They went on to perform experimental trials

regardless of their performance on the second block of train-

ing trials. The data were collected in eight blocks of 50 trials

each within a 1-h session, and replications were obtained on

different days. Listeners were allowed breaks at their discre-

tion between trial blocks. All listeners were paid in cash for

their participation in the experiment.

Here and throughout, we report only the efficiency esti-

mates, as that is the focus of this paper. A comprehensive

analysis of the individual decision weights of these 61 lis-

teners is planned for a separate paper. The individual effi-

ciencies are shown in Fig. 2. Reliable estimates of gwgt

could not be obtained for eight listeners in the segregation

FIG. 1. Results of computer simula-

tion. Overall performance efficiency

gobt is plotted against weighting effi-

ciency gwgt (unfilled symbols) and

internal noise efficiency gnos (filled

symbols) with the different symbols

representing the data from the different

hypothetical listeners. The values of g
are expected to fall between the two

dashed lines shown. Simulations are

for individual differences in internal

noise (a), decision weights (b), and an

interaction between decision weights

and internal noise (c).
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task and three listeners in the identification task. For these

listeners, performance was close to chance (values of gobt

less than �3 log units). For all other listeners, estimates

were deemed acceptable based on the deviances of the fits

ranging from 14 to 510 relative to the saturated model with

391 degrees of freedom (Snijders and Bosker, 1999).2 The

data replicate the large individual differences in perfor-

mance efficiency reported by Lutfi et al. (2018). The highest

and lowest values of gobt reported here represent a range of

performance accuracy from near chance (52% correct) to

near perfect (99% correct) levels. As in Lutfi et al. (2018),

the weighting efficiencies (gwgt, unfilled symbols) show

some variability across listeners. However, this variability

accounts for little if any of the variability in gobt, being near

uniformly distributed across the values of gobt. Instead, the

variability in gobt across listeners is due almost entirely to

the differences in the internal noise efficiencies (gnos, filled

symbols). The results demonstrate that the dependency of

gobt on gnos generalizes to an identification task, which pla-

ces much greater attentional demands on listeners.

B. Study 2: Task difficulty

One factor clearly expected to have an impact on indi-

vidual differences in performance is task difficulty. As the

task becomes too difficult or too easy, performance for all

listeners converges to the same chance or perfect levels.

One question is to what extent the individual differences are

evident between these two extremes. The answer can pro-

vide a sense for how pervasive the differences are and when

they are likely to be observed in other conditions that inevi-

tably vary in difficulty. A more important question, for the

purpose of evaluating model classes, is what happens when

the task becomes quite easy. Will internal noise continue to

underlie individual differences at this point, or will decision

weights play a more prominent role as the listener is better

able to focus their attention on the relevant acoustic cues

that serve to distinguish talkers? Dai and Shinn-

Cunningham (2016) give reason to expect the latter out-

come. They showed that cortical event-related potentials,

which are modulated by attention, correlated with individual

differences in performance in a tone segregation task only

when the cues for segregation were made quite salient.

Eleven USF students (1 male, 10 females, ages 19–31 yr),

seven of whom had previously participated in Study 1, were

run in the segregation task. The task was made more or less

difficult by varying the mean separation D between segregation

cues; otherwise, the conditions were identical to Study 1.

Figure 3 gives the data for different levels of task difficulty

(shown in different panels). The D/r ratios and the range of

percent correct scores (PC) across listeners for each level of

task difficulty are shown in the upper-left corner of each panel.

The data show clear individual differences in performance effi-

ciency, gobt, across listeners at all levels of task difficulty, even

in the easiest condition, where performance accuracy ranges

over only 4 percentage points (95–99% correct). As might be

expected, the poorest performing listeners are the same in each

panel. The differences in gobt increase with increasing task dif-

ficulty and, in keeping with the previous results, are due near

exclusively to differences in noise efficiency, gnos. The results

confirm the ubiquitous nature of the individual differences and

their dependency on gnos over effectively the entire range of

possible performance levels. They support a consistent influ-

ence of internal noise over these performance levels and do not

support the prediction that decision weights will play a more

prominent role as the task becomes easier.

