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Abstract

Although massive data is quickly accumulating on protein sequence and structure, there is a small 

and limited number of protein architectural types (or structural folds). This study is addressing the 

following question: how well could one reveal underlying sequence–structure relationships and 

design protein sequences for an arbitrary, potentially novel, structural fold? In response to the 

question, we have developed novel deep generative models, namely, semisupervised gcWGAN 

(guided, conditional, Wasserstein Generative Adversarial Networks). To overcome training 

difficulties and improve design qualities, we build our models on conditional Wasserstein GAN 

(WGAN) that uses Wasserstein distance in the loss function. Our major contributions include (1) 

constructing a low-dimensional and generalizable representation of the fold space for the 

conditional input, (2) developing an ultrafast sequence-to-fold predictor (or oracle) and 

incorporating its feedback into WGAN as a loss to guide model training, and (3) exploiting 

sequence data with and without paired structures to enable a semisupervised training strategy. 

Assessed by the oracle over 100 novel folds not in the training set, gcWGAN generates more 

successful designs and covers 3.5 times more target folds compared to a competing data-driven 

method (cVAE). Assessed by sequence- and structure-based predictors, gcWGAN designs are 
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physically and biologically sound. Assessed by a structure predictor over representative novel 

folds, including one not even part of basis folds, gcWGAN designs have comparable or better fold 

accuracy yet much more sequence diversity and novelty than cVAE. The ultrafast data-driven 

model is further shown to boost the success of a principle-driven de novo method (RosettaDesign), 

through generating design seeds and tailoring design space. In conclusion, gcWGAN explores 

uncharted sequence space to design proteins by learning generalizable principles from current 

sequence–structure data.

INTRODUCTION

A fundamental science question about proteins, the workhorse molecule of life, is their 

sequence–structure–function relationships.1 Anfinsen and co-workers studied the 

renaturation of fully denatured ribonuclease2 and eventually established a thermodynamic 

hypothesis: native conformations of proteins in physiological milieu correspond to the 

solute–solvent systems’ lowest Gibbs free energy.3 Since then, the direct exploration of the 

sequence–structure relationship has led to both the forward problem of structure prediction 

from sequence4 as well as the inverse problem of sequence design for desired structures.5,6 

With the data quickly accumulating on protein sequence and structure, a central question in 

this study is as follows: how well can one reveal deep insights into sequence–structure 

relationships to empower inverse protein design?

The forward problem of protein structure prediction, especially ab initio prediction without 

templates, is often solved by energy minimization. Even this classical principle-driven 

approach has benefited from data. Examples include the use of structural fragments for 

efficient sampling and the use of structure and sequence data for training scoring functions. 

A recent wave of data comes from protein sequences without paired structures. Specifically, 

sequence coevolution can be exploited to infer residue–residue structure contacts7–9 and 

enhance protein structure prediction significantly.10–12 As witnessed in recent CASP 

(Critical Assessment of Structure Prediction), the latest revolution is in the prediction of 

residue–residue distances even for proteins with few homologue sequences, which is 

enabled by advanced deep neural network architectures (especially deep residual networks) 

that learn from the sequence, structure, and coevolution data.13,14

The inverse problem of protein design is often similarly pursued following the energy 

minimum principle.15–17 Current protein (re)design algorithms fall in three classes: (1) exact 

algorithms such as dead-end elimination, A*, and cost function networks,18–21 (2) 

approximation algorithms such as relaxed integer programming and loopy belief 

propagation,22,23 and (3) heuristic algorithms such as genetic algorithms and Markov chain 

Monte Carlo (MCMC).24,25 The more challenging de novo protein design assumes that, 

along with the sequence, even the exact backbone structure is unknown.26 Rather, the 

desired structure is described by the composition and the relative arrangement of secondary 

structure elements. The (energy minimum) principle-driven RosettaDesign tools25 have 

made great success for de novo protein design.27–30

In contrast to the forward problem, the inverse problem of de novo protein design has 

witnessed limited impacts from deeply exploiting data with advanced artificial intelligence 
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technologies (especially deep learning),31,32 despite impressive progress in fixed-backbone 

protein design.33–37 Meanwhile, the impacts of deep generative models, represented by 

Generative Adversarial Networks (GAN)38 and Variational Auto-Encoder (VAE),39 have 

reached the sibling fields of inverse design for DNA,40,41 RNA,42 small molecules,43,44 and 

peptides.45

Our study focuses on developing deep generative models for the inverse problem of de novo 
protein design. The specific design goal here is an arbitrary structural fold, a global pattern 

of protein structures characterized by the content and organization of secondary structures.46 

Despite the growth of protein structure data, the number of structural folds remains around 

103 lately. To design sequences for a novel fold, our models overcome the unique challenges 

from the design space, the design objective (desired properties), and the mapping in 

between.

The first challenge, a numerical one, comes from the much more daunting protein sequence 

space. Compared to aforementioned molecular designs, protein sequences have more 

choices at each position (20 standard amino acids versus four nucleotides) and are much 

longer, leading to the dimensionality of 20L ≫ 4K where L > K.

The second challenge, a conceptual and mathematical one, is that, the fold space is a discrete 

domain that has not been completely observed.47 Therefore, a generalizable representation is 

needed to design a novel fold (a value in the discrete space) never seen in training data. In 

contrast, aforementioned deep generative small-molecule designs often target either a 

continuous property (such as logP) or a discrete one with desired values observed in training 

data.

The last challenge is the knowledge gap about the complex sequence–fold relationship. 

