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Abstract

We propose a novel computational approach to automatically identify the fetal heart rate patterns 

(fHRPs), which are reflective of sleep/awake states. By combining these patterns with presence or 

absence of movements, a fetal behavioral state (fBS) was determined. The expert scores were used 

as the gold standard and objective thresholds for the detection procedure were obtained using 

Receiver Operating Characteristics (ROC) analysis. To assess the performance, intraclass 

correlation was computed between the proposed approach and the mutually agreed expert scores. 

The detected fHRPs were then associated to their corresponding fBS based on the fetal movement 

obtained from fetal magnetocardiogaphic (fMCG) signals. This approach may aid the clinicians in 

objectively assessing the fBS and monitoring the fetal wellbeing.
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INTRODUCTION

Existence of behavioral states in human fetuses was reported for the first time in 1982 by 

Nijhuis et al. [1]. The Cardiotcograph (CTG), which is a real-time ultrasound, has been used 

to study fetal heart rate patterns (fHRPs). Fetal heart rate has been classified into four 

different patterns: 1F–characterized by a stable heart rate with small oscillation bandwidth of 

less than 5 beats per minute (bpm); 2F–characterized by a varying heart rate with frequency 

acceleration and decelerations over 10 bpm from the baseline with wider oscillation 

bandwidth greater than 5 bpm; 3F–characterized by a stable heart rate with no accelerations 

with oscillation bandwidth greater than 5 bpm; 4F characterized by highly irregular heart 

rate (seemingly tachycardic) with frequent long lasting and large accelerations from the 

baseline with a wider oscillation. Nijhuis defined the fetal behavioral states (fBS) based on 

the temporal coincidence of the HRPs, fetal gross body movement (GBM) and eye 

movement (EM) observed for a 3-min window duration using the criteria mentioned in 

Table1. Since then several studies have evidenced the importance of this finding in the 

determination of fetal wellbeing [2] and as indices of developmental aspects of fetal 

autonomic nervous system (ANS) [3] .

The majority of these findings have been reported based on behavioral states observed from 

Doppler ultrasound CTG recordings. With the advent of SQUID (Superconducting Quantum 

Interference) technology, Fetal Magnetocardiography (fMCG) is now shown to be a feasible 

technique in the studying fetal heart dynamics [4–10]. The inherent advantage of fMCG is 

its superiority in acquiring fetal cardiac signals with high spatial and temporal resolution 

which in turn enhances the temporal analysis of fetal heart-rate. In addition, the spatial 

distribution of the SQUID sensors allows one to track the fetal movement as the sensors in 

the close proximity of the fetal position will have higher QRS amplitude compared to the 

neighboring sensors [11]. The magnetic signal corresponding to the fetal eye movement is 

unknown. However, Maeda et al. [12] reported that the inability to record the fetal eye 

movement does not preclude the proper assignment of fBS. They concluded as the states 1F, 

2F, and 4F can be identified based on the variability in the HR and fetal movement, state 3F 

can be detected based on the lack of accelerations observed in the HR (Table 1). Hence it is 

possible to detect the fBS based on the parameters such as HR and fetal movement obtained 

from fMCG recordings. In a recent study fBS were found to be relevant for the fetal brain 

function as auditory evoked brain responses emerge earlier in active states compared to 

passive states [13]. Thus the investigation of fBS seems to be relevant for the monitoring of 

fetal brain development and is important for the clinical interpretation of fetal 

Magenetoencephalogram results. However, an automated approach to characterize fBS is not 

available. To fill this void, in this work we propose a computer-aided approach based on 

linear de-trending procedure for an automated detection of fBS based on the patterns 

observed in HR and fetal movements obtained from fMCG. Two experts independently 

reviewed and scored the fMCG recordings for fHRPs and these expert scores were used as 

gold standard. The fHRPs were detected using the linear de-trending approach and 

thresholds used for the detection procedure were obtained using Receiver Operating 

Characteristics (ROC) analysis. The episodes of significant fetal movement and HR 
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acceleration were marked in an objective manner and were used to associate the fHRPs to 

their corresponding fBS [14].