C. Study 3: Response bias

The data from the Lutfi et al. (2018) study, as here,

were obtained using a single-interval, forced-choice proce-

dure. Such procedures are subject to the effects of response

bias—a tendency on the part of the listener to under- or

over-report one or the other type of response, which affects

performance. Response bias is not a factor that falls easily

into either class of models considered here. It has neither the

property of being stochastic nor the property of being tied

precisely to the stimulus. It could, nonetheless, be responsi-

ble for the individual differences in performance observed

in our studies. The differences in bias would appear as

FIG. 2. (Color online) Same as Fig. 1

except data are for 38 real listeners

participating in the segregation task

(left panel) and 50 real listeners partic-

ipating in the identification task (right

panel).
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differences in gnos exactly as we have seen in these experi-

ments. This is by default because the bias [c0 in Eq. (2) related

to b in Eq. (1)] is not included among the regression coeffi-

cients in the computation of the weighting efficiency, gwgt, and

so does not affect gwgt. Lutfi et al. (2018) did not analyze for

the effects of response bias, but it is easy to do so here. If gnos

is affected by bias, then the values of d0obt used in its computa-

tion [cf. Eq. (5)] will differ when they are allowed to include

the effects of the bias. Figure 4 shows the values of d0obt from

all listeners of Study 1 computed two ways. On the ordinate

are the values of d0obt computed from the hit and false alarm

rates. These values were used in the original computation of

gnos and measure sensitivity free from the effect of response

bias [see Green and Swets (1966)]. On the abscissa is plotted

the values of d0obt computed from the PC. These values assume

that listeners have no bias, so if listeners do have bias, these

values should differ from the values plotted on the ordinate.

The figure shows virtually no difference between the two esti-

mates. The conclusion is that response bias is not a factor con-

tributing to the individual differences in performance observed

in these experiments.

D. Study 4: Central vs peripheral internal noise

The study by Lutfi et al. (2018) as well as the results

presented here provide strong evidence identifying

individual differences in performance in these experiments

with information loss due to internal noise. In so doing, they

work to narrow the field of possible explanations for these

data. The next experiment attempts to further narrow the

field by isolating explanations based on the source of the

internal noise. We identify two broad classes of internal

FIG. 3. Same as Fig. 2 except data are

for 11 listeners performing in the seg-

regation task for different levels of

task difficulty produced by increasing

or decreasing the mean separation D
between F0 and h. The D/r ratios and

the range of PC across listeners for

each level of task difficulty are shown

in the upper-left corner of each panel.

FIG. 4. Role of response bias. Values of d0obt from all listeners participating

in the segregation and identification task of Study 1. Ordinate: d0obt free of

bias, computed from the hits and false alarm rates. Abscissa: d0obt includes

bias, computed from the PC (abscissa).
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noise from decision rule (1), noise that occurs before the

summation of observations (peripheral internal noise, e) and

noise that occurs after summation (central internal noise,

e0). Examples of the former would be sensory noise result-

ing from neural under-sampling (Lopez-Poveda, 2014) or

variations in hair cell health (Lee and Long, 2012).

Examples of the latter would be perceptual distortions

resulting from limited working memory, decision criterion

variance, or lapses in attention. What fundamentally distin-

guishes these two classes is the manner in which the internal

noise adds to the individual stimulus features, f. The periph-

eral internal noise, by virtue of occurring before summation,

adds independently to each feature, whereas the central

internal noise, by virtue of occurring after summation, adds

in common to all features.

A test of these two alternatives, suggested by Oxenham

(2016), focuses on this fundamental difference. It entails

varying the number of independent stimulus presentations

the listener is allowed to observe; in our case, the number of

independent stimulus presentations being the number of ran-

dom ABA triplets. To explain, consider the anticipated

effect on d0obt performance in our conditions. For the periph-

eral internal noise, there is a benefit to increasing the num-

ber of observations because the samples of the peripheral

noise associated with each are independent and so will tend

to cancel as more observations are weighted in the sum. For

the central internal noise, there is no effect; the central noise

adds after the observations are summed, so it does not mat-

ter how many observations go into that sum.

Let us assign numbers to predictions in each case.

Suppose the number of triplets is increased from N¼ 1 to 4.

