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Abstract

Issues with model fitting (i.e. suboptimal standard deviation, linewidth/full-width-at-half-

maximum, and/or signal-to-noise ratio) in multi-voxel MRI spectroscopy, or chemical shift 

imaging (CSI) can result in the significant loss of usable voxels. A potential solution to minimize 

this problem is to estimate the value of unusable voxels by utilizing information from reliable 

voxels in the same image. We assessed an image restoration method called inpainting as a tool to 

restore unusable voxels, and compared it with traditional interpolation methods (nearest neighbor, 

trilinear interpolation and tricubic interpolation). In order to evaluate the performance across 

varying image contrasts and spatial resolutions, we applied the same techniques to a T1-weighted 

MRI brain dataset, and N-acetylaspartate (NAA) spectroscopy maps from a CSI dataset. For all 

image types, inpainting exhibited superior performance (lower normalized root-mean-square 

errors, NRMSE) compared to all other methods considered (p’s<0.001). Inpainting maintained an 

average NRMSE of less than 5% even with 50% missing voxels, whereas the other techniques 

demonstrated up to three times that value, depending on the nature of the image. For CSI maps, 

inpainting maintained its superiority whether the previously unusable voxels were randomly 

distributed, or located in regions most commonly affected by voxel loss in real-world data. 

Inpainting is a promising approach for recovering unusable or missing voxels in voxel-wise 

analyses, particularly in imaging modalities characterized by low SNR such as CSI. We 

hypothesize that this technique may also be applicable for datasets from other imaging modalities, 

such as positron emission tomography, or dynamic susceptibility contrast MRI.
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INTRODUCTION

The use of voxel-wise analyses of structural, functional, metabolic, perfusion or other data 

(e.g., to evaluate pathological alterations in a given patient group, or associations between 

imaging and clinical variables) is very widespread in brain imaging. Compared to region-of-

interest (ROI) analyses, which require averaging the signal over multiple voxels across a 

predefined region, voxel-wise analyses allow localizing effects of interest with great spatial 

accuracy, often improving sensitivity to detect spatially restricted effects that may be diluted 

in ROI analyses.1–4

On the other hand, the use of voxel-wise analyses can come with a cost, in terms of signal-

to-noise ratio (SNR). Chemical shift imaging (CSI), for instance, enables the performance of 

multi-voxel MRI spectroscopy, therefore conferring imagers the ability to interrogate 

metabolite levels across a larger portion of the brain, and with higher spatial resolution, 

compared to single voxel spectroscopy. However, the smaller size of the CSI voxels can lead 

to lower SNR and reduced power due to poor spectral fits (i.e. suboptimal standard 

deviation, and/or linewidth/full-width-at-half-maximum), ultimately leading to some 

percentage of voxels becoming unusable. While these unusable voxels can be more 

commonly expected in some parts of the brain (e.g., regions more likely affected by 

magnetic inhomogeneities, ventricles), in other parts their spatial distribution can be 

somewhat random and idiosyncratic across subjects. This becomes particularly problematic 

for analyses in standard space: once multiple CSI maps, each with a different pattern of 

unusable voxels, are brought to a standard space for higher level analyses, the resulting 

common standard space can be significantly reduced, and sometimes rendered overall 

unusable, given that only voxels that are contributed to by all participants can be interrogated 

in these analyses.

A potential solution to minimize this problem is to recover the missing data using 

interpolation methods, which allow the estimation of missing data points within the range of 

a discrete set of known data points.5 These methods try to recover missing data by fitting 

functions to known data points, so that the missing values can be estimated, for instance by 

interpolation. While these methods are commonly used in medical imaging (e.g., when 

resampling volumes), their performance is often affected by errors in the fitting, resulting in 

discontinuities, granularity and unrealistic values,6,7 potentially leading to inaccuracies in 

subsequent analyses including, but not limited to, misregistration, incorrect region of interest 

delimitation or biased quantification.