Protein folds are products of both convergent and divergent evolution,48 and sequences in 

the same structural fold do not necessarily share a common evolutionary origin.46 In other 

words, although very similar sequences are often in the same fold (with not-so-rare 

exceptions), very dissimilar sequences (even when their sequence identities are below 20%) 

can belong to the same fold as well. By definition, no sequence similarity is implied within a 

fold. This complex sequence–fold mapping makes it extremely difficult to learn from the 

data. In contrast, designing RNAs benefits from the fact that desired structures can often be 

readily translated to regular base-pairing patterns in the sequence space.

To overcome the aforementioned challenges in de novo protein fold design, we present a 

study exploiting current data and developing advanced technologies for faster, broader, and 

deeper exploration of the protein sequence space while seeking principles underlying protein 

structure folds. Specifically, we have developed a semisupervised, guided conditional 

Wasserstein GAN (Figure 1) by making the following innovative contributions:

1. We have extended WGAN with two component networks (generator and 

discriminator/critic) to three-component gcWGAN by introducing an “oracle” 

that provides real-time feedback on generator’s output quality and an additional 

loss term fully differentiable for model training.

Karimi et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2021 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. For the new component, the oracle, we have developed an ultrafast sequence-to-

fold classifier that is capable of online feedback during model training, whereas 

the state-of-the-art fold classifiers cannot address the need. We have 

accomplished this by using less processed inputs (sequence only) and more 

advanced model architecture (residual neural networks).

3. For the conditional input of gcWGAN, we have embedded structural folds into 

low-dimensional vectors in a nonparametric way (kernelized PCA) that preserves 

distance metrics in the fold space. The fold representation also allows for 

generalizability to describe novel folds.

4. For training gcWGAN, we have exploited abundant protein sequences without 

paired structures, in addition to those with paired structures, and trained our 

models in a semisupervised manner.

We systematically assess our models’ capability on designing novel protein folds, including 

a newly published one. gcWGAN-generated protein sequences are predicted to resemble 

natural proteins in biophysical properties and stability/fold origins, and their functions are 

predicted to be specific to target folds. Compared to a recent study based on conditional 

VAE,31 our models generate proteins that are comparably or more accurate in desired folds, 

yet much more diverse and often more novel in sequence. Our data-driven gcWGAN, when 

integrated with the principle-driven RosettaDesign, boost the amount of successful designs 

and design efficiency.

MATERIALS AND METHODS

In this section, we first introduce models and training strategies that are our major 

contributions. For models, we describe the overall architecture and mathematical foundation 

of our gcWGAN and then include more details about the newly introduced oracle network 

(ultrafast sequence-to-fold predictor) as well as the newly developed conditional input 

(representation of an arbitrary fold). For training, we introduce our three-step 

semisupervised strategy that exploits sequences without paired structures to overcome 

training instability and increase “protein-like” designs.

After describing the data used for gcWGAN training, validation, and testing, we focus on 

assessment. We have comprehensive assessments of model-generated sequences, including 

oracle-assessed success rates (yield ratios), predicted biophysical and biological properties, 

and structure-based quality prediction (TM-scores), as well as diversity and novelty.

We end the section with how to integrate our data-driven gcWGAN into principle-driven 

RosettaDesign to boost success: initializing sequence search or/and reducing design space.

GAN Models for De Novo Protein Design.

The architecture of gcWGAN is illustrated in Figure 1. There are three components of the 

model, all of which are neural networks: the generator, the discriminator, and the oracle. The 

generator is fed with a random input z and a conditional input y (a representation of any 

given fold) and produces artificial amino-acid sequences x. The discriminator tries to tell 
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apart the artificial sequences x and the real (natural) ones x for the given fold. With training 

sequences and their folds, the generator and the discriminator compete against each other 

and improve each other iteratively in the training process. Meanwhile, a third network, the 

oracle, takes artificial sequences from the generator, predicts their chances of belonging to 

the target fold, and guides the training of the generator and the discriminator. Once the 

model is trained, the generator becomes a protein sequence designer for any arbitrary desired 

fold that is represented as the conditional input y.

Details of gcWGAN are elaborated next. We begin with background information for GAN, 

WGAN, and conditional WGAN, where the generator, the discriminator (also called the 

critic in WGAN), and the Wasserstein loss are explained. We proceed to describe our guided 

cWGAN (gcWGAN) with the additional oracle network (a sequence-to-fold predictor here) 

and accordingly an additional loss term that is fully differentiable to regularize the generator 

and the critic. With the overall architecture of gcWGAN explained, we detail its oracle that 

provides ultrafast fold classification to guide gcWGAN training and its conditional input that 

represents a desired fold.

Conditional Wasserstein GAN (cWGAN).—Generative Adversarial Network (GAN),38 

a class of generative models, represents a game between a generator G and a discriminator 

D. The generator’s objective is to generate artificial data from a noise input that is close to 

real data, and the discriminator’s goal is to discriminate the generated data from the real 

ones.

