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Abstract

Objective: Investigating intrinsic brain functional connectivity may help identify the 

neurobiology underlying cognitive patterns and biases contributing to obesity propensity. To 

address this, the current study used a novel whole-brain, data-driven approach to examine 

functional connectivity differences in large-scale network interactions between obesity-prone (OP) 

and obesity-resistant (OR) individuals.

Methods: OR (N=24) and OP (N=25) adults completed functional magnetic resonance imaging 

(fMRI) during rest. Large-scale brain networks were identified using independent component 

analysis (ICA). Voxel-specific between-network connectivity analysis assessed correlations 

between ICA component time series’ and individual voxel time series, identifying regions strongly 

connected to many networks, i.e., “hubs”.
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Results: Significant group differences in between-network connectivity (OP vs. OR; FDR-

corrected) were observed in bilateral basal ganglia (left: q=0.009; right: q=0.010) and right 

dorsolateral prefrontal cortex (dlPFC; q=0.026), with OP>OR. Basal ganglia differences were 

largely driven by a more strongly negative correlation with a lateral sensorimotor network in OP, 

with dlPFC differences driven by a more strongly negative correlation with an inferior visual 

network in OP.

Conclusions: Greater between-network connectivity was observed in the basal ganglia and 

dlPFC in OP, driven by stronger associations with lateral sensorimotor and inferior visual 

networks, respectively. This may reflect a disrupted balance between goal-directed and habitual 

control systems and between internal/external monitoring processes.
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1. Introduction

Susceptibility to weight gain varies, with some individuals appearing to be resistant to 

weight gain, despite being in an obesogenic environment (e.g., easy access to inexpensive, 

convenient, energy-dense foods; large portion sizes; ubiquitous food and beverage 

marketing; abundance of screen-based, sedentary leisure activities [1]). Understanding what 

drives a propensity to gain weight, or why some individuals remain resistant to weight gain, 

is instrumental in developing novel weight-loss treatments, guiding optimization of current 

weight management approaches, and creating individualized weight loss and maintenance 

programs.

Neuronal processes underlying eating behaviors may represent an important factor driving 

obesity proneness or resistance. A number of studies have identified differences between 

normal-weight individuals and those with overweight/obesity in neuronal responses to food 

cues in brain regions involved in energy balance and eating behaviors, such as reward 

processing, sensory processing, and cognitive control [2, 3]. Studies have also found 

neuronal response to food cues to be predictive of subsequent food choices [4, 5] and weight 

gain [4, 6]. A disadvantage of studying individuals who already have obesity, however, is 

that it is unknown if observed differences are related to the causal factors that contribute to 

an obese phenotype, or if differences are simply the result of having greater body weight. 

One possible way to disentangle this issue is to study individuals “at risk” for obesity, but 

who do not yet have obesity. As described previously by our group, this strategy of studying 

individuals who are obesity-prone (OP), compared to those who are obesity-resistant (OR), 

could reveal brain differences that precede weight gain and obesity and thus could reflect a 

causal mechanism and/or be used to predict obesity risk [7].

Previously, using this OP/OR strategy, we have observed differences in individuals self-

identifying as obesity-prone, compared to those identifying as obesity-resistant, in the 

neuronal response to visual food cues as measured by functional magnetic resonance 

imaging (fMRI), such that meal-induced reduction in neuronal response (fed compared to 
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fasted states) observed in obesity-resistant individuals was not observed in obesity-prone 

individuals [7]. This suggests that those prone to obesity may differ in neurobiology 

underlying food-related processes compared to those resistant to weight gain.

In addition to examining neuronal responses related to food cues, assessing intrinsic brain 

activity with fMRI during the resting state could also be helpful in identifying the 

neurobiology underlying overall cognitive patterns and biases that may contribute to obesity 

propensity. Previous studies have identified alterations in resting-state activity related to 

overweight/obesity in a number of brain regions, including the hypothalamus [8], insula [9–

13], dorsal striatum/putamen [10, 12–17], ventral striatum/caudate [13], somatosensory 

cortex [13, 17], orbitofrontal cortex [15], medial prefrontal cortex [8, 13, 15, 17], 

dorsolateral prefrontal cortex [11], and a number of brain networks, including the default 

mode network [9, 13, 18, 19], salience network [14, 19], and sensorimotor network [19]. 

Findings have been somewhat inconsistent in terms of location and directionality of effects, 

however, partially due to the a priori selection of different brain regions and networks in 

many studies. Nevertheless, obesity has consistently been associated with alterations in 

intrinsic brain activity and connectivity. Similar to prior observations in the context of food-

related tasks, it is unclear, however, whether these alterations are related to propensity or 

“risk” for obesity or if they reflect a consequence of obesity.

Understanding how intrinsic connectivity patterns between neuronal networks relate to 

obesity propensity may provide important insight into mechanisms underlying behaviors 

related to energy balance, such as reward-related processing, goal-directed behaviors and 

motivation, and how sensory processing relates to inhibitory function [13, 14, 20–22]. The 

goal of the current study was to use a novel whole-brain, data-driven approach [23] to 

examine the impact of obesity propensity on intrinsic neuronal connectivity. Participants 

completing the study identified themselves as being either obesity-prone or obesity-resistant. 

