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Abstract

Deformable image registration (DIR) of 4D-CT images is important in multiple radiation therapy 

applications including motion tracking of soft tissue or fiducial markers, target definition, image 

fusion, dose accumulation and treatment response evaluations. It is very challenging to accurately 

and quickly register 4D-CT abdominal images due to its large appearance variances and bulky 

sizes. In this study, we proposed an accurate and fast multi-scale DIR network (MS-DIRNet) for 

abdominal 4D-CT registration. MS-DIRNet consists of a global network (GlobalNet) and local 

network (LocalNet). GlobalNet was trained using down-sampled whole image volumes while 

LocalNet was trained using sampled image patches. MS-DIRNet consists of a generator and a 

discriminator. The generator was trained to directly predict a deformation vector field (DVF) based 

on the moving and target images. The generator was implemented using convolutional neural 

networks with multiple attention gates. The discriminator was trained to differentiate the deformed 

images from the target images to provide additional DVF regularization. The loss function of MS-

DIRNet includes three parts which are image similarity loss, adversarial loss and DVF 

regularization loss. The MS-DIRNet was trained in a completely unsupervised manner meaning 

that ground truth DVFs are not needed. Different from traditional DIRs that calculate DVF 

iteratively, MS-DIRNet is able to calculate the final DVF in a single forward prediction which 

could significantly expedite the DIR process. The MS-DIRNet was trained and tested on 25 

patients’ 4D-CT datasets using five-fold cross validation. For registration accuracy evaluation, 

target registration errors (TREs) of MS-DIRNet were compared to clinically used software. Our 

results showed that the MS-DIRNet with an average TRE of 1.2 ± 0.8 mm outperformed the 

commercial software with an average TRE of 2.5 ± 0.8 mm in 4D-CT abdominal DIR, 

demonstrating the superior performance of our method in fiducial marker tracking and overall soft 

tissue alignment.
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1. Introduction

Deformable image registration (DIR) has been used in many medical applications such as 

image segmentation (Brock et al 2017, Fu et al 2017, Oh and Kim 2017), motion estimation 

(Christensen et al 2007, Boldea et al 2008, Yang et al 2008), image fusion (El-Gamal et al 
2016) and treatment response evaluations (Ou et al 2015, Tan et al 2016, Yip et al 2016). 

DIR is the process of establishing spatial correspondences between moving and target 

images. Depending on the medical needs, the moving and target images could be acquired 

from different viewpoints, at different times, using different modalities or from different 

subjects. Though DIR has been extensively studied over the past few decades, it remains an 

active research field since the current DIR performance has yet fully met the increasingly 

demanding medical needs.

In radiation therapy, respiration-induced abdominal tissue motion causes significant 

problems in treatment planning and irradiation delivery process. Owing to the development 

of four-dimensional computed tomography (4D-CT) that provides multiple scans over the 

respiratory cycle, the observation and tracking of internal soft tissue are clinically available. 

Thus, 4D-CT has been increasingly used in radiation therapy for treatment planning to 

reduce dose to healthy organs and increase dose to the tumor target (D’Souza et al 2007, Tai 

et al 2013). DIR is a promising tool to process the 4D-CT images to provide accurate motion 

tracking of internal organs and fiducial markers. Accurate and fast DIR on 4D-CT could aid 

the treatment planning process such as target definition, tumor tracking, OAR sparing and 

respiratory gating.

Traditional intensity-based DIRs such as optical flow and demons are iterative and generally 

very slow especially for large 4D-CT datasets. These methods usually apply spatial filters 

repeatedly throughout the iteration process to smooth DVF, which often results in 

oversmoothed DVF. Bony structures that have minimal motion throughout a respiratory 

cycle were sometimes falsely deformed due to the oversmoothed DVF. The large appearance 

variances and low image contrast of abdominal 4D-CT pose additional challenges for 

accurate registration.