Compared to the original GAN,38 Wasserstein GAN (WGAN)49,50 uses Wasserstein 

distance rather than Jensen–Shannon divergence in the loss function. This change overcomes 

training difficulties in GAN, such as difficulty to reach Nash equilibrium,51 low dimensional 

support, vanishing gradients and mode collapsing.49 WGAN has been extended to 

conditional WGAN (cWGAN) where both the generator and the discriminator (more often 

referred to as the critic in WGAN) are conditioned on an additional supervised event y, 

where y can be any kind of auxiliary information or data such as a discrete label,52 sequence,
53 image,54 or speech.55

We consider conditional WGAN (cWGAN) (formulated using the Kantorovich–Rubinstein 

duality) with a penalty on the gradient norm imposing a soft version of the Lipschitz 

constraint.50 The formulation is as follows:

min
G

max
D

L1 = min
G

max
D

Ex ℙr[D(x ∣ y)] − Ex ℙg[D(x ∣ y)]

−λ1Ex ℙx ∇xD(x ∣ y) 2 − 1 2 (1)

where y is the embedding of the protein fold (explained in the Conditional Input to 

gcWGAN: Fold Representation section); x denotes real sequences generated from ℙr, the 

real data distribution; and x denotes artificial sequences generated from ℙg, the model 

distribution. ℙg is implicitly defined by distribution p(z) of noise z because x = G(z ∣ y). 
Moreover x ℙx is implicitly defined as uniformly sampling along straight lines between 
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pairs of points sampled from ℙg and ℙr for a given label y. This is inspired by the fact that 

the optimal critic contains straight lines, with the l2 norm of the gradient equal to 1, 

connecting coupled points from ℙg and ℙr. Hyper-parameter λ1 enforces the importance of 

gradient penalty in the loss function and is set at 10 without tuning.50 The pseudocode of 

cWGAN with gradient penalty is given in the Supporting Information (SI) Section 4.1 or 

Section S4.1 in short.

Guided cWGAN (gcWGAN).—In principle, cWGAN could guide the sequence 

generation specifically for a desired fold. However, limited resolution of fold embedding 

could present a barrier. We have thus developed a novel GAN model, guided cWGAN (or 

gcWGAN), with an additional “oracle” network inside (detailed in the Oracle in gcWGAN: 

Fold Prediction section). The oracle provides feedback to the generator on how well 

generated sequences might possess the desired property (an arbitrary fold here). Specifically, 

this feedback is sequence-predicted fold probabilities in our case and introduced as an 

additional “regularization” term R to L1 in the loss function

min
G

max
D

L2 = min
G

max
D

L1 + λ2R (2)

where the hyper-parameter λ2 is used to balance the two terms.

R = − Ex ℙg Itarget(x)logO(x)
+ 1 − Itarget(x) log(1 − O(x)) (3)

where O(x) = ∑k = 1
K′ pk(x), the sum of probabilities for the top K′ (10 in this study) fold 

predictions from the oracle. Ideally, Itarget(x) is an indicator function that equals 1 when the 

target fold is among the top K′ predictions from the oracle. But this definition would lead to 

a nondifferentiable expression without gradients needed for back-propagation. We thus 

introduce Itarget(x) ≈ ReLU ptarget(x) − pK′(x)  and 1 − Itarget(x) ≈ ReLU pK′(x) − ptarget(x) . 

So if the target fold is within top K′ predictions, pK′(x) − ptarget(x) < 0 and its ReLU assigns 

zero to 1 − Itarget(x); otherwise, zero is assigned to Itarget(x).

The pseudocode of gcWGAN is given in SI Section S4.2. Model architectures of the critic 

and the generator are in SI Section S4.3.

Now that the overall architecture of gcWGAN is explained, we use the next two 

subsubsections to introduce the oracle network (i.e., an sequence-to-fold online predictor) 

and the conditional input to gcWGAN (i.e., a representation of an arbitrary fold).

Oracle in gcWGAN: Fold Prediction.—The newly introduced “oracle” in gcWGAN 

comments on the quality of generated sequences toward desired property y. In our case, it is 

a sequence-to-fold predictor used both for guiding sequence generation during model 

training and for filtering generated sequences afterward. So that the oracle in gcWGAN can 

be in sync with the generator and the critic updates, it has to generate extremely high 

throughput yet somewhat accurate fold predictions, which state-of-the-art fold predictors 

including DeepSF56 cannot address. In response to this need, our oracle is a revised model 
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based on DeepSF. It uses less features for speed and more advanced network architecture for 

accuracy compared to DeepSF, which is detailed as follows.

First, DeepSF uses input features including amino-acid sequence, position-specific scoring 

matrix, predicted secondary structure, and predicted solvent accessibility, whereas our oracle 

only uses sequence (one-hot encoding). The features other than sequence are very 

informative for fold prediction but unfortunately require computationally expensive multiple 

sequence alignment. Considering that our model for protein fold design involves millions of 

generated sequences during training, online calculation of nonsequence features for oracle 

feedback is infeasible (each sequence demands around 10 min or more for nonsequence 

features).

Second, DeepSF involves a 1D deep convolutional neural network, whereas our oracle is 

deeper with 10 more layers of residual convolutional layers and a larger filter size (40 versus 

10). The architecture change is to compensate for the loss of informative nonsequence 

features. In the end, a softmax layer predicts the probability for each 1215 folds (slightly 

increased from 1195 in DeepSF due to SCOPe update).

More details about the oracle, including its architecture, can be found in SI Section S3.