An alternative to traditional interpolation methods is provided by image inpainting.8,9 

Inpainting, sometimes also called “fill in”, is a method that fills in missing or corrupted parts 

of an image by taking into account both its global and local features. Inpainting techniques 

have been mainly used in art restoration as well as in photography and cinema editing (e.g., 
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to remove “red eyes”, edit text/objects, remove cracks and other imperfections). Also, these 

techniques are commonly used to replace lost blocks in compressed, or transmitted images.
10–12

To date, inpainting has not been broadly applied to brain imaging. The few applications 

published so far have assessed the ability of inpainting methods to alleviate the bias induced 

by multiple sclerosis lesions in morphometric estimates,13–15 or to correct artifacts created 

by metallic implants.16

In this work, we explored the use of the inpainting approach to restore poor CSI data (part of 

these results were shared in a preprint submitted to the bioRxiv server17). Further, in order to 

evaluate the performance across varying contrast types, spatial resolutions and images sizes 

(pixel numbers), we also applied the same technique to T1-weighted images (containing 

homogenous regions and gradients of intensities following the underlying anatomy). These 

results would serve as a proof of concept to set up the basis for future research on the use of 

these methods in brain imaging.

MATERIALS AND METHODS

Inpainting and Interpolation Assessment Setup

In this study, we evaluated the performance of inpainting and several common image 

interpolation methods by corrupting different image types (T1-weighted volumes and N-

Acetyl Aspartate (NAA) CSI maps), recovering those voxels with inpainting/interpolation 

methods, and then computing the error between the intensity values of the voxels from the 

ground truth images and those from the corresponding voxels in the inpainted/interpolated 

images.

Two image degradation strategies were implemented. First, all images were corrupted in 

such a way as to cause the images to randomly lose 5% to 95% of voxels (“%loss”; in steps 

of 5%). The NAA maps used in these tests were raw, and not thresholded to meet typical 

quality control (QC) standards (see subsection II.C Data Processing). These tests were 

performed once per %loss level for each of the available T1 or CSI images, each time with a 

different random distribution of missing voxels. Second, because low quality CSI voxels 

tend to be more expected in some areas of the brain (e.g., regions more likely affected by 

magnetic inhomogeneities or low SNR) rather than being randomly distributed, the same 

NAA maps were corrupted in the spatial distribution encountered in real-life scans, in order 

to validate the methods in a more realistic scenario. To this end, we identified NAA images 

from 5 subjects demonstrating a significant proportion (mean±SD: 28.3±8.8%; range 18.0–

37.5%) of voxels not meeting a standard QC criterion (voxel-wise SD<20%). From these 

subjects, we extracted masks representing those “bad NAA voxels” (i.e., voxels not meeting 

the standard QC criterion), and affine registered each of them to the NAA maps from 10 

subject images presenting less than 10% of missing voxels in the field of view (FOV) 

(7.4±1.9%, range 4.6–9.7%). The ability of the various methods to rescue the ground truth 

voxels (i.e., the voxels meeting QC standards) from the “good NAA maps”, after imposing 

onto them the missing voxels derived from the “bad NAA maps”, was assessed by 

computing the normalized root mean square error (NRMSE).
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Datasets

Eighteen healthy controls (HCs; mean age, 46.4±14.4 y; range, 23–66 y; 8 males / 10 

females) were screened and enrolled in this study. Participants were excluded if they had any 

MR contraindications such as metallic implants, history of head trauma and/or 

claustrophobia, had a history of major medical or psychological disorders. A more detailed 

description of the studies and their criteria can be found in.18–20 The research protocol was 

approved by the local Institutional Review Board (Partners Healthcare Human Research 

Committee) and written informed consent was acquired from all participants. From all 

acquired images, T1-weighted MR brain and CSI datasets were used in this study.

MR imaging was performed in a 3T Siemens TIM Trio scanner (Siemens, Healthineers) 

using an 8-channel head and neck coil, and included an anatomical T1-weighted volume 

(MEMPRAGE; TR/TE1/TE2/TE3/TE4=2530/1.64/ 3.5/5.36/7.22ms, flip angle=7°, voxel 

size=1×1×1mm, acquisition matrix=280×280×208), CSI (LASER excitation and stack-of-

spiral 3D k-space encoding; TR/TE=1500/30ms, volume of interest VOI=100×80×50mm, 

FOV=240×240×100, matrix 24×24×10, voxel size=10×10×10mm).21

Data Processing

MRI bias correction was performed on the anatomical T1-weighted images using the N4ITK 

MRI Bias Correction module of 3D Slicer 422 to correct for inhomogeneities caused by 

subject-dependent load interactions and imperfections in radiofrequency coils. We set the 

advanced parameters to 3 levels of resolution with 500, 400 and 300 iterations respectively, 

and a convergence threshold of 0.00001 to ensure proper modeling of the inhomogeneity 

bias.