Deep learning-based methods have outperformed many traditional image processing 

methods (Fu et al 2019), achieving the-start-of-art performances in many image processing 

tasks such as object detection (Onieva et al 2018, Xu et al 2019), classification 

(Anthimopoulos et al 2016, Shen et al 2017) and image segmentations (Fu et al 2018b, 

Cardenas et al 2019, Harms et al 2019, Jeong et al 2019). Recently, a thorough review on 

deep learning-based registration algorithms was published by Haskins et al who divided the 

deep learning-based image registration methods into three categories: deep iterative 

registration, supervised transformation estimation and unsupervised transformation 

estimation (Haskins et al 2019). Deep iterative registration algorithms aim to augment the 

performance of traditional, iterative, intensity-based registration methods by using deep 
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similarity metrics. Therefore, deep iterative registration algorithms have the same limitation 

of slow computational speed as traditional registration algorithms. Supervised 

transformation estimation algorithms utilize either manually aligned image pairs in the case 

of full supervision or manually defined anatomical structure labels in the case of weak 

supervision. Manual preparation of large sets of training datasets is laborious, subjective and 

error-prone. To avoid manual processes, synthetic images were generated by deforming the 

moving image with an artificial DVF for the supervision of the transformation estimation 

networks (Sokooti et al 2017). However, the artificial DVF may lead to biased training since 

the artificial DVF is unrealistic and very different from actual physiological motion.

In this paper, we focused on unsupervised transformation estimation algorithms. The success 

of spatial transformer network (STN) has motivated many unsupervised deep learning image 

registration methods since STN allows the loss function to be defined without any manually 

aligned or pre-registered image pairs (Jaderberg et al 2015). The loss function could be 

defined using common image similarity metrics such as normalized cross correlation (NCC) 

and sum of squared difference (SSD) between the target and the deformed images. Common 

smoothness or inverse consistency constraints were used to regularize the predicted DVF to 

avoid unrealistic deformation such as negative determinant of the DVF Jacobian matrix. A 

2D DIRNet was proposed to register handwritten digits using unsupervised training to 

optimize image similarity metrics (Vos et al 2017). De Vos et al trained a fully convolutional 

neural network (FCN) using NCC to perform 4D cardiac cine MR volume registration 

(2017). They showed that their method has outperformed Elastix based registration (Klein et 
al 2010). Later, de Vos et al proposed an unsupervised deep learning image registration 

(DLIR) method for affine and deformable image registration. DLIR was tested on cardiac 

cine MRI and chest CT image registration, showing much faster computational speed and 

comparable performance to conventional image registration (Vos et al 2018). Ghosal and 

Ray proposed another unsupervised DIR for 3D MR brain images by optimizing the upper 

bound of the SSD between the target image and the deformed image (Ghosal and Ray 2017). 

Their method outperformed the log-demons based registration. An unsupervised feature 

selection framework for 7 T MR brain images was proposed by Wu et al using a 

convolutional-stacked autoencoder network (2016). However, this method still inherits the 

existing iterative optimization for DVF calculations, which has slow computation speed. 

Kuang and Schmah proposed a network called FAIM to directly predict the DVF to register 

3D MR brain images (2018). For DVF regularization, they used a smoothness term and 

another term to penalize negative Jacobian determinant of the DVF. A fast learning-based 

registration framework called VoxelMorph was proposed to perform pairwise medical image 

registration (Balakrishnan et al 2019). Two training strategies were explored in VoxelMorph, 

one being unsupervised and another being weakly supervised where auxiliary segmentations 

were used in loss function. The authors claimed that VoxelMorph could be used in lung CT 

images and multimodal registrations. However, the authors only tested VoxelMorph on MRI 

brain images. Another unsupervised deformable image registration method was proposed 

with an emphasis on the inverse-consistency of the predicted deformation field (Zhang 

2018). The authors integrated an inverse-consistent constraint and anti-folding constraint to 

regularize the predicted DVF for diffeomorphic mapping. The method was only tested on 

T1-weighted MR brain images.
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The aforementioned unsupervised methods were mainly focused on 2D/3D MR brain 

images and cardiac images. Compared to MR brain images registration, abdominal 4D-CT 

image registration is more challenging due to its poor image contrast and large abdominal 

motion. To overcome these challenges, we have developed a novel multi-scale unsupervised 

DIR network to directly predict DVF from any two phases of abdominal 4D-CT images. We 

have integrated attention-gates and discriminator into our network design to support accurate 