Conditional Input to gcWGAN: Fold Representation.—The inputs to the generator 

include a multivariate Gaussian variable (z) and a conditional input (y) describing the desired 

property (an arbitrary fold here). For the conditional input, we aim at low-dimensional fold 

representations that are (1) representative enough for preserving the information about the 

known folds and (2) generalizable enough for describing a novel fold. Considering that the 

growth of the fold space in recent years has been slow and likely near saturation,57 we focus 

on the space containing the 1232 basis folds (SCOPe v. 2.07) and perform dimension 

reduction using kernel principal component analysis (kPCA).58,59

Specifically, we do not start with describing individual folds but instead find “distances” 

between fold pairs, using symmetrized TM-scores as pairwise similarity (kernels) and the 

nearest positive definite matrix as the Gram matrix. We then used kPCA to construct a space 

spanned by orthonormal PCs where inner products reproduce the aforementioned pairwise 

distances. In this way, any fold with a structure blueprint can be represented with 

coordinates in the subspace spanned by the top K PCs. More details can be found in SI 

Section S2.

Training Strategies for gcWGAN.

Semisupervised Training.—In gcWGAN, the oracle is pretrained and fixed, and the 

generator and the critic are trained with a series of “warm starts”. The idea is to facilitate 

generated sequences to be “protein-like” (for instance, able to fold into stable and functional 

structures).

To this end, we have developed a three-step semisupervised strategy to train gcWGAN by 

exploiting abundant protein sequences without paired structures. Specifically, we first train 

cWGAN using unsupervised protein sequences from UniRef50 (see the Data section) while 
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fixing their y (fold embedding) at the center of all fold representations. We then retrain 

cWGAN using the supervised sequences (see the Data section) with corresponding fold 

representations but initialize model parameters at the optimal values from the unsupervised 

step (warm start). In the third and final step, we train our gcWGAN using the supervised 

sequences and initialize the generator/critic parameters at the optimal values from the 

previous semisupervised cWGAN model (again, warm start).

Besides improving the chance of generating relevant protein sequences, the three-step 

semisupervised setting could also overcome the instability of gcWGAN training.

Hyperparameter Tuning.—While training cWGAN or gcWGAN, we consider three 

common hyper-parameters: (1) the initial learning rate for the Adam optimizer, (2) the 

number of critic iterations, and (3) the noise length. Assuming that optimal hyper-parameters 

are similar between cWGAN and gcWGAN, we sequentially tune them for cWGAN by 

training cWGAN for 100 epochs. For gcWGAN, the three common hyper-parameters are 

adopted at the optimal values for cWGAN, and its λ2 is tuned further.

To tune the hyper-parameters, we select four criteria for the intermediate assessment of 

sequences at each epoch. The criteria are of increasing biological relevance: (1) 

mathematical convergence through the critic’s loss, (2) low ratio of the “nonsense” 

sequences (how often padding characters appears between or in front of amino-acid 

characters to produce invalid sequences), (3) low ratio of padding characters at the end of 

valid sequences, and (4) sequence novelty through low sequence identity between generated 

sequences and real representative sequences for a given fold. Sequence novelty was adopted 

so that models do not just mimic sequence-fold patterns observed. In our study, it was found 

insensitive to hyper-parameters considered and was not a determinant of their optimal values 

or trained models. As our designs are targeting a fold rather than a specific (fixed-backbone) 

structure, sequence recovery was not adopted as a criterion here or for assessment. More 

details are in SI Section S5.

Data.

Sequences labeled with structural folds are retrieved from SCOPe v. 2.0746 and filtered at 

100% identity level. Lengths are between 60 and 160. The resulting labeled data consist of 

20,125 sequences (over 35% of the original) labeled with 781 of the original 1232 folds, 

across all seven fold classes (a–g) and three “difficulty” levels based on sequence abundance 

(at least 51 sequences for easy, at most five for hard, and in between for medium). More 

details are provided in SI Section S1.

The labeled data set is split into training (70%), validation (15%), and test (15%) sets with 

stratified sampling to preserve the fold–class distribution. Folds do not overlap among sets, 

and their statistics are in Table S2. The training sequence statistics are in Table S3. Sequence 

and structure representatives of each fold are chosen for postanalysis (SI Section S2).

In addition, 31,961 unlabeled sequences without paired structures, in the same length 

interval, are obtained from UniRef50.60
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Assessment.

Once the generator is trained, we feed it with the desired structural fold (in its embedding y) 

and generate sequences to pass the nonsense check and then the oracle’s check.

The intermediate, valid sequences (before the final, oracle’s check) are generated up to 105 

per fold and assessed across all folds using the oracle, a fold classifier (see details in SI 

Section S7). The final sequences (after passing the oracle) are generated 10 per fold and 

assessed over selected folds using Rosetta, an ab initio structure predictor. cVAE and Rosetta 

pipelines are in SI Sections S8 and S9.

Assessing Intermediate Designs.—We first estimate “yield ratios” (success rates) for 

generated valid sequences (passing the nonsense check). Specifically, a sequence is declared 

a “yield” if its top-10 oracle-predicted folds include the target and the yield ratio is the 

portion of those yields. When the target fold is novel and undefined in the oracle, we use its 

neighbor (a.188 in our case).

Physical and Biological Assessment of Final Designs.—We next assess the 

(bio)physical and biological significance of the oracle-filtered designs generated for all 31 

test folds whose yield ratios are at least 1 × 10−5 (yielding folds). We generate up to 1000 

such sequences, and a time limit of 2 days was adopted for low-yielding folds. We apply to 

these designs sequence-based predictors of biophysical properties and protein functions. 

Details are provided in SI Sections S11 and S12.

Stability.—We use an instability index (Guruprasad et al. PEDS 1990) that has been widely 

used and is available in BioPython v.1.76.61 An instability index above 40 is recommended 

to suggest an unstable protein.