Those identifying as obesity-prone had at least one first-degree relative with obesity and 

reported chronically struggling with their weight but did not have obesity themselves. Those 

identifying as obesity-resistant reported no first-degree relatives with obesity and defined 

themselves as being “naturally thin,” putting little effort into maintaining their current 

weight.

The propensity for obesity has, to date, not been associated with any single network or 

region, and may arise due to interactions between multiple processing systems. For example, 

maladaptive eating behaviors and weight gain may relate to dysfunctional interactions 

between inhibitory cognitive control systems and interoceptive somatosensory feedback 

indicating the body’s current state. However, measuring interactions between multiple 

networks and processing systems is technically and conceptually challenging. In order to 

investigate the role of these interacting networks in obesity, new approaches are needed. 

Toward this end, the current study used a novel between-network connectivity approach [23] 

to assess whole-brain resting-state functional connectivity in the aforementioned obesity-

prone and obesity-resistant groups, with the hypothesis that altered network connectivity 

may contribute to obesity susceptibility. Based on previous studies focusing on intrinsic 

network connectivity in obesity [9, 10, 13–15, 17–19, 24], we hypothesized that, if 

connectivity differences are related to propensity to obesity rather than simply reflecting 
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factors associated with current obesity, differences in between-network connectivity would 

be observed between obesity-prone and obesity-resistant individuals, specifically in brain 

regions and networks involved in interoception, sensory processing, salience, reward, and 

cognitive control.

2. Methods

2.1. Participant characteristics

Fifty-one adults 25–40 years old completed resting-state fMRI scanning for this study. These 

individuals were drawn from a larger study investigating effects of obesity-proneness on 

metabolism. Participants were recruited via flyer advertisement in Aurora, CO, between 

August 2008 and August 2011. All study activities were completed at the University of 

Colorado Anschutz Medical Campus in Aurora, CO. Half were recruited with a propensity 

to be resistant to weight-gain and obesity (OR; N=28) and half with a propensity for weight 

gain and obesity (OP; N=28), as previously described [7, 25, 26]. Briefly, those in the OR 

group had a body mass index (BMI) of 17–25 kg/m2, responded to advertisements seeking 

“naturally thin people,” and reported no first-degree relatives with obesity, never being 

overweight themselves, having weight stability despite few to no attempts to lose weight, 

and not having high physical activity levels (i.e., not greater than 3 hours planned physical 

activity per week or more than 12,000 steps per day). Those in the OP group had a BMI of 

20–30 kg/m2, responded to advertisements seeking “people who struggle with their weight,” 

and reported at least one first-degree relative with obesity, a history of weight fluctuations 

despite efforts to lose or maintain weight, but were not actively attempting to lose weight 

and were weight-stable (within ± 5 lbs) for at least 3 months prior to study participation. All 

participants were free of significant medical and psychiatric disease, including eating 

disorders, as assessed by medical history, physical examination, blood testing (complete 

metabolic panel, A1c, thyroid stimulating hormone, complete blood count, lipid panel), and 

behavioral questionnaires (Eating Attitudes Test [27]; Center for Epidemiologic Studies 

Depression Scale [CES-D] [28]). Participants were right-handed, with no contraindications 

to MRI scanning. Data from two participants were excluded from analyses due to excessive 

head movement (>3 mm or 3 degrees in any direction) during fMRI scanning. There were no 

significant group differences (OP vs. OR) in movement parameters reflecting motion during 

the scanning session (translational: x [p = 0.95], y [p = 0.32], z [p = 0.09]); rotational: pitch 

[p = 0.71], roll [p = 0.58], yaw [p = 0.96]). Final analyses included 49 participants, with 24 

OR (11 women, 13 men) and 25 OP (13 women, 12 men). Participants provided written 

informed consent and all procedures were in accordance with and approved by the Colorado 

Multiple Institutional Review Board.

2.2. Study design

As previously described [7, 25, 26], body composition was assessed by dual-energy X-ray 

absorptiometry (DPX whole-body scanner, Lunar Radiation Corp.), with eating behaviors 

assessed by the Three Factor Eating Questionnaire (TFEQ [29]). One participant did not 

complete the TFEQ, resulting in a reduced sample size for the OR group for this measure 

(N=23). Participants completed a four-day eucaloric run-in diet (50% carbohydrate, 30% fat, 

20% protein; estimation of energy needs made using lean body mass plus an activity factor 
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[30]) prior to fMRI scanning, to ensure energy and macronutrient balance. Food was 

prepared by the Clinical Translational Research Center (CTRC) metabolic kitchen at the 

University of Colorado Anschutz Medical Campus. Participants reported to the CTRC every 

morning during the diet period to be weighed, eat breakfast, and be given the remainder of 

their daily meals to take home. They were asked to maintain usual patterns of physical 

activity, not to consume alcoholic or calorie-containing beverages, and were regularly 

questioned regarding activity and compliance. In women, study measures were performed in 

the follicular phase of their menstrual cycle.