DVF prediction. The effectiveness of the attention-gates and discriminator was studied 

separately by performing comparisons between registration results with and without the 

corresponding component. Comparing to previously published studies, the major 

contributions of our work are:

a. To our best knowledge, we are the first group to develop a multi-scale 

unsupervised deep-learning based DIR for abdominal 4D-CT images.

b. Self-attention network was integrated into the generator and proven to be 

effective in differentiating moving structures from non/minimal-moving 

structures during registration.

c. Adversarial network was integrated into MS-DIRNet to enforce additional DVF 

regularization by penalizing unrealistic deformed image.

d. GlobalNet and LocalNet were combined to model multi-scale image information 

to register images that were subject to significant abdominal motion.

e. Our method has significantly outperformed clinically used software (Velocity™) 

in abdominal 4D-CT DIR.

2. Materials and methods

A set of abdominal 4D-CT datasets from 25 patients was retrospectively collected. The 

resolutions of the 4D-CT datasets range from 0.9 × 0.9 × 2.5 mm to 1.3 × 1.3 × 2.5 mm 

depending on the patient size. At least three fiducial markers were implanted in each patient 

for tumor localization and external beam treatment planning. These fiducial markers were 

used as landmarks to calculate target registration error for registration evaluation. Figure 1 

outlines the schematic flow chart of the proposed method. The proposed method includes a 

training stage and an inference stage. The training stage includes a GlobalNet and a 

LocalNet. The GlobalNet was trained using down-sampled 4D-CT images to capture the 

global abdominal motion. A down-sampling factor of 4 was used in the study. The 

GlobalNet was able to predict a global DVF which captures the overall abdominal motion. 

The global DVF was then used by a spatial transformer network to generate globally 

deformed images. Due to the large abdominal motion and impaired image quality of the 

down-sampled images, the global DVF may not provide accurate local image registration. 

To improve the registration accuracy, a LocalNet was designed to capture local abdominal 

motion based on the globally deformed images and the target images. For LocalNet training, 

3D patches were extracted by sliding a window with a size of 64 × 64 × 4 voxels from the 

globally deformed images and the target images with an overlap size of 48 × 48 × 56 voxels 

between two neighboring patches. The overlap size in the superior-inferior direction was set 

to be 56 instead of 48 since the respiration-induced abdominal motion was larger in this 
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direction than the other two directions. The loss function of the MS-DIRNet includes an 

image similarity loss, a regularization loss and an adversarial loss. Details of the loss 

function are presented in section 2.2. In the inference stage, global DVF was first predicted 

by the GlobalNet to generate the globally deformed images. Then, patches of local DVFs 

were predicted by the LocalNet. Patch-based DVFs were subsequently fused by averaging to 

generate a whole-image local DVF. Final DVF was obtained by summing the global DVF 

and the local DVF.

The GlobalNet and LocalNet share similar generative adversarial network (GAN) structure, 

which is shown in figure 2. Image matrix sizes of the input image pairs were reduced in the 

encoding path after eleven convolutional layers. To generate DVFs with consistent matrix 

sizes as the input images, bilinear interpolation was used to up-sample the DVFs. Transpose-

convolution layers with trainable parameters were another alternative to up-sample the DVFs 

to the same image size as the input images. However, we have found out that bilinear 

interpolation with no trainable parameters is much better than the transpose-convolution 

layers in predicting accurate DVFs. This is because bilinear interpolation tends to generate 

smooth DVFs that are desired in 4D-CT image registration. On the other hand, the 

transpose-convolution layers often generate unrealistic DVFs even with heavily-weighted 

DVF smoothness regularization term.

Since the network was designed to be trained in a completely unsupervised manner, DVF 

regularization was necessary to generate realistic DVF. Smoothness constraint was 

commonly used in the literature for DVF regularization. However, smoothness constraint 

alone is insufficient for realistic DVF prediction especially when the network is trained in a 

completely unsupervised manner. To this end, we proposed to integrate a discriminator into 

MS-DIRNet for additional DVF regularization. The discriminator was trained to 

differentiate the deformed images from the target images. MS-DIRNet was encouraged to 

predict realistic DVFs by penalizing unrealistic deformed images. The discriminator will not 

affect the inference speed as it was used only in the training stage. To further improve the 

network’s ability in capturing structural differences between the moving and target images, 

self-attention gate was integrated into the generator to extract information differences 

between feature maps of one layer and its previous layer from the encoding path (Mishra et 
al 2018). Details of the self-attention gates were described in section 2.1.