Other Physical Properties.—We also calculate for generated sequences aromaticity 

value,62 grand average hydropathicity (GRAVY),63 isoelectric point (pI),64 and normalized 

molecular weight65 using BioPython.

Functional Annotations.—For 25 of the 31 yielding test folds that have experimentally 

validated functional annotations (Gene Ontology or GO terms), we predict GO terms of 

generated sequences (40 for each fold) using NetGO.66 We then calculate the GO similarity 

between each generated sequence and the structural representative of its target fold using 

GOGO.67 We remove from the similarity the background—the average GO similarity to the 

representative sequences of other (off-target) folds. The resulting Δ GO-similarity being 

above 0 indicates fold specificity of designed sequences, in the sense of protein function.

Origins of Stability.—Protein stability is often attributed to hydrophobic collapse and 

hydrogen bonds. We thus use Rosetta to predict structures of sequences designed for 

selected folds. We then calculate buried nonpolar surface area (NPSA), hydrogen bond 

energy, and Rosetta total energy, which were shown to correlate well with protein stability 

experimentally.68 More details are in SI Section S11.2
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Origins of Folds.—We investigate deeply into an α fold (a.35) to examine one physical 

origin of the fold: hydrogen bond patterns. We use Rosetta to predict structures and compare 

such patterns between generated and natural sequences. More details are in SI Section S11.3

Structural Assessment of Final Designs.—We last analyze the fold accuracy of the 

final designs (those yields) by predicting their structures using Rosetta v3.10.25 As ab initio 
structure prediction is computationally expensive (104 core-hours per sequence), we choose 

six representative test folds across fold classes (a–d and g), sequence abundance (easy to 

hard, reflecting “designability”), and yield ratios (above 0.01 for high and otherwise for 

low), as seen in Table 1. In addition, to check the model performance for prospective, novel 

folds, we also select a recently published fold (PDB ID: 6H5H).69 Note that the fold is not 

completely observed in 6H5H. So we used a design structure (polb1) in the study whose first 

71 residues are experimentally verified in 6H5H and the last 20 residues form two helices 

bending back to the N-term helix.69 Compared to the representative structures of 1232 basis 

folds, the structure has TM-scores below 0.5.

For each of the seven selected folds, we predict 10 structures for each of the first 10 final 

sequences. We generate 10,000 trajectories for each sequence. Among the 10,000 

predictions, we retain around 10% energetically lowest ones with an energy-cutoff of 200, 

cluster those with a cluster radius of 2.5 Å in RMS and a maximum cluster count of 10, and 

report the 10 cluster centers as final structure predictions.

Structure Accuracy.—We align each structure prediction of a designed sequence to the 

known, representative structure of its target fold, using TM-align70 and calculate its TM-

score (the reference being the target structure). We use TM-scores as a continuous measure 

on how likely the designs belong to the target folds. A TM-score between 0 and 1 indicates 

very likely the same fold when it is above 0.5 and nonrandom similarity when it is above 

0.3.71

Sequence Diversity and Novelty.—We perform pairwise alignment of the 100 final 

sequences for each fold and calculate the distribution of sequence identity to measure 

diversity. We also do so between each designed sequence and the known natural ones for 

each target fold to calculate maximum sequence identity and measure sequence novelty. As 

a sequence identity value above 0.3 would indicate close homologues whose structures are 

very likely similar, we regard 0.3 as a threshold below which generated sequences are 

diverse or novel.

Incorporating gcWGAN into Principle-Driven De Novo Design.

We tested two ways to incorporate our data-driven gcWGAN into a principle-driven protein 

design method, RosettaDesign: initialize sequence search with specific seed designs and 

reduce search space with predicted sequence profiles (only top amino acids giving the 

probability above varying thresholds are allowed for each residue). In each setting, we run 

20 parallel jobs of RosettaDesign for 4 days. Due to the computational expenses, we restrict 

the study to the novel fold. More details including the RosettaDesign scripts can be found in 

SI Section S10.
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RESULTS

Fold Representation as Input.

To construct a low-dimensional fold representation as the conditional input to gcWGAN, we 

performed kernel PCA for the fold space spanned by the 1232 basis folds. The first 20, 200, 

and 400 principal components (PCs) explained around 15%, 50%, and 75% of the variance, 

respectively (Figure S2). As the dimension of fold representation determines that of the 

conditioning variable y in cWGAN and a higher dimension causes more demanding model 

training, we chose the space spanned by the first 20 PCs as a lower-dimensional 

representation of fold space. An analysis on the resolution of the fold representation shows 

that the explained variance of the 20 PCs reach 60% for 40 cluster centers of the 1232 

original folds (Figure S3). Visualization of the fold representations shows that folds are well 

clustered, consistent with their class membership (Figure S4), where α/β and α + β folds’ 

representations distributed between the clusters of α and β folds.

Fold Prediction as Oracle.

We next assess the oracle in gcWGAN that, during training, gives feedback on the generated 

sequences’ chances of belonging to the target fold. We compared, in Table S4, the original 

DeepSF using all features or sequence only and our oracle (modified DeepSF) using 

sequence only. For the test set, top-10 predictions from DeepSF impressively achieved an 

accuracy of 0.94 using all features, whereas they only did that for 0.69 using just sequence. 

By modifying the model architecture, our oracle using just sequence increased the accuracy 

to 0.74. Meanwhile, our oracle only uses milliseconds to predict for each sequence, whereas 

DeepSF spends minutes on nonsequence feature calculations alone. Therefore, our oracle is 

a somewhat ambiguous yet ultrafast fold predictor that is suitable for the framework of 

gcWGAN.