On the study day, participants reported to the CTRC following an overnight fast of at least 

10 hours. A visual analog scale (VAS; scale of 0–100) measured hunger (“how hungry are 

you?” from “not at all hungry” to “extremely hungry”), satiety (“how full do you feel right 

now?” from “not at all” to “extremely”), and prospective food consumption (“how much do 

you think you could eat right now?” from “nothing at all” to “a large amount”). Following 

this, participants were escorted to the Brain Imaging Center at the University of Colorado 

Anschutz Medical Campus to complete the fMRI sessions (described below). After fasted 

fMRI measures, participants rated a series of hedonic food images (e.g., pizza, ice cream, 

cake) for appeal (“how appealing is this food?”), pleasantness (“how pleasant is this 

picture?”) and desire to eat (“how much do you desire to eat this food?”), on a scale of 0–

100. Following this, a liquid breakfast meal was consumed, the caloric content of which 

equaled 25% of the energy provided during the run-in diet, with the same macronutrient 

composition. VAS ratings were repeated 30, 90, 120, 150, and 180 minutes following the 

liquid breakfast meal.

2.3. fMRI data acquisition

As previously described [7, 25, 26], fMRI was performed with a GE 3.0 T MR scanner, 

using a standard quadrature head coil. A high-resolution, T1-weighted 3D anatomical scan 

was acquired for each participant using a spoiled gradient echo (SPGR-IR) sequence with 

the following parameters: TR = 5.5 ms, TE = 1.5 ms, flip angle = 10°, 2562 matrix, 240 mm2 

FOV (0.9 × 0.9 mm2 in-plane), 1.2-mm thick slices, 174 slices, coronal plane. Functional 

images were then acquired with an echo-planar gradient-echo T2* blood oxygenation level 

dependent (BOLD) imaging contrast technique, with the following parameters: TR = 2000 

ms, TE = 30 ms, 642 matrix, 240 mm2 FOV, 27 axial slices angled parallel to the planum 

sphenoidale, 2.6 mm thick, 1.4 mm gap. An inversion-recovery echo-planar image (IR-EPI; 

TI=505 ms) volume was acquired to improve coregistration between the echo-planar images 

and gray matter templates used in preprocessing. Head motion was minimized with a VacFix 

head-conforming vacuum cushion (Par Scientific A/S, Odense, Denmark). Functional 

imaging was performed in the fasted state during 10 minutes of rest (300 image volumes), 

during which participants were instructed to rest with eyes closed. This study also included 

fMRI recording while participants viewed food pictures, the results of which are reported 

elsewhere [7, 25, 26]. In all participants, the resting-state scan followed the food pictures 

task.
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2.4. fMRI preprocessing

fMRI data were preprocessed and analyzed using SPM8 (Wellcome Dept. of Imaging 

Neuroscience, London, UK). Functional data were corrected for differences in slice timing 

during acquisition, realigned to the first echo-planar image, normalized to the Montreal 

Neurological Institute (MNI) EPI template, using the gray-matter-segmented IR-EPI as an 

intermediate to improve registration, and smoothed with an 8 mm full width at half 

maximum (FWHM) Gaussian kernel. Global signal was not removed.

2.5 Independent Components Analysis (ICA)

Large-scale networks were identified using group independent components analysis (ICA) in 

the GIFT toolbox v1.3i (http://icatb.sourceforge.net). The dimensionality of the data from 

each subject was reduced to 70 components using principle component analysis and 

concatenated into an aggregate dataset for input into ICA. Forty independent components 

were estimated using minimum description length (MDL) criteria [31] and extracted using 

the infomax algorithm [32]. Spatial maps were reconstructed using GICA3 [33]. Ten 

components, classified as artifacts based on spatial distributions in cerebrospinal fluid 

(CSF), white matter, or high-frequency oscillations, were excluded from further analysis. To 

identify common intrinsic connectivity networks (ICNs), group mean ICA spatial maps were 

correlated with published ICN templates [34]. Templates matching multiple ICA 

components were classified as subnetworks based on anatomical differences, while ICA 

components without template matches were classified based on anatomy. Following group 

ICA, whole-brain networks were back-reconstructed individually for each subject.

Of note, ICA does not parcellate the brain into strictly non-overlapping networks. Instead, it 

allows partial overlap between and among components. When applied to fMRI data, both 

spatial overlap and temporal correlations are frequently observed [35] (see [36] for a 

technical discussion). In essence, ICA fits approximately independent networks, thus 

allowing a small amount of correlation in order to better fit the observed patterns in the data. 

Consequently, a voxel may be strongly associated with multiple networks, and correlations 

between ICA time series are possible. In combination, these observations give rise to 

analyzing connectivity among ICA networks, termed between-network connectivity 

analysis.

2.6. Between-network connectivity (BNC) analysis

A novel voxel-specific between-network connectivity (BNC) analysis was used to assess 

correlations between ICA component time series’ and individual voxel time series. This 

method has been detailed previously [23]. Similar to other network analysis techniques, such 

as small-world topology [37], BNC extends social network analysis concepts to fMRI 

connectivity analyses. Specifically, BNC quantifies two important features of information 

exchange in networks: (1) how much each voxel, or location within the brain, exchanges 

information with other voxels in large-scale networks, and (2) how much each voxel can be 

associated with, or is “a member of” multiple networks. In a social network framework, 

these would be similar to the concepts that (1) individual social actors interact with large 

social groups, such as when presenting information to and receiving feedback from a group 

of peers, and (2) individuals can simultaneously be members of several social groups, thus 
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acting as conduits of information exchange between groups. These network features, 

although perhaps counterintuitive in brain networks, are consistent with the mathematical 

model of ICA [38]. For instance, corresponding to the first feature, a coefficient representing 

an individual voxel’s connectivity to an individual network is derived. Additionally, and 

consistent with the second feature, the association between every voxel and every network is 

assessed, as represented by a full set of coefficients for all networks. Furthermore, 

connectivity between each pair of interacting networks (commonly referred to as either 