CSI raw spectra data were transferred to a workstation where metabolites were fitted with 

LCModel software23 using a bias set simulated with GAMMA environment24 for LASER 

excitation25 with the same pulse modulation as the acquisition sequence. Quality criteria for 

spectral fitting included linewidth (full-width at half maximum FWHM) less than 0.1 ppm 

(12Hz at 3T), SNR bigger than 3, and Cramer Rao lower bounds less than 20% (relative to 

the fitted value).26 Metabolic maps were reconstructed and registered to the anatomical 

images using a combination of MINC/FSL/Matlab tools.27

Inpainting

The aim of inpainting is to provide an estimation of missing/corrupted parts of an image so 

that it looks natural to the human eye. As opposed to other methods, inpainting takes into 

account global, in addition to local, properties of the image. In general, the missing regions 

in an image might be composed of structures and textures, and separating these properties in 

two different steps is essential, starting by first recovering the structures and then recovering 

the texture.28

Several inpainting approaches were developed in computer vision (variational image 

inpainting, texture synthesis, image completion, etc).9 For the purpose of its application to 

brain imaging, we have assessed a Matlab (Natick, MA) implementation based on a 

penalized least squares regression method that allows restoring missing data by means of the 
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discrete cosine transform (DCT-PLS).29,30 This method uses nearest neighbor interpolation 

to obtain a rough guess. Then, it introduces the texture information by deriving a statistical 

model that expresses the data in terms of a sum of cosine functions oscillating at different 

frequencies. Thus, the DCT-PLS searches for X̂ that minimizes equiation (1):

F(X) = W 1/2 ∘ (X − X) 2 + s ∇2X 2 (1)

where X is the dataset with missing voxels, W is the matrix defining wheter a voxel is 

missing or not, s is a positive scalar that controls the degree of smoothing, ‖ ‖ is the 

Euclidean norm, ∇2 is the Laplace operator and ∘ is the Schur product. The s parameter 

needs to have an infinitesimal value (≈ 0) for the purpose of filling-in gaps and avoiding the 

loss of high frequency components. Equation 1 can be reorganized so that X can be derived 

by using the DCT–II and its inverse (IDCT) as:

X = IDCT Γ ∘ DCT(W ∘ (X − X) + X) (2)

where Γ is a three-dimensional filtering tensor defined by:

Γix, iy, iz = 1 + s ∑k = 1
3 2 − cos ik − 1 π

nk

2 −1
(3)

where ik corresponds to the kth element along the k dimension, and nk corresponds to the 

size of X along that dimension. Reference by Garcia D. contains detailed mathematical 

details of this method.29

Multivariate Interpolation Methods

As comparators, we have used three different multivariate interpolation methods commonly 

used in medical imaging: nearest neighbor, trilinear and tricubic interpolation.5 The function 

to be interpolated is known in the surrounding voxels (ix, iy, iz) and the interpolation 

problem consists of approximating the value of an unknown voxel (jx, jy, jz). These methods 

were also implemented in Matlab.

Nearest Neighbor Interpolation—Nearest neighbor interpolation is a method that 

replaces the value of the poorly-fitted voxel with that of the closest neighboring voxel. This 

method has been widely used due to its inherent fast computation. However, it can yield 

jagged and discontinuous values.

Polynomial Interpolation—Polynomials are commonly used to approximate complex 

curves by fitting a mathematical function to a series of data points, subject to some 

constraints such as minimizing the residuals. In this paper, we have assessed polynomial 

interpolations with one (trilinear) and three (tricubic) degrees of freedom for each variable, 

computed over a 11×11×11 patch centered on the voxel being interpolated. Trilinear 

interpolation allows estimation of missing values by fitting a linear polynomial to the known 

data as described in equation (4), which corresponds to the scalar function of a plane, and 

where ax, ay, az and a0 are the coefficients of the polynomial, and x, y and z correspond to 

points in the space.
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F(X) = axx + ayy + azz + a0 (4)

Tricubic interpolation allows estimation of missing values by fitting a cubic polynomial to 

the known data as described in equation (5), which adds degrees of freedom to the fitting, 

and where, again, ax3, ay3, az3, ax2, ay2, az2, ax1, ay1, az1 and a0 are the coefficients of the 

polynomial, and x, y and z correspond to points in the space.