Semisupervision Improves Training for gcWGAN.

We report hyper-parameter tuning results in Figures S6–S9 and Table S5. We also showcase 

the benefit of semisupervision in Figure S10. The training of gcWGAN was warmed up with 

parameters initialized at trained values of the semisupervised cWGAN. Compared to using 

supervised cWGAN (skipping unsupervised pretraining), semisupervised gcWGAN training 

reached lower overall losses in the last 20 of the 100 epochs (p-value being 0.05 and 0.04 

according to one-sided paired t-test and Wilcoxon signed-rank test, respectively; see Table 

S6). The trend was maintained with the last 20 of 100 more epochs during training (both p-

values being around 0.02). Moreover, semisupervision increased yield ratios for five of the 

six test folds by 24%–687% (Figure S11).

Oracle Feedback Increases Yields.

For intermediate sequence designs, we first examine their yield ratios for all test folds in 

Table 2. Training and validation results for cWGAN and gcWGAN can be found in Table 

S7. gcWGAN with oracle feedback improved the yield ratio for an average test fold by 

around 79% compared to cWGAN and did so by more than 39% for five out of seven fold 

classes (especially class g or small proteins for which an improvement of 933% was 
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reached) and did so by over 93% for difficult cases that are the least designable. Two factors 

affect the yield ratios: (1) Easy folds with abundant sequence availability are with higher 

yield ratios for the training or test set because of more data or more designability. (2) Folds 

for which the oracle is more accurate see higher yield ratios.

We also incrementally generate up to 105 sequences for each of the six selected folds. We 

observe that gcWGAN with feedback increased the yield efficiency by 39%–917% for five 

of them (Figure S12).

gcWGAN Improves Yield Ratios for Most Folds Compared to cVAE.

We compared yield ratios between gcWGAN and a recent cVAE-based software for protein 

design31 in Table 2 (all folds and breakdowns) and Table S12 (six selected folds). Overall, 

gcWGAN had higher yield ratios for four of seven fold-classes and comparable ones for 

another two. The average yield ratio is higher with cVAE, which is very misleading because 

the average for cVAE was dominated by an extremely high yield ratio (0.79) for only one 

fold (Table S11). This test fold (b.9) is actually in cVAE’s training set (the closest example 

used in cVAE had a TM score at 0.56, indicating the same fold; see Table S13). Once the 

cVAE training folds are removed from our test sets, gcWGAN has a higher yield ratio on 

average and in almost every subset (Table S10).

Importantly, gcWGAN achieved yield ratios over 1 × 10−5 for 29% of test (or shared test) 

folds, whereas cVAE only did 8.4% (4.8%). For all six selected test folds, gcWGAN 

increased the yield ratios by 1 to 2 orders of magnitude. Note that three of our six test folds 

turned out to be in cVAE’s training set (Table S13), as the information had not been 

available until recent.

All the yield ratios are relatively low—gcWGAN achieved around 2% on average even for 

folds with abundant sequences or 0.4% for folds with high oracle accuracy. We however note 

that many sequences declared nonyields by the imprecise oracle could be false negatives. We 

also note that low yield ratios can be overcome with high throughput and do not affect 

accuracy as we show in structural evaluation.

Although sequence identity to natural sequences is not necessarily a fit to assess fold design 

(to be detailed next), we compared cVAE, cWGAN, and our gcWGAN in this regard for 

completeness (Table S14). We used intermediate designs from cWGAN and gcWGAN 

before the final oracle filter. We found that all methods had sequence identity around 0.2 for 

test folds, although cVAE shows a slight overfit. To contexualize the seemingly low 

sequence identity level, we examined the identity distributions for natural sequence pairs of 

the same fold (as well as superfamily and family). We note that around 66% and 89% of 

them (at 90% sequence redundancy level) are with an identity below 0.2 and 0.3, 

respectively, highlighting the challenge of fold design. Interestingly, the mean identity for 

natural sequences within a fold is 0.21, similar to the value for model-generated sequences 

within an average test fold. Nevertheless, the lack of sequence similarity within a fold 

echoes the definition of fold (purely by what and how secondary structure elements are 

arranged and not by common evolutionary origins). It also highlights the challenge to design 

and assess protein sequences for a target fold. More details are in SI Section S7.3.
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gcWGAN Designs Physically and Biologically Meaningful Sequences.

We next examine whether the designed sequences are physically and biologically sound. 

Figure 2a shows that, unlike random ones, gcWGAN-designed sequences are similar to 

natural sequences in instability index (both mean and distribution; more details in Sec. 

S11.1). An instability index below 40 is considered a sign of protein stability. Compared to 

random sequences whose average instability index was 45.49, gcWGAN-designed 

sequences had an average instability index of 39.63, close to and slightly edging natural 

sequences (39.88). The instability indices of gcWGAN designs were also lower in 

distribution compared to random sequences (p-value = 2.1 × 10−18 according to one-sided 

K–S test). In particular, 61.2% of gcWGAN-designed sequences were of instability index 

below 40, compared to 56.1% for natural sequences and 0% for random sequences.

We note that, unlike principle-driven protein design (such as Rosetta) whose design 

objective can explicitly include stability optimization, our data-driven approach learns from 

rather than optimizes against natural sequences. So gcWGAN designs are not supposed to be 

more stable than natural sequences, although some Rosetta designs were shown to before.