2.1. Self-attention network

Attention gates have been explored in the context of semantic segmentation (Romera-

Paredes and Torr 2016). Previous works demonstrated that the most relevant semantic 

contextual information can be captured by integrating attention gates into a standard U-Net 

without the need to use a very large reception field (Oktay et al 2018). In this study, we 

incorporated attention gates into the design of our generator. Figure 2 shows that attention 

gates were used to connect layers that are next to max pooling layers. The attention gates 

combined feature maps of adjacent layers from different scales. The attention gates 

operations were performed immediately prior to the concatenation in order to retain only 

relevant activations and remove irrelevant/noisy responses. Additionally, the attention gates 

filtered the neuron activations during both the forward pass and the backward pass. 
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Gradients originating from image background regions were down weighted during the 

backward pass. This allows model parameters in shallower layers to be updated based on 

spatial regions that are most relevant to a given task, i.e. motion estimation. Thus, the 

attention gates could have the ability to highlight the features from previous layers, which 

can well represent the motion.

2.2. Loss functions and regularizations

The loss function consists of three parts which are the image similarity loss, the adversarial 

loss and the regularization loss.

G = min
G

α ⋅ ADV(Imov°φ, Ifix) + β ⋅ [1 − NCC(Imov°φ, Ifix)] + γ ⋅ GD(Imov°φ,

Ifix) + δR(φ)
(1)

where φ = G(Imov, Ifix)represents the predicted deformation field for a moving and target 

image pair. The deformed image, Imov°φ,was obtained by warping the moving image patch 

by the predicted deformation field using spatial transformer (Li and Fan 2018). NCC (·) 

denotes the normalized cross-correlation loss, GD (·) denotes the gradient difference loss 

between the target and moving image patches. The cross-correlation loss and gradient loss of 

the images together represent the image similarity loss. ADV (·) denotes the adversarial loss. 

The adversarial loss was computed as the discriminator binary cross entropy loss of the 

deformed and target images. The discriminator was implemented using a conventional fully 

convolution network (FCN) (Dong et al 2019). The purpose of the adversarial loss was to 

encourage the deformed image to look like a realistic CT image by penalizing unreasonable 

DVFs and unrealistic deformed images. R (φ) denotes the regularization term.

R(φ) = μ ∇φ + μ2∇2φ2 (2)

The regularization term includes weighted first and second derivatives of the DVF to enforce 

general smoothness of the predicted DVF. Values of μ1 and μ2 were empirically set to be 1 

and 0.5 in this study. After numeric experiments, we have empirically chosen the α, β, γ and 
δ to be 1, 200, 1000 and 10 respectively.

2.3. Training and testing

The proposed MS-DIRNet was trained and tested on 25 patients’ 4D-CT images using five-

fold cross validation. Each 4D-CT dataset includes ten phases of 3D-CT throughout a 

respiratory cycle. 4D-CT datasets of 20 patients including a total of 200 3D-CT were taken 

as training datasets. During training, image pairs between any two phases of the ten phases 

were taken as the moving and target image pairs, which was equivalent to a total of 900 

image pairs. The total number of training image pairs were doubled to 1800 image pairs 

after switching the moving and target image pairs. For testing, the 3D-CT image of the first 

phase T0 was registered with every other phase in a 4D-CT dataset. A total of 45 deformed 

images were generated for five testing patients. Our algorithm was implemented in python 
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3.6 and Tensorflow on a NVIDIA TITAN XP GPU with 12GB of memory. Adam gradient 

optimizer with learning rate of 1e-5 was used for optimization.

Figure 3 shows the convergence curves of the three loss functions, including the adversarial 

loss, image similarity loss and the DVF regularization loss for the GlobalNet and LocalNet, 

respectively. For better visualization, the loss curves were smoothed using a moving mean 

kernel with a window of 50 iterations for 10 times to show the average curves of the training 

process. The image similarity loss was reduced during training, indicating increased image 

alignment. The adversarial loss consistently went up since the DVF generator of MS-

DIRNet was consistently improved, generating increasingly realistic deformed images, 

which caused the discriminator to perform poorly on differentiating between the original 

image and the deformed image. The DVF regularization loss first decreased and then 

increased during the training. This may be because that the network first learnt to globally 

align the moving and target images, resulting in relatively smooth DVFs with decreasing 

regularization loss. Then, the network learnt to deform the moving image locally to increase 

the image alignment and caused the DVFs to have larger local spatial variation, resulting in 

increasing regularization loss.