“functional network connectivity” or “between-network connectivity” [35]) likely occurs at 

voxels that are strongly connected to both networks (hence the term “voxel-specific 

between-network connectivity”). As such, this technique measures the amount and diversity 

of connectivity between all large-scale networks occurring at a single voxel. In the current 

study, this represents connectivity between each voxel and each of the 30 non-artifactual 

independent components identified. BNC differs from other voxel-specific summary 

statistics, such as the average value of the connectivity vector [23]. For instance, a voxel 

with high BNC would indicate that the voxel is strongly connected (i.e., correlated) to many 

networks, suggesting a high degree of information flow between the networks at that voxel. 

In contrast, low BNC could indicate either that a voxel’s connections to many 

intercommunicating resting-state networks are negligible, or, alternatively, that a voxel’s 

connections to intercommunicating resting-state networks are negligible.

First, voxel time series were processed to remove sources of noise and minimize the 

influence of movement. Time series were detrended and band-pass filtered between 0.1 and 

0.01 Hz. Signals for white matter, cerebral spinal fluid, and six movement parameters were 

regressed out. Additional movement control was provided by removing volumes with 

excessive framewise displacement (> 0.5 mm) [39]. Next, multiple regression analysis 

(Matlab R2012a) was used to assess correlations between each ICA component time series 

and the time series for each individual voxel. This resulted in a vector of bivariate simple 

correlations for each voxel representing connectivity between that voxel and all ICA 

components. As such, a connectivity vector was obtained for each voxel that can be thought 

of as a “connectional fingerprint” [40]. BNC is a scalar coefficient and was calculated from 

the connectivity vector, as detailed previously [23]. Briefly, voxel-specific BNC compares 

the sum of squared elements in the voxel’s connectivity vector to the multiple correlation 

coefficient. This comparison is possible since, as previously shown [23], “suppressor 

variables” (defined as a predictor variable in a regression model that, although uncorrelated 

with the response variable, increases the fit of the model by removing unwanted variance 

from other predictors [41]) do not appear to contribute to the multiple correlation coefficient 

in the case of using ICA components as regressors. Notably, both negative and positive 

correlations between voxels and ICA components are treated equivalently with this method.

Group differences (OP vs. OR) in BNC coefficients were assessed using t-tests in SPM8, 

after normalizing all voxels by subtracting the whole brain mean and scaling to the whole-

brain standard deviation for each subject. Whole-brain results were corrected for multiple 

comparisons at the cluster level (FDR-corrected, q = 0.05, with a cluster-determining 

threshold of p < 0.005, resulting in an FDR cluster size threshold of 53 voxels). To explore 

which networks were driving group differences, correlations between each voxel in the 

cluster and each individual ICA component were assessed. FDR was then applied to each 
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voxel-to-ICA component correlation coefficient (for all 30 non-artifactual ICA components), 

for all voxels within all significant clusters (SPM t-tests, FDR-corrected, q = 0.05).

2.7. Behavioral and body composition measures

Analyses of group differences in behavioral and body composition measures were performed 

with SPSS 26 (IBM Corp., Armonk, NY). In addition to fasting VAS ratings, total area 

under the curve for appetite VAS ratings using all post-meal time points was used. 

Independent samples t-tests were used to assess group differences (OP vs. OR) in age, body 

composition measures (BMI, lean body mass, fat mass, body fat), and eating-related 

behavioral measures (TFEQ, VAS ratings, food image ratings), with an alpha of 0.05.

Correlations between BNC and body composition/behavioral measures were assessed in R 

version 3.6.0 [43]. For clusters identified as being significantly different between groups in 

the BNC analysis, the average across all voxels in that cluster was taken as the mean BNC 

value for that cluster for correlation analyses. Notably, since BNC is a scalar statistic 

calculated from the voxels’ connectivity vector, the averaging was over the voxel-specific 

BNC scores and not over the elements of the connectivity vector itself. Pearson’s correlation 

was then used to determine the relationship between the mean normalized BNC for that 

cluster and each of the body composition/behavioral measures.

3. Results

3.1. Behavioral and body composition measures

Significant group differences were observed in BMI, fat mass, and percent body fat, with OP 

> OR (Table 1). No significant group differences were observed for age or lean body mass. 

For behavioral measures, groups were significantly different on all three of the TFEQ 

metrics (Restraint, Disinhibition, and Hunger) and ratings of “desire to eat” the food images, 

with OP > OR (Table 2). No significant group differences were observed for VAS measures 

(fasting or AUC) or for ratings of appeal or pleasantness of the food images.

3.2. fMRI

Significant group differences (OP vs. OR; Table 3) were observed in bilateral basal ganglia 

BNC, primarily in the putamen (left basal ganglia: FDR-corrected q = 0.009; right basal 

ganglia: FDR-corrected q = 0.010), and right dorsolateral prefrontal cortex (dlPFC, FDR-

corrected q = 0.026), with greater BNC in the OP compared to OR group (Figure 1).