F(X) = ax3x3 + ay3y3 + az3z3 + ax2x2 + ay2y2 + az2z2 + ax1x + ay1y + az1z + a0 (5)

Polynomial interpolation can generate values for the missing data points that were not 

initially present in the original data set.

Analysis

Quantitative performance of the different methods was assessed by comparing the (NRMSE) 

computed between ground truth images and inpainted/interpolated images, using a repeated 

measures analysis of the variance (ANOVA) to evaluate the effect of method (inpainting, 

nearest neighbor interpolation, trilinear interpolation, tricubic interpolation), %loss (from 5 

to 90%), and their interaction. Bonferroni-corrected T-tests were computed as follow-up 

tests, comparing inpainting against the other methods for each %loss level. Bonferroni 

correction was achieved by multiplying the p value by the number of %loss levels (N = 19); 

e.g., pcorr= 0.05 corresponds to puncorr = 0.00263. In order to assess the different methods in 

the real-life loss distribution scenario, we used a one-way ANOVA on ranks (Kruskal-

Wallis), followed by paired-samples Wilcoxon signed rank tests to assess if the performance 

of inpainting was significantly different from the rest of the methods.

RESULTS

Overall, different methods filled-in missing pixels/voxels with acceptable results. However, 

inpainting outperformed the other methods independently of the image used, i.e., T1-

weighted images (Figure 1A) or CSI NAA maps (Figure 2A).

Analysis Applied to T1-weighted Images

Figure 1 shows the qualitative and quantitative performance assessment of the different 

methods when interpolating randomly lost voxels from a T1-weighted image. As for the 

graphical illustration, nearest neighbor interpolation introduced noise via quantization, and 

both polynomial interpolation methods introduced granularity, whereas inpainting afforded a 

result that is more similar to the original image. These improvements of inpainting can be 

especially noticed at the edges between different structures or tissue types (e.g., between 

skull and brain, or between gray and white matter; Figure 1B). Quantitative assessment of 

the restored data shows a noticeable bias when using classical interpolation methods, 

compared to inpainting (Figure 1C). Remarkably, inpainting maintained an average NRMSE 

of less than 5% even with 75% missing voxels, a %loss level at which other techniques 

exhibited approximately three times (nearest neighbor, tricubic interpolation) or four times 

(trilinear interpolation) higher NRMSE.
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The ANOVA revealed a statistically significant effect of method (F3,51 = 1018.6, p < 0.001) 

and percentage of lost voxels (%loss; F18,306 = 1122.6, p < 0.001). We also observed a 

statistically significant method ∗ %loss interaction (F54,918 = 123.3, p < 0.001), and the 

decomposition of the interaction using post-hoc pairwise comparisons revealed that 

inpainting outperformed all other methods at all %loss levels (p’s < 0.001).

Analysis Applied to CSI NAA images

Figure 2 shows the assessment on NAA CSI images. Despite the inherent low resolution of 

these images, we can appreciate the noise introduced by interpolation methods, with 

inpainting being the method that maintained a voxel distribution that was the most similar to 

that of the original images (Figure 2B). Once again, the quantitative assessment of the 

different methods shows a noticeable improvement when using inpainting (Figure 2C). 

Inpainting maintained an average NRMSE of less than 5% even when with 50% missing 

voxels, whereas the other techniques demonstrated approximately twice (nearest neighbor, 

tricubic interpolation) or three times (trilinear interpolation) that value at that %loss level.

The ANOVA revealed a statistically significant effect of method (F3,51 = 99.9, p < 0.001) 

and percentage of lost voxels (%loss; F18,306 = 243.1, p < 0.001). Again, we also observed a 

statistically significant method ∗ %loss interaction (F54,918 = 76.4, p′s < 0.001), and the 

decomposition of the interaction using post-hoc pairwise comparisons revealed that 

inpainting outperformed all other methods for all %loss levels up to 80%loss for the CSI 

NAA maps (p’s < 0.001). Inpainting also outperformed nearest neighbor and trilinear 

interpolation for %loss levels between 85%loss and 90%loss (p’s < 0.05). No statistical 

differences were found for a 95%loss level.