For N¼ 4, our estimates of weighting efficiency (gwgt) for

listeners are with few exceptions close to 1 (loggwgt close to

0 in Figs. 2 and 3). This indicates that observations are

weighted roughly optimally. Hence, if performance is domi-

nated by peripheral internal noise, then according to the law

of large numbers, the fourfold increase in observations

should result in a near twofold increase in d0obt (a factor of

the square root of 4 increase). Of course, there is a corre-

sponding twofold increase in the performance of the

maximum-likelihood observer, d0ML, since the observations

are themselves independent random samples drawn from the

stimulus distributions. This, therefore, translates to little

change in overall performance efficiency when d0obt is

expressed relative to d0ML. Now, compare this to the case

where performance is dominated by central internal noise;

d0obt does not change with increasing number of observa-

tions if central noise dominates, so we should expect on

average a twofold reduction in performance efficiency. A

twofold reduction corresponds to a reduction of gobt of

log(2)¼ 0.7 natural log units.

Figure 5 shows data for seven listeners (females, ages

19–23 yr) participating in the segregation task for N¼ 1 and

4 vowel triplets (large panels). The data include replications

for all but one listener, whose initial performance, near

chance, did not permit reliable estimates of noise efficiency

(loggnos < �3). The panels show generally a shift along the

diagonal to lower values of performance efficiencies in

going from N¼ 1 to 4 triplets, consistent with an effect of

central internal noise. This is seen more clearly in the inset,

which compares directly the overall performance efficien-

cies for each subject (symbols) obtained in the two condi-

tions across the two replications. Here, the magnitude of the

reduction, also consistent with the effect of internal noise,

tends to be greatest for the poorest performing listeners.

These listeners have the highest levels of central noise

according to our estimates and so should show the largest

reductions in performance efficiency with the increase in N.

Averaged across all listeners and replications, the magnitude

of the reduction is 0.7 log units, again consistent with the

prediction for the average effect of central internal noise.

The average value was not significantly different from zero

(z¼ 1.47, p> 0.08), but this should not be surprising as the

variance in the individual values is expected to be large. The

FIG. 5. Data for seven listeners (replications for six) participating in the segregation task for N¼ 1 and 4 vowel triplets (panels), g values plotted as before.

The inset in the right panel compares directly the overall performance efficiencies, gobt, obtained in the two conditions across the two replications.
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results generally support the conclusion that the individual

differences in performance in these conditions are due to

varying degrees of central internal noise across listeners.

IV. DISCUSSION

Why individuals with normal hearing thresholds should

have unusual difficulty segregating the speech of talkers is

not well understood. It is an observation that would seem to

challenge the conventional view of hearing loss and the effi-

cacy of the audiogram on which that view is based. There

are many possible reasons for the difficulty, as we have

reviewed in the Introduction. Any one or combination of

these possible factors may be responsible, their influence

may be different for different listeners, and their effects may

interact. An undetected hair cell pathology, for example, or

a limited capacity of working memory may impact how a

listener selectively attends to relevant cues, further affecting

performance (Doherty and Lutfi, 1996). To complicate the

situation further, entirely different factors can have the same

effect on performance and even produce the same pattern of

errors within a given experiment. Momentary lapses in

attention, for example, are likely to have the same effect as

the occasional poor representation in working memory that

might occur over the course of many trials.

Given the complexity of the problem, possibly the best

one could hope for is to narrow the field to a particular class

of explanations. This was the intent of the present study. We

considered two classes of explanations that subsume all cur-

rent accounts. The two classes are distinguished by the pre-

dictions they make for the types of trial-by-trial errors that

are responsible for the differences in listener performance.

The results suggest some success with this approach. They

show, in three different tests, that the types of errors respon-

sible for the performance differences are overwhelmingly

those not tied to the trial-by-trial variation in the voices of

talkers. This was the outcome for two different tasks (segre-

gation, identification of talkers), for different levels of task

difficulty, and for different information demands placed on

listeners (length of vowel sequences). The results replicate

those of Lutfi et al. (2018) and are consistent with a class of

models in which individual differences in performance

result from the cumulative effects of internal noise occurring

at different stages of auditory processing. This class

includes, among other possibilities, undetected cochlear

pathology, lapses in attention, and limits in working mem-

ory. The results are inconsistent with explanations assuming

an over-reliance on or failure of selective attention to partic-

ular features that distinguish talkers, at least as these pro-

cesses are commonly discussed or modeled in the research

literature.