MATERIALS AND METHODS

Subject and data collection

A novel 151 SQUID array system, a device of its kind, was used to collect fMCG 

recordings. A total of 62 fMCG recordings were collected between 30 and 38 weeks of 

gestation from 39 pregnant women. All of them delivered healthy singleton neonates at term. 

This study was approved by the University of Arkansas for Medical Sciences (UAMS) 

Institutional Review Board and all mothers gave a written informed consent to participate in 

the study. Duration of the study varied between 6 to 30 minutes depending on maternal 

comfort. The fMCG data were sampled at a rate of 312.5 Hz. This retrospective study 

included a total of 62 recordings of which 40 were used for the training purpose and the 

remainder 22 recordings were used for the testing purpose. Among the 39 fetuses, 27 of 

them were delivered in UAMS. A detailed description of the recordings including 

gestational age (GA) in weeks at study (at the time of fMCG recording) and APGAR scores 

(1st and 5th minute after birth) of the infants delivered at UAMS are shown in Tables 2 for 

the training and testing recordings, respectively. The gestational age (GA) represents the age 

of the fetus in weeks calculated from the last menstrual cycle to the time of the study. All the 

infants had a “live birth” outcome. We lost follow-up of the rest of infants that were 

delivered at other centers.

Data Analysis

The data were band-pass filtered between 1 and 50 Hz using the Butterworth filter with zero-

phase distortion and the interfering maternal cardiac signal was attenuated using the signal 

space projection technique [15]. The signal space projection technique was developed in-

house to attenuate the cardiac signals to study the fetal brain signals. In this approach the 

maternal R-wave was identified using adaptive Hilbert transform. [16] Mean maternal HR 

was calculated and samples corresponding to 40% maternal HR before R and sample 

corresponding to 60% of maternal HR after R were selected. The maternal cardiac cycles 

were averaged over all identified R waves. This procedure was carried out on all of the 

channels. The resulting averaged cardiac cycle was used to determine the signal space 

vectors corresponding to mMCG. The largest vector was identified from mMCG and this 

was projected out using Gram-Schmidt orthonormalization procedure. This procedure was 

repeated on the residual and the next signal space vector was selected and projected out. The 

procedure was stopped if the root mean square of the residue drops below a prefixed 

tolerance which was set to 350 femto Tesla. Typically, the procedure stops within 10 steps. 

We denote the signal space vectors identified in each step as v1, v2, ..,, vn and construct 

matrix V whose columns are vi. V is a m x n matrix where ‘m’ is the number of sensors. 

Using V the projection operator P was constructed as: P = I − (VTV)−1VT, where I is the 

identify matrix and ‘T’ being the matrix transpose. These vectors were projected out of the 

data matrix by multiplying data matrix with P. The resulting fMCG was used for further 

processing.
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The fetal R-waves were calculated using the Hilbert transform approach [17] and was 

followed by an adaptive scheme to correct for the missed and extra beats [18]. A more 

detailed description of the fetal R-wave detection can be found elsewhere [14].

By denoting τj as the time of occurrence of the j – th R-wave, we compute the HR (in beats 

per minute [bpm]) at this instance as follows: 60/(τj – τj−1) , where the unit of τ is in 

seconds. In order to detect the fetal movement, at each R-wave we compute the center of 

gravity (cog) of the fetal heart vectors as the weighted average of the magnitude of the R-

wave and the coordinate position of the sensor. To this end, we define the actogram 

(expressed in cm) (fetal movement) as, the distance between the cog computed at each R-

wave and the average of cog from all the R-waves in a three minute duration. A more 

detailed description of the actogram computation can be found elsewhere [14].

Using τj as the actual sampling time, both HR and the actogram are interpolated using 

cubic-spline function to convert them into continuously sampled data with a sample rate of 

312.5 Hz for further analysis. We would like to mention that such a high sampling rate is not 

needed for this analysis and we performed this only to match the sampling rate of the 

original fMCG signal. The instances of HR acceleration and significant fetal movement are 

detected in an objective manner and are used to study the synchronization of state variables 

in associating the fHRPs to their corresponding fBS [11]. The simultaneous occurrence of 

the HR acceleration and the fetal movement is termed as “synchronization” in this work.

fHRP detection

In order to detect the different fHRPs, the HR segment corresponding to a 3-min window is 

investigated with the following three-step procedure:

1. Detection of Quiet and Active fHRPs

a. Based on the variability observed in the HR segment, first step would be to 

separate Active patterns (HRP-B and HRP-D) from Quiet patterns (HRP-A and 

HRP-C)

b. For this purpose, a floating baseline for the HR segment is computed as a linear 

fit to the recordings for a window of 2-min with 15-sec overlap. As the 

accelerations in the HR vary between 1–2 min, this choice of window duration 

will be appropriate to avoid over fitting of recording but adequate enough to 

capture the inherent fluctuations. Detrended HR (DHR) is then obtained by 

subtracting HR from the floating baseline. The percentage ratio of DHR ≥ ± 10 

bpm greater than a certain tolerance is used as decision criteria in separating the 

Active patterns from Quiet patterns. This is based on the fact, that the Active 

patterns tend to spend more time in acceleratory phases compared to the Quiet 

patterns.

Figure 1 shows a demonstration of the procedure to detect Quiet and Active patterns for a 6-

minute segment of HR. Figure 1a shows the HR along with the floating baseline. For the 

first 3-minute period the HR did not exceed the boundaries constructed using the floating 
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baseline indicating HRP-A; however for the second 3-minute period about 16% of the HR 

exceeded the threshold indicating the HRP-B.

2. Sub-classification of Quiet fHRPs

If a particular HR segment is detected as Quiet pattern, it is further investigated to 

detect HRP-C from HRP-A. As mentioned before, HRP-C has a wider oscillation 

bandwidth and no accelerations present compared to HRP-A. For this purpose, 

standard deviation (σ) of the HR segment is calculated and σ (HR) greater than a 

certain tolerance and presence of no accelerations in the HR are used in detecting 

HRP-C from HRP-A.

3. Sub-classification of Active fHRPs

If a particular HR segment is detected as Active pattern, it is further investigated to 

detect HRP-D from HRP-B. As mentioned before, HRP-D is unstable and tachy-

arrhythmic in nature of having more instances in acceleratory phases. In order to 

capture such characteristics, percentage ratio of instances ≥160 bpm greater than a 

certain tolerance is used to detect the HRP-D from HRP-B.

Figure 2 shows two 3-minute HR tracings corresponding to HRP-A (Figure 2a) and HRP-C 

(Figure 2b). The standard deviations of the tracings delineate HRP-A and HRP-C. Figure 3 

shown two 3-minute HR tracings corresponding to HRP-B (Figure 3) and HRP-D (Figure 

3b). The percentage of HR exceeding the threshold constructed using the local baseline 

while simultaneously exceeding a value of 160 bpm clearly distinguishes fHRP-B and 

fHRP-D.

Thresholds for these three steps are obtained from the HR data scored by the experts using 

Receiver Operating characteristic (ROC) analysis. The steps are repeated for the next 3-min 

window with 30-sec overlap. A continuous time series is constructed by overlaying the 

scores for each 3-min window analyzed. A HRP segment of duration < 3-min are ignored 

and the HRP present on either side of the segment are considered to continue[1]. However, if 

there is a mismatch in HRPs present on either side of the segment, then that particular 

segment is considered as a transitory segment and the scores corresponding to it are ignored.

Visual assessment of fHRPs

In this section, we will discuss the visual scoring of the fHRP. The scoring was done using a 

computer program which presented the fHR to the experts in a window of 3 minutes. In the 

same window, there were four labels 1–4. The expert was asked to click one label which the 

expert considered to be the correct representation of the fHRP in that window. The following 

3 minute window had two and half minutes of fHR presented in the last window and 30 

seconds of new fHR. This procedure was continued until complete data were presented to 

the expert. At the end of the review, a continuous score was generated using scores from all 

presentations. The agreement between the experts’ scores was calculated using intraclass 

correlation coefficient (ICC) [19, 20]. The total number of 3 minute windows available and 

the instances of mutual agreement for the training and testing recordings are shown in 

Appendix Table 1 and Table 2, respectively.
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Standardization of the threshold

Several studies which investigated the development of behavioral states in human fetus 

found the synchronization of state variables to be evolving with gestational age (GA) [1, 21]. 