Figure 2 displays a summary of individual t-tests, highlighting which anatomical voxels 

were influenced by which ICNs. Each line/edge represents a t-test that was significant after 

correcting for multiple comparisons (FDR, q = 0.05). The circle size for ICN nodes and 

voxel nodes both represent unweighted degree, i.e., the number of edges (i.e., significant t-

tests) for each node. Greater circle size indicates a greater number of significant t-tests. For 

example, a voxelnode with an unweighted degree of 3 would indicate that the voxel is 

connected to 3 ICNs. An ICN node with an unweighted degree of 50 would indicate that 50 

voxels are significantly connected to that ICN. Larger circles indicate a greater number of 

significant connections in both cases. For basal ganglia BNC, group differences were most 
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apparent in connectivity between basal ganglia voxels (largely putamen) and a lateral 

sensorimotor network (bilateral postcentral gyri), with a more strongly negative relationship 

between basal ganglia activity and the lateral sensorimotor network in the OP group than the 

OR group. Post-hoc analyses identified a negative correlation between basal ganglia and the 

lateral sensorimotor network in the OP group that was not observed in the OR group. Group 

differences in dlPFC BNC were largely driven by group differences in connectivity between 

dlPFC and an inferior visual network (fusiform gyri), with a negative correlation between 

dlPFC and the inferior visual network observed in the OP group, but not in the OR group.

To evaluate potential effects of sex, analyses were repeated in a two-way ANOVA, with sex 

and group (OP vs. OR) as predictor variables. No main effect of sex was observed (largest 

cluster of 35 voxels, non-significant at p = 0.20, corrected) and the inclusion of sex did not 

alter the main group effect from the initial analysis.

3.3. fMRI and body composition/behavioral measure associations

Correlations between mean BNC and body composition/behavioral measures were assessed 

for the bilateral basal ganglia and right dlPFC. Across all subjects, BNC in the basal ganglia 

was significantly correlated with hunger AUC (r = 0.38, t (46) = 2.75, p = 0.008; Figure 3) 

and satiety AUC (r = −0.55, t (46) = −4.47, p < 0.001; Figure 4). To determine if this 

relationship differed by group, analyses were repeated including group in the model. 

Associations between BNC and hunger AUC/satiety AUC remained significant (hunger 

AUC: F(3, 44) = 3.11, p = 0.036; satiety AUC: F(3, 44) = 6.82, p < 0.001), but with no 

significant group interactions (hunger AUC: t(48) = −0.67, p = 0.25; satiety AUC: t(48) = 

0.17, p = 0.57), suggesting the relationship between BNC and hunger/satiety was consistent 

across groups. No other significant correlations were observed.

4. Discussion

The current study used a novel whole-brain, data-driven approach to investigate intrinsic 

between-network connectivity (BNC) in individuals identifying as obesity-prone (OP) or 

obesity-resistant (OR). In OP compared to OR individuals, greater BNC was observed in 

bilateral basal ganglia and right dorsolateral prefrontal cortex (dlPFC). For the basal ganglia, 

this effect was driven by a more strongly negative association with a lateral sensorimotor 

network (lSMN; postcentral gyri) in the OP group; i.e., stronger negative connectivity 

between the lSMN and basal ganglia voxels in OP. For the dlPFC, this group difference was 

driven by a more strongly negative association with an inferior visual network (fusiform 

gyri) in the OP group; i.e., stronger negative connectivity between the dlPFC and inferior 

visual network in OP.

One interpretation of the observed greater basal ganglia BNC in OP, which was focused in 

the putamen, is that this could reflect an altered balance between goal-directed and habitual 

control systems. Stronger putaminal BNC could reflect a shift towards a habitual control 

bias, as the putamen, particularly within the context of sensorimotor cortico-basal ganglia 

network connectivity, is implicated in habitual rather than goal-directed action control [44, 

45]. This interpretation would be consistent with previous work suggesting a link between 

overweight/obesity and a shift from goal-directed to habitual control dominance [16, 17, 46]. 
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A shift toward a habit-driven bias could reflect a more reflexive, less adaptive system [45, 

47], which could have important implications for weight-loss approaches (i.e., if behaviors 

are more resistant to change). The current findings correspond with previous imaging studies 

observing greater resting-state putamen functional connectivity, in the context of global 

brain connectivity (GBC; a metric encompassing both within- and between-network 

connectivity) [13], temporal synchronicity of putamen activity [15], and salience network 

connectivity strength [14], in individuals with obesity, compared to lean/healthy-weight 

individuals. Additionally, Contreras-Rodriguez et al. observed increased resting-state 

functional connectivity between basal ganglia (dorsal striatum) and somatosensory cortex in 

participants with overweight/obesity compared to normal-weight participants, using a seed-

based approach [17], which was also associated with subsequent BMI gains after 12 weeks. 

It is difficult, however, to determine if the directionality of effects in the current study 

corresponds with previous studies. The current study observed increased basal ganglia BNC, 

focused in the putamen, in the OP group. That this was largely driven by a negative 

correlation between basal ganglia and the lSMN may suggest a stronger inhibitory influence 

of the basal ganglia on that network. Thus, although the relationship between the basal 

ganglia and lSMN connectivity is in a negative direction, results may still corroborate the 

increased resting-state putaminal connectivity observed in previous studies [13–15]. 

Directionality in the current study does differ from that in Contreras-Rodriguez et al. [17], 

however, in which a greater positive correlation between dorsal striatum and somatosensory 

cortex was observed in participants with “excess weight” compared to “normal weight.” 