These results are new for studies on the cocktail-party

effect using speech stimuli, but notably similar results using

similar methods have been previously reported for different

tasks involving nonspeech stimuli. Doherty and Lutfi (1996)

used principally the same model given by (1) to estimate

decision weights on individual frequencies in level

discrimination of a multitone complex. They report, for both

normal-hearing and hearing-impaired listeners, large indi-

vidual differences in performance (gobt) despite similar

weighting efficiencies (gwgt). Lutfi and Liu (2007) used fun-

damentally the same model and report the same result (nor-

mal-hearing listeners) for the identification of rudimentary

properties of objects from the sound of impact (size, mate-

rial, damping, and mallet hardness). In the original study

adopting this method, Berg (1990) measured weighting effi-

ciencies for the discrimination of multitone sequences dif-

fering in frequency. They report data from only three

subjects, but it is clear from these data that the weighting

efficiencies were less correlated with overall performance

than the noise efficiencies and even had somewhat less of an

effect on the individual differences in performance.

Two questions naturally arise from these studies: (1)

where does the internal noise originate in the auditory sys-

tem, and (2) for what conditions, if any, are individual dif-

ferences in performance more likely to be caused by

differences in the reliance listeners placed on voice features?

Some data relevant to the first question come from Fig. 5.

These data show gobt values that decrease on average with

multiple observations by the amount expected if the internal

noise adds after the summation of observations. This is sug-

gestive of a central origin of the internal noise. Data from

Oberfeld and Kl€ockner-Nowotny (2016) also provide evi-

dence suggestive of a central origin. They show a correspon-

dence of individual performance differences in a speech

segregation task with individual performance differences for

a comparable visual selective attention task involving the

same subjects. Many more studies have recently investi-

gated the possibility of a peripheral origin associated with

noise induced cochlear synaptopathy (Guest et al., 2018;

Bharadwaj et al., 2015; Mehraei et al., 2016; Liberman

et al., 2016; Grose et al., 2017). The results of these studies

have been mixed, but the question continues to generate

interest because of potential implications for clinical prac-

tice (Shinn-Cunningham, 2017). Relevant to question 2 are

two studies by Gilbertson and Lutfi (2014, 2015). These

authors investigated vowel identification in a speech segre-

gation task for which the trial-by-trial variation in segrega-

tion cues was considerably larger than in foregoing studies.

Where the variation in the external cues is much larger than

the variation in perception due to the internal noise, one

might expect the effect of the internal noise to be compara-

tively small. Any individual differences in performance

would then be more correlated with individual differences in

weighting efficiency. Indeed, this was the outcome of the

Gilbertson and Lutfi (2014, 2015) studies. Future studies

will be required to identify conditions in which the listener’s

decision weights may play a more important role.

V. CONCLUSIONS

Understanding why otherwise healthy, normal-hearing

adults differ so greatly in their ability to listen effectively in

multi-talker situations is a tremendous challenge. Multiple
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interacting factors likely play a role. The present study

reports some progress in narrowing the field of possible

explanations by testing general classes of models distin-

guished by their predictions for the types of errors listeners

make—a divide-and-conquer approach. The most basic dis-

tinction, the one tested, is whether the errors responsible for

the individual differences can be predicted from the trial-by-

trial variation in the voice features of talkers. The answer

for the conditions of this study is that they cannot be reliably

predicted from these features. The implication is that indi-

vidual differences in performance result less from differ-

ences in how listeners selectively attend to and rely on the

distinguishing features of talker voices than from differ-

ences in internal noise that cause errors in the chain of audi-

tory processing. Future studies, of course, will be needed to

determine whether these results generalize to conditions

more closely approximating real-world, cocktail-party lis-

tening. Until then, the data hold out promise for the develop-

ment of models for predicting individual differences in the

cocktail-party effect not anticipated based on conventional

audiometric testing.
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