Nijhuis [1] in his seminal work defined the behavioral state to be present from 36 weeks of 

gestation onwards. However, before 36 weeks of gestation, there could be instances of 

synchronization of the state variables and these are considered as coincidental states. In 

addition, Schneider et al. [22] have also shown the existence of a gestational trend associated 

with fHRPs. In order to account for these gestational influences in the evolution of the 

fHRPs and fBS, we computed the objective thresholds using the ROC analysis for the two 

groups, namely Early GA: GA < 36 wk and Late GA: GA ≥ 36 wk separately. Using the 

thresholds identified from ROC analysis, we tested the 22 unused records. The performance 

of the proposed approach with the experts’ score was studied using ICC.

Association of fHRP to their corresponding fBS

In order to associate the HR acceleration to their corresponding fetal movements, the fetal 

movement marker signal is scanned for the presence of significant fetal movement detected 

in a short window of ± 5-sec duration around the onset of HR acceleration marked. If the 

change in the baseline of the actogram exceeded a predefined threshold (0.12cm), it was 

considered a significant movement (for details see [23]). The choice of 5-sec window 

duration is based on the known time lag between fetal movement and HR acceleration[24]. 

Based on the association between fetal movement and HR acceleration, the fBS can be 

assigned using the relationship shown in Table 1.

RESULTS

The HR corresponding to 62 recordings were independently reviewed by two experts in 3-

min windows with 30-sec overlap for the fHRPs based on the Nijhuis definitions discussed 

before [25]. For each expert, a time series is constructed by overlaying the scores for each 3-

min window analyzed. Table 3 shows the inter-scorer agreement for both the training and the 

testing recordings.

In order to build an unbiased model, the mutually agreed segments were used for the 

standardization of the thresholds. Figure 4 shows the ROC analysis for early and late GA 

groups for the extraction of objective thresholds. The sensitivity, specificity, and AUC values 

shown in Figure 4a and Figure 4b are greater than 0.85 for most of the comparisons. Figure 

5 shows a flowchart of the fHRP detection procedure. The thresholds derived from ROC 

analysis to delineate different fHRP are also given in the decision boxes of the flow chart.

The objective thresholds obtained from the ROC analysis of early GA and late GA in the 

training recordings are evaluated for their performance on 22 testing recordings of 11 each 

in early and late GA group. In order to evaluate the performance of the fHRP detection 

approach, a time series corresponding to the mutually agreed expert scores for early and late 

GA are constructed and is considered as the ground truth. As seen from Table 3, in test 

recordings, there was no agreement between the two experts in scoring HRP-C and HRP-D 

and hence not considered in our performance evaluation.
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Table 4 shows the performance of the proposed approach in detecting the fHRPs. There is 

high correlation between the algorithm score and experts’ score as quantified using ICC for 

pattern A however the agreement is moderate for pattern B.

Figure 6 shows an example of the integration of fetal movement information in order to 

associate the fHRP to their corresponding fBS. Figure 7 shows an example of the 

performance of the fBS detection approach on fMCG signal recorded from a fetus for 30–

min duration at 36 wk of gestation. In Figure 7 (0–15 min, top panel), there is no significant 

movement associated with the fHRP whereas in Figure 7 (15–30 min, bottom panel), the 

accelerations in the heart rate are associated with the accelerations in the actogram. The 

percentage occurrences of behavioral states 1F, 2F as detected by the proposed approach in 

both early and late GA are 25%, 68% and 40%, 58% respectively.

DISCUSSION

Fetal behavioral states (fBS) are important indicators of fetal physiology [26]. The 

traditional way of assessing the fBS is based on visual analysis of real-time ultrasound for 

state variables, namely, fetal body and eye movements and HR patterns observed from CTG 

[1, 2]. In our study, we utilized the non-invasive fMCG recordings to obtain the HR and fetal 

movements simultaneously. To this end, a linear de-trending procedure was applied to 

objectively detect the fHRPs. The thresholds used in the detection procedure were 

standardized based on expert scores. The detected fHRPs were then associated to their 

corresponding fBS based on their temporal synchronization with fetal movement.