Differences in study methodology may contribute to this discrepancy. The average BMI of 

the “excess weight” group in the Contreras-Rodriguez et al. study was 30.5 kg/m2, whereas 

the OP group in the current study had an average BMI of 26.2 kg/m2. As such, group 

differences observed by Contreras-Rodriguez et al. may reflect effects of current obesity in 

addition to those related to obesity propensity. Given differences in BMI between the 

groups, it is also possible that the participants in the Contreras-Rodriguez et al. study 

regularly maintained an obesogenic diet to a greater extent than those in the current study. 

Continued consumption of obesogenic foods, coupled with reinforcement of conditioned 

responses to those foods, may result in altered connectivity patterns between regions 

relevant to reward and attentional bias toward food cues [22, 48]. Furthermore, differences in 

satiety state between the two studies may affect results, as previous studies have suggested 

effects of satiation (i.e., fasted compared to fed states) on resting-state brain activity [10, 15, 

49, 50]. Results presented here were with participants in the fasted state (following an 

overnight fast of at least 10 hours), while those in the Contreras-Rodriguez et al. study 

completed MRI scanning ~2–4 hours postprandially. Accordingly, VAS measures of hunger 

(scale of 0–100) prior to MRI scanning were greater in the current study (OR: 65.0, OP: 

68.4) compared to those in Contreras-Rodriguez et al. (normal weight: 15.0, excess weight: 

16.3). Future studies can further investigate how satiety state may influence group 

differences in BNC. The observed greater basal ganglia BNC in OP in the current study, 

driven by increased anticorrelation to the lSMN, could also reflect a greater attention to 

internal state. In other words, the opposing directionality of response in the two regions 

could indicate increased internal monitoring, at the expense of external monitoring, which 

may result in reduced reliance on external sensorimotor stimuli. This would also be 

congruent with a shift in cognitive bias towards a habit-driven system. An increase in 
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internal monitoring would also be consistent with previous reports of increased intrinsic 

default mode network activity in individuals with obesity, compared to normal-weight 

individuals [9, 18, 19].

Although basal ganglia BNC was correlated with appetite (greater BNC was associated with 

greater hunger and reduced satiety ratings following a meal), an association between basal 

ganglia BNC and body composition metrics (BMI, fat mass, percent body fat) was not 

observed, suggesting that the greater BNC observed in the OP group may not be driven by 

the BMI differences between the groups. As such, results may reflect a predisposition 
towards obesity in the OP group, or perhaps be related to potential differences in eating 

behaviors between the two groups. Although food intake was not directly measured in the 

current study, the OP group rated high-calorie food images as more desirable to eat than did 

the OR group, which could suggest a greater inclination to consume more high-calorie 

foods. Supporting a link between eating behaviors and basal ganglia function, binge-like 

consumption of sweetened condensed milk in rats has been found to alter dorsolateral 

striatum (analogous to human putamen) responsivity and to promote a more rapid shift 

towards habitual action control [51]. A recent meta-analysis failed to observe a relationship 

between BMI and neuronal response to food cues [52], further highlighting the importance 

of taking other factors relevant to obesity propensity into consideration, such as impulsivity 

and inhibitory control, stress responsivity, comorbid health conditions, genetic contributions, 

and learned eating patterns [22, 53–56]. Multiple theories surrounding neural vulnerability 

factors for obesity risk focus on such factors, including the incentive sensitization theory of 

obesity, which suggests that repeated high-calorie food intake may lead to altered striatal 

responsivity, contributing to further overconsumption [22, 57].

A potential mechanism underlying the altered basal ganglia connectivity observed in the 

current study is altered dopaminergic signaling. Volkow et al. have demonstrated an 

association between striatal dopamine D2 receptors and somatosensory cortex metabolism in 

humans, hypothesizing that dopaminergic modulation of somatosensory cortex may 

influence the reinforcing value of foods and conditioned associations between environmental 

cues and food intake [58]. Both obesity and exposure to an obesogenic diet have been 

consistently associated with alterations in striatal dopaminergic signaling, in human and 

rodent studies [59–63], but the directionality of this relationship (i.e., contributing to vs. a 

consequence of obesity) remains unclear. In mice, overexpression of dopamine D2 receptors 

during development was associated with having a predisposition to later obesity, suggesting 

that early alterations in dopamine signaling may relate to obesity propensity [62]. 

Interestingly, evidence suggested this was due to reduced energy expenditure, through brown 

adipose tissue thermogenesis, rather than increased food intake. Other rodent studies also 

support a contribution of altered striatal dopaminergic signaling to reductions in energy 

expenditure [59, 60]. As such, the altered intrinsic basal ganglia BNC in the current study 

could reflect a propensity towards reduced energy expenditure, rather than a propensity 

towards increased intake. Previous observations of reduced dopamine D2 receptors in animal 

and human studies of obesity contributed to the reward deficit theory of obesity, positing that 

food overconsumption reflects heightened reward pursuit in an attempt to compensate for 

reduced reward signaling [64, 65]. Mounting evidence suggests that this theory may be 

overly simplistic, though, including human and animal studies that have observed reductions 
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in striatal dopamine to be associated with reduced consumption and/or appetite [22, 57, 66]. 