3. Results

3.1. Efficacy of self-attention

Our experiments suggested that the self-attention gates were very effective in learning the 

structural differences, which helped the registration process to distinguish between regions 

with major and minor motions. To demonstrate the efficacy of the attention gates, we 

designed an experiment to extract feature maps from many different small image patches (15 

× 15 × 15) that were centered at locations subject to significant different motion patterns. 

The feature maps were extracted from the last convolution layers of the generator. Each 

feature map represented the encoded texture information of its corresponding image patch 

that was centered at a different image location. In this experiment, 2000 small image patches 

that were centered around spine and stomach were extracted. As shown in figure 4(a4), half 

of the small image patches were sampled around the spine (denoted by red points) while the 

other half were sampled around the stomach region (denoted by green points). Each of the 

extracted feature map was vectorized before they were put together to form a matrix with 

2000 rows. Principal component analysis (PCA) was performed on the matrix. The first 

three principal components were displayed as 3D scatter plots in figure 4. For details on the 

experiment procedures and PCA analysis, please refer to our previous work (Harms et al 
2019). As indicated by the difference image shown in figure 4(a3), the stomach region 

clearly has much more significant motion than the spine region. Nevertheless, the network 

performed poorly at differentiating the two regions without the self-attention gates, as 

suggested by figure 4(b1–b3). On the contrary, the network with attention gates successfully 

separated the two regions, as suggested by figure 4(c1–c3). Mean absolute error (MAE), 

peak signal to noise ratio (PSNR) and normalized cross correlation (NCC) were calculated 

between the deformed images and the target images for quantitative evaluations. Table 1 

shows the comparison between the average registration results with and without attention 

gates over nine phase pairs for all patients. P-values were calculated using two-sample t-test 
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to assess the statistical significance of the difference between results with and without 

attention gates.

3.2. Efficacy of discriminator

To demonstrate the effectiveness of the discriminator, we have performed comparisons 

between registration results with and without the discriminator. Table 2 shows the 

comparison between the average registration results with and without discriminator over 

nine phase pairs for all patients. P-values were calculated using two-sample t-test to assess 

the statistical significance of the difference between results with and without discriminator. 

We can observe that the registration results with discriminator were significantly better than 

that without the discriminator in terms of MAE, PSNR and NCC. Figures 6 and 7 show the 

visual comparison among Velocity™, MS-DIRNet with and without discriminator.

3.3. Robustness to different image patch sizes

To study the sensitivity of the LocalNet to image patch sizes, we have conducted 

experiments using three different image patches, which are 643, 483 and 323. We have 

evaluated the registration results using MAE, PSNR and NCC between the target images and 

the deformed images. Table 3 shows that image patch size of 48 has the best performance in 

terms of MAE, PSNR and NCC. Image patch size of 32 has the worst performance. This is 

because of the restricted reception field of patch size 32, which impaired the LocalNet’s 

ability in predicting local deformation. Nevertheless, the differences of MAE, PSNR and 

NCC among the three different image patch sizes were not statistically significant, indicating 

that small changes in image patch size may not have significant impact on the final 

registration results. In this study, an image patch size of 64 was used as the default value for 

MS-DIRNet.

3.4. Robustness to different weighting factors in loss function

Given equal priority of the loss items, a rule of thumb to choose the weighting factors is that 

the initial losses of different loss items should be the same or in the same order of magnitude 

numerically. To study the sensitivity of each weighting factor in the loss function, we trained 

and tested another 12 models by varying the weighting factors. The baseline configuration 

was α = 1, β = 200, γ = 1000 and δ = 10. We multiplied each factor of β,γ and δ by factors 

of 0.01, 0.1, 10, 100 while keeping the other factors same as baseline configuration. The 

MAE and PSNR were plotted in figure 5 against multiplication factors. The variations of 

MAE and PSNR using different weighting factors were much smaller than the standard 

deviations which are indicated by the red error bar.