We also examined other biophysical properties. Figure 2b–f shows that, compared to random 

sequences, generated sequences are much closer in distribution to natural sequences in 

flexibility, grand average hydropathy (GRAVY), Isoelectric point (pI), normalized molecular 

weight, and aromaticity. We provide distances between means or distributions of generated 

and natural sequences in Table S17.

To explain the physical origins of predicted stability of generated sequences, we further 

compared the distributions of generated and natural sequences in buried nonpolar surface 

area, hydrogen bond energy, and Rosetta overall energy in Figure S16 (marginalized 2D 

distributions). We again found similar distributions between the two sets of sequences.

To examine physical origins of folds, we have investigated one α fold (a.35) to compare 

residue-level hydrogen-bonding patterns between a designed sequence (with Rosetta-

predicted structures) and three natural sequences (with crystal structures). Figure S17–18 

indicate that, even though the three natural sequences and the generated ones have different 

lengths, common characteristic hydrogen-bond patterns potentially contributed to their 

sharing the fold, such as the extensive close-to-diagonal lines indicating α helices and a 

common off-diagonal block indicating helix packing.

For the last part of this subsection, we have examined protein functions (GO terms) 

predicted for generated sequences and those known to natural sequences. Out of 25 yielding 

test folds with experimentally annotated protein functions, we show in Figure 3 the ΔGO 

similarity between generated and natural sequences of target folds (with background 

similarity to natural sequences of off-targets removed). We find that the designed sequences 

have above-zero ΔGO similarity with statistical significance (p-value from t-test being 2 × 

10−109 for molecular function and 4 × 10−61 for biological process). These results suggest 

that gcWGAN-generated sequences are much more functionally similar to their target folds 

than they are to off-targets, supporting the fold specificity of these designs in the sense of 

protein function.
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gcWGAN Designs Sequences of Comparable or Better Accuracy Compared to cVAE.

We proceed to examine final sequence designs (the yields) using Rosetta-based structure 

prediction, for six selected test folds (not seen in the training set thus regarded novel). For 

each fold, we designed 10 sequences using either gcWGAN or cVAE and predicted 100 

structure models using Rosetta. The distributions of the structures’ TM-scores (Figure 4), 

when compared to corresponding ground truth, showed that gcWGAN outperforms cVAE. 

Specifically, gcWGAN (oracle-filtered) had higher TM-score distributions than cVAE for 

four of six folds with p-values way below 1 × 10−6. Taken together, gcWGAN could design 

protein sequences more specific to target folds than off-targets. It can sometimes do so with 

good accuracy: the best TM-score is not always above 0.5 but often well above 0.4.

We also compared gcWGAN and cVAE on a novel fold not even in the 1232 basis folds for 

fold embedding. When applying the filter on gcWGAN designs for the novel fold, we 

selected neighbor folds according to TM alignment and chose a.188. gcWGAN improved 

the best TM score compared to cVAE albeit without an advantage in distribution (Figure 5a). 

Impressively, the best sequence/structure combination from gcWGAN had a TM-score of 

0.46, very close to the threshold to indicate the same fold. The predicted structure is 

superimposed to the ground truth in Figure 5c.

gcWGAN Designs More Diverse and More Novel Sequences Compared to cVAE.

Besides the fold accuracy, we also examine the diversity among the designed protein 

sequences as well as their novelty compared to known representative sequences. For both the 

six test folds and the completely novel fold, gcWGAN designs for the same fold are of low 

sequence identity below 0.3, whereas most cVAE designs are close homologues with 

sequence identity above 0.3 (Figure 5d and Figure 6). Apparently, gcWGAN could explore 

much more diverse regions of the sequence space, while maintaining decent fold specificity 

and accuracy as examined earlier.

Moreover, gcWGAN designs are almost entirely of sequence identity lower than 0.3 

compared to the closest, known representative sequence for the desired fold (Figure 5e and 

Figure 7). In contrast, cVAE designs are often close homologues of a known representative 

sequence with sequence identity above 0.3. In particular, the best cVAE design for b.2 and 

g.44 are of sequence identity at 0.62 and 0.43, respectively, whereas such gcWGAN designs 

are of sequence identity at 0.20 and 0.17, respectively, while giving better or comparable 

TM-scores for target folds. Therefore, gcWGAN is exploring uncharted regions in the 

sequence space.

cWGAN and gcWGAN have similar and improved sequence diversity/novelty compared to 

cVAE, which was regardless of the application of the final, oracle filter (Figures 6 and 7 and 

Figures S19–22). (Applying the final filter to cVAE was only feasible for three of the six test 

folds as no sequence was accepted in 2 days in those cases.) Therefore, the improved 

diversity and novelty of gcWGAN designs were not attributed to filters but to our design of 

the Wasserstein distance replacing Jensen–Shannon divergence in GAN. In addition, 

gcWGAN improves yield ratios compared to cWGAN, as previously shown in Table 2, 

suggesting that the increased yield (success) is due to the oracle feedback.
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Integrating Data- and Principle-Driven Approaches for De Novo Protein Design.

Targeting the novel fold not even in the basis set for fold representation learning, we use 

RosettaDesign for de novo protein design without and with gcWGAN incorporated. 

gcWGAN provides specific designs to initialize sequence search or/and sequence profiles to 

reduce design space for Rosetta.