A recent study by Mourra et al. [67] found dopamine D2 receptor blockade in mice to 

reduce willingness to expend physical effort for food, without affecting body weight or the 

amount of food consumed, further suggesting dopaminergic effects on energy expenditure 

may also be a key consideration in the development of obesity. Although evaluation of 

dopaminergic signaling and energy expenditure was beyond the scope of the current study, 

investigating the contribution of these factors to obesity propensity may be a promising 

direction for future research.

Increased BNC was also observed in the dlPFC, a region with a key role in cognitive control 

and inhibitory function. Previous studies have observed reduced dlPFC responsivity to food 

cues and following feeding in individuals with obesity compared to healthy-weight 

individuals, with increased dlPFC responsivity observed following weight reduction [3]. 

Few studies, however, have investigated how intrinsic dlPFC connectivity relates to obesity. 

The current results were primarily driven by increased connectivity between the right dlPFC 

and an inferior visual network in the OP group. Specifically, this result was driven by a 

stronger negative correlation between the right dlPFC and a network of inferior visual 

regions, including the fusiform gyri. In addition to playing an important role in cognitive 

inhibition, the dlPFC has been implicated in set shifting and attention [68]. Given the 

anticorrelation, it is possible that this reflects dlPFC-driven attenuation of sensory input 

responsivity, relating to reduced attention to the external environment, similar to the 

interpretation suggested for altered basal ganglia connectivity. The current results are 

consistent with findings from a previous study in adolescents, in which increased negative 

connectivity between dlPFC and primary visual cortex was observed in adolescents with 

overweight/obesity compared to normal-weight adolescents [11]. Differences in intrinsic 

dlPFC BNC in the OP group may also relate to cognitive biases that contribute to 

obesogenic behaviors, such as enhanced attentional bias to food cues or discounting negative 

consequences in favor of immediate reward [56, 69]. This would correspond with both the 

incentive sensitization theory of obesity, which proposes that elevated food cue responsivity 

contributes to excess intake, and with the inhibitory control deficit theory of obesity, 

suggesting that deficits in inhibitory control lead to overconsumption [22, 57]. These 

theories are not mutually exclusive, in that reduced inhibitory control could increase the 

likelihood of overeating in the presence of appealing food cues [53, 70]. Subsequent studies 

can assess BNC in the context of tasks targeting behaviors relevant to these theories (e.g., 

food cues, delay discounting) to determine how intrinsic connectivity relates to task-related 

connectivity, and how this is impacted by obesity propensity.

There are a number of potential study limitations to consider. As resting-state fMRI scans 

were performed after a food cues task, it is possible that task-related response could 

influence subsequent resting-state measures (e.g., [71, 72]). Since both groups completed the 

scans in this order, this is unlikely to have affected observed group differences. It is possible, 

though, that those prone to obesity may experience lasting effects from a food cues task to a 

different degree than those who are obesity-resistant, an intriguing possibility to be explored 

in future studies. Itis also possible that the increased negative correlation between the basal 

ganglia and lSMN in the OP group could reflect greater discomfort during scanning 

compared to the OR group, i.e., perhaps indicating a stronger basal ganglia-driven inhibitory 
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response to sensorimotor regions. That we did not observe significant group differences in 

movement during scanning suggests that OP and OR groups experienced similar comfort 

levels in the scanner. Additionally, the average BMI in both groups was below the obese 

range, which also increases the likelihood of similar comfort levels during scanning. It is 

possible, however, that some group differences in discomfort existed that were not captured 

by assessing movement during scanning. Another possible limitation is that because the OP 

group studied did not have BMIs in the obese range, despite having multiple obesity risk 

factors, this group could itself be resistant to weight gain. Given their self-reported 

difficulties maintaining their weight, however, we believe the low BMIs in this group more 

likely reflect the fact that the group is relatively young (average age 30.2 yrs), resulting in a 

lower cumulative exposure to obesity risk factors. To explore this idea, we investigated the 

association between age and BMI in both OP and OR groups separately. We did not observe 

a relationship between age and BMI in the OR group (r = .12, p = .568), but did observe a 

trend toward a significant correlation between age and BMI in the OP group (r = .80, p 
= .053), with increased age associated with increased BMI. This supports the idea that the 

relative youth of the participants in the study may have contributed to a lower average BMI 

and that these individuals are likely on a trajectory towards more significant overweight/

obesity. This effect in fact underscores the potential value of studying individuals in the OP 

state, as identifying neuronal mechanisms that precede weight gain and obesity may point to 

an opportunity to therapeutically target those mechanisms (e.g., transcranial magnetic 

stimulation [TMS], transcranial direct current stimulation [tDCS] [73]) and prevent obesity 

onset.

Additional limitations relate to the participant groups studied. While the OP group 

potentially allows for the identification of factors that precede or predict weight gain, the 

lack of a group with BMIs in the obese range does limit our ability parse these effects from 

direct effects of obesity itself, and reduces comparability of the present study results with 

other studies of individuals with obesity. Also, because the OR group had a relatively low 

average BMI (20.8 kg/m2), it is possible that this group is not fully representative of the 

general population. It is possible that this low BMI relates to the study being conducted in 

Colorado, where the overweight/obesity prevalence is consistently lower than in all other 

states [74].