Several works have underscored the challenges involved in estimating a baseline fHR [27–

29]. This is primarily due to the dynamic changes in the baseline activity caused by state 

changes and even within certain states. For example, the variability in the baselines of states 

B and D, can be very high. In our opinion, the dynamic detrending approach proposed to 

tackle the varying nature of the baseline performed reasonably well; although there is still 

room for improvement, as with our method we have still detected a number of decelerations 

in FHR patterns that should seldom be observed in low-risk fetuses.

To our knowledge, this is a first detailed report on an automated fBS detection approach 

which considers the temporal synchronization of fetal movement and fHRPs in detecting the 

fBS. Our approach is able to clearly distinguish between fHRPs by using standard deviation, 

duration and extent of acceleration from baselines before and after 36 weeks.

A decrease (−9.5%) in the duration of 1F and an increase (16%) in the duration of 2F in the 

late GA group compared to early GA is in line with the overall pattern of maturation based 

on the quiet sleep and active sleep patterns observed in EEG and fMEG reports on premature 

neonates and fetuses [30, 31]. Furthermore, the increase in the duration of 2F in late GA 

compared to early GA is in accordance with the Nijhuis et al. [1, 25] finding that the 

synchronization of the state variables (fetal movement and heart-rate patterns) evolve with 

gestational age signifying the ongoing maturation and coordination of the fetal central 

nervous system (CNS) [24, 32, 33].
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Most of the studies have underlined the significance of fHRP alone as an important 

parameter in defining the fBS and to understand the level of fetal ANS control [34] and 

references therein. However, the proposed approach has demonstrated the feasibility of using 

the temporal coincidence of state variables in detecting the fetal behavioral states by 

utilizing the spatio-temporal characteristics of the fMCG system. In addition to 

understanding the development of the fetal ANS, the temporal coincidence of state variables 

may help to understand the synchronization phenomenon in the coordination of fetal CNS. 

The coupling between fetal heart and movement has been shown to be interrupted by several 

factors including high levels of maternal stress, conditions leading to preterm birth, and 

other maternal high-risk conditions [32, 33]. These scenarios present us with future areas of 

investigation wherein the proposed objective fBS detection approach could help clinicians to 

decipher the development of ANS, assess fetal wellbeing and ultimately contribute to the 

better management of high-risk pregnancies including growth- restricted or hypoxic fetuses. 

In addition, as indicated in [35], the automated detection of fBS could facilitate the detection 

of spontaneous brain patterns during sleep states which could serve to define a fetal 

neurological maturation chart for normal fetuses similar to the growth chart for newborns.

This study has certain limitations. It is known that active patterns (C and D) are rare 

occurrences during the entire gestational period and hence we were not able to reliably test 

for the occurrence of these patterns [36, 37]. Furthermore, only two experts were involved in 

this work to review the patterns which inflated the error rate in testing the algorithm. The 

fBS has been shown to vary with sex of the fetus [38] and in this work we have not 

accounted for the gender.

CONCLUSION

Growing evidences suggest the high reliability of fMCG in the study of the fetal autonomic 

nervous system development [6, 39–41]. Further, the superior time and spatial resolution 

features of fMCG make this technique an excellent tool to study other parameters including 

heart-rate and fetal movement. In this paper, we propose a computer-aided approach to 

detect the fetal behavioral states based on the patterns observed in the heart-rate and fetal 

movement obtained from fMCG recordings. The thresholds used in the detection procedure 

were standardized based on the expert scores. The proposed approach employs a temporal 

synchronization of state variables such as fetal movement and heart-rate patterns in detecting 

fetal behavioral states. The potential benefits of the proposed approach would be an 

objective assessment the fetal behavioral states which in turn could help clinicians to better 

management of high-risk pregnancies.
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Figure 1. 
Detection of Quiet and Active fHRPs. (a) HR with floating baseline marked as red dotted 

line, (b) and (c) represent the de-trended HR (DHR), the black dotted line represent the ± 10 

bpm range and PR Accel+Decel represent the percentage ratio of HR acceleration or deceleration 

in the 3-min window.
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Figure 2. 
Detection of HRP-A and HRP-C. (a) and (b) correspond to a typical HRP-A and HRP-C 

segment respectively with its standard deviation marked.
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Figure 3. 
Detection of HRP-B and HRP-D. (a) and (b) correspond to a typical HRP-B and HRP-D 