3.5. Registration comparison between clinically used Velocity™ and MS-DIRNet

To demonstrate the clinical relevance of the MS-DIRNet, we compared our method with 

Varian Velocity™. Figure 6 shows an example where T0 was registered to T5. The T0-T5 

image pair represents the toughest registration pair as the motion between T0 and T5 was the 

most significant in the 4D-CT. As indicated by the arrows in figure 6, Velocity™ has failed 

to register the fiducial markers in all three planes whereas MS-DIRNet with discriminator 

has successfully matched the fiducial markers in all three planes. MS-DIRNet without 
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discriminator has failed to successfully match the fiducial markers. Similar phenomenon 

happened near the lung diaphragm, bowel and kidney boundaries.

Difference images between the target images and the deformed images were shown in figure 

7. The proposed MS-DIRNet has done an overall better job than the Velocity™. Registration 

accuracy was improved near the body skin, lung diaphragm, kidney boundaries and the bony 

structures. The bony structures in the Velocity™ was deformed due to oversmoothed DVFs. 

The superior bony structure registration performance of our method was due to the use of 

self-attention gates as described in section 3.1. At least three fiducial markers were 

implanted in each patient for tumor localization and external beam treatment planning. 

These fiducial markers were used as landmarks in result evaluations to calculate TRE. Table 

4 shows the detailed average values of TRE, MAE and PSNR for all the patients on nine 

image phase-pairs. The mean and standard deviation of TREs were 2.5 ± 0.8 mm and 1.2 ± 

0.8 mm for Velocity™ and our method respectively. The mean and standard deviation of 

MAE were 26.7 ± 6.7 and 25.4 ± 6.0 for Velocity™ and our method respectively. The mean 

and standard deviation of PSNR were 45.8 ± 3.2 and 46.0 ± 2.9 for Velocity™ and our 

method respectively.

4. Discussion

4D-CT scans allow organ motion tracking by providing multiple 3D-CT scans throughout a 

respiratory cycle. DIR of pre-treatment scans could provide important information for 

radiotherapy treatment planning such as target tracking, OAR sparing and respiratory gating. 

However, traditional DIR such as optical flow and demons are usually very slow in 

registering the large 4D-CT image volumes due to its iterative nature. Deep learning-based 

DIR is a promising alternative to quickly register the large 4D-CT volumes. Supervised 

learning requires training datasets of either manually aligned image pairs or manually 

labeled datasets, which are difficult to produce. To overcome these challenges, an 

unsupervised deep learning method was proposed for abdominal 4D-CT DIR.

DIR is inherently ill-posed in a sense that only image intensity information is available for 

dense DVF prediction of the whole image. Additional constraints are therefore necessary to 

regularize the DVF to be physically reasonable and physiologically plausible. In traditional 

DIRs, spatial filters such as gaussian filter and bilateral filter are commonly used to smooth 

the DVF iteratively during the optimization process (Fu et al 2018a). One limitation of the 

repeat spatial smoothing is that the DVF is often oversmoothed which causes the bony 

structures to be deformed. Instead of applying the spatial smoothing repeatedly, we 

reformulated the spatial smoothness constraint in the deep learning framework and directly 

predicted the final DVF in a single forward network. Additionally, the self-attention gates 

managed to learn the differences between major and minor motion regions and avoid 

deforming the bony structures.

The fiducial markers have high image intensity which may affect the network performance 

especially near the marker’s spatial location. To investigate its influence, we performed 

experiments using images whose fiducial markers were replaced by water. The fiducial 

markers were segmented using region growing method with manually placed initial seeds. 
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We performed experiments for only T0–T5 registration. Without the fiducial markers, the 

TRE was increased from 1.7 mm to 1.8 mm, the MAE was increased from 28.1 to 29.4 and 

the PSNR was decreased from 44.4 to 43.6. The difference was 1.3 for MAE, much smaller 

than its standard deviation of 6.0. The difference was 0.8 for PSNR, much smaller than its 

standard deviation of 2.7. Since the number of fiducial marker voxels accounted for a nearly 

negligible percentage of the whole image voxels, the absence of fiducial markers should not 

have significant effect on the performance of our method. Our method has outperformed 

Velocity™ in general on the whole image, not just near the fiducial markers, as evidenced by 

the decreased MAE and increased PSNR in table 4 and the arrows in figure 6. The 

GlobalNet and LocalNet took around 30 h to train. For a typical image with matrix size of 

512 × 512 × 120, the network was able to predict the DVF on the whole image up to 2 min 

per registration. Currently, we used a batch size of one for LocalNet image patch DVF 

prediction. In the future, we could try to use a large batch size number in the inference stage 

to expedite the registration process.