Table 3 shows that the best RosettaDesign result for the novel fold had a TM score of 0.53, 

similar to the best gcWGAN design (0.46). Table 3 also shows that, even without design-

space reduction (prob. cutoff being 1), simply using gcWGAN designs as Rosetta “seeds” 

would double the count of successful designs (from 7 to 14), judging by whether they are 

predicted to follow the secondary structures and topological constraints of the target fold 

(RosettaDesign criteria). These designs are predicted to adopt the target fold, judging from 

TM-scores being close to or above 0.5. In addition, gcWGAN design profiles can drastically 

reduce the design space by up to 1012 without reducing the successful designs. Interestingly, 

even when the design space is reduced by 1076, a level where the original Rosetta fails to 

find a successful design, RosettaDesign with gcWGAN initialization can still produce six 

successful designs with good quality. Sequence identities of all successful designs are below 

0.2, which is not necessarily wrong considering the low sequence similarity that we 

observed earlier in natural sequences of the same fold. Our results attest to the power of 

integrating principle- and data-driven approaches to de novo protein design.

CONCLUSIONS AND DISCUSSION

We have designed novel deep generative models for de novo protein design targeting novel 

structure folds. Here, we utilize both sequence data with and without structures in a 

semisupervised setting and an ultrafast oracle for fold recognition as feedback. As 

summarized below, our results reveal the value of current protein data toward unraveling 

sequence–structure relationships and utilizing resulting knowledge for inverse protein 

design.

Over model-designed sequences for nearly 800 folds of diverse class and difficulty 

(including over 100 test folds not seen in the training set), we first globally assess their 

performances using the oracle, an ultrafast yet imprecise fold predictor. Compared to a data-

driven alternative (cVAE), our gcWGAN model generates more yields (according to the 

oracle) for nearly all target folds and achieves much more coverage of target folds. These 

designs are also predicted to be stable and specific for target folds in the sense of physics 

and functions.

For selected representative test folds and a novel fold not seen in the 1232 basis folds, we 

assess gcWGAN designs using a structure predictor. We find that gcWGAN designs are 

comparable or better in fold accuracy compared to cVAE. Notably, gcWGAN designs are 

much more diverse, which can be attributed to that WGAN with its implicit model and 

Wasserstein distance overcomes known limitations of VAE.49,72,73 Moreover, gcWGAN 

designs are often novel in sequence rather than close homologues of known proteins. This 

indicates that gcWGAN is exploring uncharted regions in the sequence space, using what it 
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learns from the data about sequence–fold relationships rather than simply mimicking the 

data.

Among major factors affecting gcWGAN performances, fold representation and oracle’s 

accuracy need the most improvement. Currently, our fold representation is learned in a 

nonparametric way (kPCA) preserving distance metrics. But its resolution is limited as we 

choose a low-dimensional subspace for computational concerns. Our oracle is ultrafast yet 

highly ambiguous and imprecise, so the feedback has limited performance boost. Very 

accurate yet expensive fold predictors (such as the original DeepSF) acting as the final filter 

could still improve the performance not during but after the training stage. Interestingly, 

folds with few sequences known in nature, thus potentially less designable, also appear to be 

more difficult for the data-driven gcWGAN approach even though those sequences and folds 

are never known to gcWGAN during training.

gcWGAN designs proteins much faster than principle-driven structure-based methods (10−3 

s versus at least 105 core hours) and thus can provide seed designs and tailor a much reduced 

design space for the latter. Indeed, our experiments show that, through the aforementioned 

two ways of incorporation into Rosettadesign, gcWGAN significantly improves the success 

for the novel fold, suggesting the potential of integrating principle-and data-driven 

approaches to de novo protein design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Architecture of guided conditional Wasserstein GAN.
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Figure 2. 
Distributions of the biophysical properties for random, generated, or natural sequences: (a) 

instability index, (b) average flexibility index, (c) GRAVY, (d) isoelectric point, (e) 

normalized molecular weight, and (f) aromaticity value. Vertical dashed lines indicate means 

of the same colored bars, except that red ones indicate thresholds.
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Figure 3. 
ΔGO-similarity between designed and natural sequences of target folds, with the background 

similarity to off-target folds removed.
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Figure 4. 
Distribution of the TM-scores between cVAE/gcWGAN designs and the ground truth for six 

selected, representative test folds: (a) b.2, (b) a.35, (c) c.94, (d) g.44, (e) c.56, and (f) d.146.
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Figure 5. 
Assessing gcWGAN designs targeting a completely novel fold when the oracle gives 

feedback on the closest basis fold a.188. (a) TM-score distribution. (b) Best gcWGAN 

design (not filtered) (blue) and the ground truth (gray) (TM-score = 0.45). (c) Best 

gcWGAN design (oracle-filtered) (TM-score = 0.46). (d) Sequence diversity (more with 

lower identity). (e) Sequence novelty (more with lower identity).
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Figure 6. 
Comparing sequence diversity between cVAE and gcWGAN designs for the six selected 

cases: (a) b.2, (b) a.35, (c) c.94, (d) g.44, (e) c.56, and (f) d.146. Lower sequence identity 

indicates more diversity and that below 0.3 indicates no close homologues.
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Figure 7. 
Comparing sequence novelty between cVAE and gcWGAN designs for the six selected 

cases: (a) b.2, (b) a.35, (c) c.94, (d) g.44, (e) c.56, and (f) d.146. Lower sequence identity 

indicates more novelty and that below 0.3 indicates no close homologues to known 

sequences of the same fold.
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Table 1.

Representative Test Folds for Structural Assessment

High Yield Low Yield

Easy b.2 a.35

Medium c.94 g.44

Hard c.56 d.146
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