segment. The black dotted line represents the 160 bpm reference line guided to the eye.
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Figure 4. 
ROC analysis for standardization of threshold. (a) and (b) correspond to ROC analysis for 

early GA and late GA respectively. The area under the ROC curve (AUC) which quantifies 

the degree of separation is given in the insert. The maximum deviation from the diagonal 

line is marked as a black dot and it represents optimal (1-specificity, sensitivity). The 

threshold corresponding to the black dot in each ROC curve defines the corresponding 

optimal threshold used in the detection of fHRPs.
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Figure 5. 
Flowchart of the fHRP detection procedure. The threshold derived from ROC analysis to 

delineate different fHR patterns are shown in decision boxes. In each step, the conditions 

satisfying the criterion in that step will go down further and those failing will detour 

sideways.
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Figure 6. 
Association of fHRP to their corresponding fBS. (a) and (b) represents the HR and the 

actogram corresponding to behavioral state 1F and 2F respectively. The vertical solid line 

and the dashed line represent the acceleration and the significant movement detected in the 

HR and actogram respectively.
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Figure 7. 
Performance of the fBS detection approach on fMCG signal recorded for 30-min duration 

from a fetus at 36 weeks of gestation.
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Table 1

Nijhuis definition for the heart-rate patterns and their associated behavioral states [1]. EM, GBM and HRP 

being eye movement, gross body movement and heart rate pattern, respectively.

Behavioral state EM GBM HRP

Quiet Sleep (1F) No Incidental A

Active Sleep (2F) Yes Periodic B

Quiet Awake (3F) Yes Absent C

Active Awake (4F) Yes Continuous D
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Table 3

Inter-scorer agreement for the different fHRPs.

HRP
Training recordings Testing recordings

Intraclass Correlation Coefficient (95% CI) P-value Intraclass Correlation Coefficient (95% CI) P-value

A 0.68 (0.66–0.71) < 0.01 0.44 (0.39–0.50) < 0.01

B 0.61 (0.58–0.64) < 0.01 0.77 (0.74–0.80) < 0.01

C 0.23 (0.18–0.28) < 0.01 −0.10 > 0.05

D 0.40 (0.35–0.44) < 0.01 −0.01 > 0.05

CI–Confidence Interval
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Table 4

Performance evaluation of the proposed fHRP detection approach for the testing recordings

HRP Group

Early GA Late GA

Intraclass Correlation Coefficient (95% CI) P-value Intraclass Correlation Coefficient (95% CI) P-value

A 0.88 (0.85–0.90) < 0.01 0.85 (0.82–0.88) < 0.01

B 0.41 (0.34–0.49) < 0.01 0.65 (0.59–0.70) < 0.01

GA-Gestational Age, CI–Confidence Interval
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Appendix Table 1

Training recordings duration

ID GA Total number of 3-min window segments

Available Mutually agreed

1 34 34 12

2 36 8 8

3 37 54 27

4 33 54 0

5 32 54 30

6 32 54 0

7 34 16 13

8 36 54 53

9 33 50 39

10 36 28 22

11 33 54 39

12 37 34 10

13 37 54 36

14 37 54 16

15 32 52 23

16 35 54 30

17 30 54 52

18 36 24 17

19 32 54 54

20 32 29 20

21 31 48 5

22 32 54 42

23 32 52 42

24 37 54 1

25 36 54 39

26 36 30 30

27 36 18 15

28 33 54 34

29 33 54 39

30 36 50 26

31 33 54 46

32 36 54 25

33 35 54 20

34 34 54 34

35 36 52 44

36 32 54 45

37 37 54 43
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ID GA Total number of 3-min window segments

Available Mutually agreed

38 34 54 27

39 32 54 20

40 32 54 33
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Appendix Table 2

Testing recordings duration

ID GA Total number of 3-min window segments

Available Mutually agreed

41 31 54 0

42 35 54 14

43 32 54 34

44 30 54 27

45 33 54 36

46 35 54 27

47 34 54 39

48 35 54 49

49 30 54 11

50 32 54 13

51 33 54 23

52 37 54 15

53 36 54 31

54 37 54 17

55 35 54 25

56 37 54 42

57 35 54 39

58 36 54 23

59 36 54 41

60 36 54 40

61 38 54 18

62 36 54 35
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