In order to validate our methods in a more realistic scenario, the same NAA maps were 

corrupted in the same spatial distribution encountered in a dataset from actual CSI scans 

(Figure 3). We extracted masks representing “bad NAA voxels” (SD > 20%) for those 

subject images losing more than 15% of voxels in the FOV, and registered those masks to 

images presenting an excellent NAA amplitude map. Figure 3D shows the histograms for the 

NRMSE values computed for the different methods. The Kruskall Wallis test revealed a 

statistically significant effect of method (p < 0.001). Follow-up post-hoc Wilcoxon signed 

rank tests showed significant differences in the inpainting NRMSE, as compared to the 

nearest neighbor, the trilinear and the tricubic interpolation methods (p′s < 0.001). These 

results indicate that, once again, inpainting performed better than other methods, even when 

the voxels to be recovered had a spatial distribution consistent with that of actual CSI low-

quality data.

DISCUSSION

For a CSI voxel estimator to be considered viable, it needs to meet several minimum QC 

criteria including, but not limited to, the standard deviation of the estimators, the linewidth 

or FWHM of their spectrum, and/or the signal-to-noise ratio (SNR) in a given location. 

When a voxel does not meet these criteria, it is typically excluded. The presence of missing 

voxels can be problematic, as this could decrease statistical power or even make datasets 

unusable. This is particularly the case when data are analyzed in standard space, given that 
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only voxels that are contributed to by all participants can be interrogated in these analyses. 

Our study evaluated the use of the inpainting approach as a tool to estimate values of 

previously unusable or missing voxels, such as in the case of CSI voxels not meeting 

minimum QC criteria.

Inpainting methods were developed as a set of techniques for recovering information in 

missing parts of an image, taking into account the local and global context, while more 

traditional interpolation methods make only use of local information. Here, we directly 

compared the results of inpainting and other techniques, by corrupting data and evaluating 

how well each method recovered the original values. In order to evaluate the performance of 

the various methods across varying contrast types and spatial resolution, we applied the 

same techniques to T1-weighted brain MRI images as well as N-acetylaspartate (NAA) 

brain CSI images. Overall, our results show that the application of image inpainting methods 

yields significantly better results compared to traditional interpolation methods, across all 

image types evaluated. For the CSI data, the performance of inpainting maintained its 

superiority compared to the other methods, whether the voxels to be estimated were 

randomly distributed, or located in regions genuinely prone to voxel loss in an actual CSI 

dataset (i.e., as estimated from real maps).

Nearest neighbor interpolation does not allow for much flexibility, as all the newly estimated 

values are “clones” of already existing voxels; however, this technique has shown (as we 

have assessed here) great potential in brain imaging over the years. The main issue with 

polynomial interpolation arises from the possibility of overfitting the known data; even if the 

polynomial function passes through all known data points, the resulting function might lead 

to estimates that reflect unusual or unexpected values in the actual data range. In contrast, 

inpainting provides more accurate data restoration by taking also account of the spatial 

frequency of the image.

In this study, we used inpainting to infer poorly fitted CSI voxels specifically using N-

acetylaspartate (NAA) maps. Of note, because brain NAA CSI datasets generally exhibit 

high SNR and low numbers of poorly fit voxels, the use of voxel-recovery methods might be 

even more relevant for other metabolites (e.g., glutamate/glutamine, myoinositol, etc). 

However, in this study we purposefully chose to apply our analyses on NAA maps because 

the relatively low percentage of poor quality voxels allowed us to compare the results of the 

various methods against a “ground truth”. Because the improvement demonstrated by the 

inpainting method was observed for both the brain T1 and CSI data, our results suggest that 

inpainting can outperform other, more commonly adopted, techniques across multiple 

contrasts and texture types, voxel size, etc. Notably, inpainting methods are typically applied 

on large and high-resolution images, relying on the availability of large numbers of pixels to 

extract useful features and successfully fill-in missing/corrupted values. However, our study 

shows that inpainting could provide satisfactory results even when applied to CSI data, 

despite their relatively small number of voxels, and inherent low spatial resolution.