In conclusion, the current study found differences in between-network connectivity in 

obesity-prone compared to obesity-resistant individuals, using a data-driven, whole-brain 

approach. Increased BNC was observed in bilateral basal ganglia and right dlPFC, largely 

driven by more strongly negative associations with lateral sensorimotor and inferior visual 

networks, respectively. These alterations in functional connectivity may reflect a disrupted 

balance between goal-directed and habitual control systems and between internal and 

external monitoring processes. These connectivity differences may contribute to a 

predisposition towards obesity, potentially related to obesogenic eating behaviors or perhaps 

reflecting a propensity towards reduced energy expenditure. Additional research is needed, 

however, to further advance our understanding of factors that underlie a propensity or 

resistance to weight-gain.
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Highlights

• Between-network connectivity (BNC) assessed in adults prone or resistant to 

obesity

• Increased basal ganglia and dorsolateral prefrontal cortex BNC in obesity-

prone group

• May reflect disrupted balance between goal-directed and habitual control 

systems
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Figure 1. 
Group differences (OP vs. OR) in between-network connectivity (BNC). Significant group 

difference observed in basal ganglia, with OP > OR (voxel-level threshold of p < 0.005 and a 

cluster-corrected FDR threshold of q < 0.05). Data are shown in the radiologic convention 

(i.e., right hemisphere on the left).
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Figure 2. 
Summary of t-tests assessing group differences (OP vs. OR) in BNC between each voxel in 

the significant clusters identified in Figure 1 (bilateral basal ganglia; right dorsolateral 

prefrontal cortex [dlPFC]) and each ICN. Each line represents a significant t-test, with larger 

circle size indicating greater number of significant t-tests for that ICN or voxel (e.g., voxel 

node 3 = significant t-tests [OP vs. OR] between that voxel and 3 ICNs). Group differences 

were most apparent in connectivity between basal ganglia voxels and a lateral sensorimotor 

network, and between dlPFC voxels and an inferior visual network. Abbreviations: ICN= 

Intrinsic connectivity network; lat. SM = lateral sensorimotor network; L. SM = left 

sensorimotor network; high Visual = high visual network; inf. Visual = inferior visual 

network; Visual Assc. = visual association network.
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Figure 3. 
Significant positive correlation between basal ganglia BNC and hunger AUC (p = 0.008), 

across all participants. BNC = between-network connectivity; AUC = area under the curve.
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Figure 4. 
Significant negative correlation between basal ganglia BNC and satiety AUC (p < 0.001), 

across all participants. BNC = between-network connectivity; AUC = area under the curve.
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Table 1.

Participant characteristics.

Group Group Differences

Characteristic OR
(N=24)

OP
(N=25) p

1

Age (years)
2 31.1 ± 2.9 30.2 ± 3.8 0.386

BMI (kg/m2)
2 20.8 ± 2.1 26.2 ± 3.1 <0.001

Lean body mass (kg)
2 49.1 ± 10.6 54.2 ± 10.8 0.100

Fat mass (kg)
2 15.0 ± 13.9 24.2 ± 11.6 0.016

Body fat (%)
2 18.9 ± 4.5 28.9 ± 7.9 <0.001

1
Significant p-values in bold;

2
Mean ± SD

OP: obesity-prone; OR: obesity-resistant.
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Table 2.

Appetite and food-related behaviors.

Group Group Differences

Measure OR
(N=24)

OP
(N=25) p

1

TFEQ: Restraint
2,3 4.3 ± 2.7 9.0 ± 4.5 <0.001

TFEQ: Disinhibition
2,3 3.1 ± 2.3 7.8 ± 3.4 <0.001

TFEQ: Hunger
2,3 4.3 ± 2.5 6.2 ± 3.0 0.021

Fasting Hunger VAS
2 65.0 ± 20.2 68.4 ± 23.6 0.592

Hunger AUC
4 7196.0 ± 3264.1 8367.5 ± 3241.0 0.218

Fasting Satiety VAS
2 17.2 ± 19.0 22.5 ± 25.0 0.413

Satiety AUC
4 8231.2 ± 2945.4 8774.4 ± 3377.1 0.556

Fasting PFC VAS
2 66.4 ± 20.3 66.4 ± 19.9 1.000

PFC AUC
4 10315.63 ± 3704.7 9179.4 ± 3125.1 0.257

Food Image Appeal
2 65.8 ± 2.7 71.4 ± 2.2 0.106

Food Image Desire To Eat
2 60.2 ± 2.8 68.3 ± 2.4 0.032

Food Image Pleasantness
2 65.7 ± 2.5 70.1 ± 2.7 0.235

1
Significant p-values in bold;

2
Mean ± SEM;

3
Sample size for OR group reduced to N=23 for TFEQ measures;

4
Mean total area under the curve (mm × 180 min)

AUC: area under the curve; OP: obesity-prone; OR: obesity-resistant; PFC: prospective food consumption; TFEQ: Three Factor Eating 
Questionnaire; VAS: visual analog scale.
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Table 3.

Coordinates and brain regions showing differential BNC between OP and OR.

Brain region MNI coordinates T value qFDR Cluster size

x y z

Basal ganglia (L) −21 −13 13 3.96 0.009 104

Basal ganglia (R) 21 −13 10 3.87 0.010 89

dlPFC (R) 42 29 43 3.41 0.026 66

All values in table significant at a voxel-level threshold of p < 0.005 and a cluster-corrected FDR threshold of q < 0.05.

T values reported for local maxima within clusters.
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