Several limitations should be pointed out. First, our approach was applied on a relatively 

small number of datasets. Despite the fact that participants in this study covered a wide age 

range (23–66 y) and were fairly sex-balanced (8 males / 10 females), increasing the sample 
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size would be desirable to report more representative and accurate results. Second, validation 

of our approach was performed using data from healthy controls subjects only. Thus, in 

order to further evaluate the reliability of inpainting as a tool for data restoration, this 

method should be further validated on images with lesions, (i.e., tumors), and other 

abnormalities. Third, our inpainting approach included an initialization step using nearest 

neighbor interpolation for “bad voxels.” While this approach was based on the premise that 

when a voxel does not meet a QC criterion, it should be discarded (i.e. treated as having zero 

information), even low-SNR (i.e. “bad voxel”) image regions do in fact contain some 

information and future versions of our algorithm could initialize the inpainting algorithm by 

using some information from the actual data instead of treating them as missing voxels.

Despite these limitations, our results suggest that CSI data analysis would substantially 

benefit from the use of inpainting methods, in order to alleviate problems arising when 

voxels do not meet the QC thresholds. This method might be particularly helpful when 

performing high level group voxel-wise analysis in standard space, as it would allow for a 

more complete coverage of the entire volume of interest, thereby increasing effective sample 

size and statistical power. Based on our findings, we hypothesize that this technique could 

also be used on other types of imaging datasets, such as positron emission tomography 

(PET) or dynamic susceptibility contrast MRI. For instance, voxel-wise estimation of PET 

kinetic parameters sometimes leads to unrealistic values due to high noise levels in small 

voxels.

It is important to also note that in this exploratory analysis we have evaluated a classical 

implementation of inpainting based on the DCT-PLS. However, several other inpainting 

approaches and implementations have also been developed, comprising methods that include 

more complexity in their formal definition and could potentially achieve even better 

performance. For instance, in the past decade, inpainting methods have evolved to include 

both classical algorithms and novel deep learning techniques.31 While there is no inpainting 

method that can inpaint all missing image regions, deep learning methods usually present 

with more generalization ability for more complicated data types. However, deep learning-

based methods come with their own limitations, in that they need to be trained on a large 

amount of data to be effective. Nonetheless, evaluating the performance of these methods in 

brain imaging is warranted as a future research direction.

In conclusion, our exploratory study showed the applicability of an image restoration 

technique called inpainting to accurately recover poorly fitted CSI voxels. Future studies 

will need to evaluate to which extent the application of inpainting methods could also be 

beneficial when applied to other imaging modalities.
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Figure 1. 
(A) T1-weighted image showing 50% of corrupted voxels (in magenta). (B) Zoomed view 

displaying details of the images restored using the various methods and their performance to 

maintain edges and structures. (C) Normalized root mean square error (NRMSE) for the 

different methods, across different percentages of voxels loss. ∗ p’s < 0.001 when directly 

comparing inpainting against all other methods in pairwise post-hoc analysis.
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Figure 2. 
(A) NAA CSI image showing 50% of corrupted voxels (in magenta). (B) Zoomed view 

displaying details of the images restored using the various methods and their performance to 

maintain the ground truth distribution. (C) Normalized root mean square error (NRMSE) for 

the different methods, across different percentages of voxels loss. ∗ p’s < 0.001 when 

directly comparing inpainting against all other methods in pairwise post-hoc analysis; # p′s 
< 0.05 only when directly comparing inpainting against nearest neighbor and trilinear 
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interpolation; $ no statistical differences found between inpainting and any of the other 

methods.
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Figure 3. 
(A) Examples of a “good NAA CSI image” (left) and a “bad NAA CSI image”, showing in 

magenta a significant proportion of voxels not meeting QC threshold (right). Below is the 

result of imposing the mask from the “bad image” (in magenta) onto the “good image”. (B) 

Zoomed view displaying details of the images restored using the various methods and their 

performance to maintain the ground truth distribution. (C) Spectra and fittings corresponding 

to a “good voxel” (left) and a “bad voxel” (right) pointed by the white arrows in panel A. 

(D) Histogram of NRMSE distribution for the four different methods. NRMSE are binned in 

0.5 wide bins.
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