Liver is one of the largest abdominal organs with homogeneous HU values, which is often 

challenging to register. Bowel is difficult to register as well since it has complex shapes and 

large appearance variations. Two example slices containing the liver and bowel were shown 

in figure 8. The first column of figure 8 shows the original CT images. The second column 

of figure 8 shows the difference images between the target image and the deformed image 

using MS-DIRNet. The third column of figure 8 shows the DVF magnitude overlaid on 

original CT images. The yellow arrow shows that there are large intensity differences at the 

tissue-air interface. This is due to the lack of texture information within the abdominal gas. 

As indicated by the red arrows, the liver and bowel are generally well registered with smooth 

DVF.

In this study, only 25 patients’ 4D-CT datasets were used to train and test the network. In the 

future, we plan to collect more datasets to improve the performance of the proposed 

network. The 4D-CT datasets were subject to noise, streaking and other artifacts. Currently, 

no image preprocessing or postprocessing is used other than image cropping. Image pre-

processing could be used prior to training to improve the image quality. Since the network 

was trained in a completely unsupervised manner without any prior knowledge about the 

ground truth physiological motion patterns, the DVF regularization was essential for 

accurate DVF predictions. The adversarial loss used in the study has mitigated the problem 

of insufficient DVF regularization by enforcing the deformed images to be similar to the 

target images. In the future, we plan to incorporate biomechanical modeling for additional 

DVF regularization.

5. Conclusions

An unsupervised deep learning-based method was developed for abdominal 4D-CT DIR. 

The proposed method was able to accurately register images between any two 4D-CT phases 

within one minute in a single forward network prediction. The proposed MS-DIRNet is a 

promising tool for abdominal motion management and treatment planning during radiation 

therapy.
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Figure 1. 
The schematic flow diagram of the proposed method. The upper part shows the training 

stage for global and local DVF generation. The lower part shows the inference stage where 

one phase was deformed to match target phase in 4D-CT.
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Figure 2. 
The network architecture for both GlobalNet and LocalNet. The generator was trained to 

generate DVFs. The discriminator was trained to differentiate deformed images from target 

images. The top row shows the network architecture of the generator and the discriminator. 

The bottom row details various operators used in the network architecture.
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Figure 3. 
Convergence curves of the adversarial loss, DVF regularization loss and image similarity 

loss. Left: GlobalNet loss, right: LocalNet loss.
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Figure 4. 
An illustrative example to demonstrate the benefit of attention gates, (a1) the moving CT 

image, (a2) the target CT image, (a3) difference image between the moving and target 

images, (a4) small image patches were extracted at the color-coded dots where red dots 

represent small motion region and green dots represent large motion region, (b1–b3) show 

the scatter plots of the first F3 principal components of the learnt feature maps from the last 

convolutional layer without attention gates for the 2000 image patches, (c1–c3) show the 

scatter plots of the first 3 principal components of the learnt feature maps from the last 

convolutional layer with attention gates for the 2000 image patches.
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Figure 5. 
MAE and PSNR between the fixed and deformed images that were generated using models 

with different weighting factors. First row: MAE. Second row: PSNR. First column: β. 

Second column: γ. Third column: δ. Red error bars indicate the standard deviation.
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Figure 6. 
First column: target image. Second column: image fusion between the target image and the 

moving image before registration. Third column: image fusion between the target image and 

the deformed image after registration using Velocity™.Fourth column: image fusion between 

the target image and the deformed image after registration using MS-DIRNet without 

discriminator. Fifth column: image fusion between the target image and the deformed image 

after registration using MS-DIRNet with discriminator.
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Figure 7. 
First column: difference images between the target images and the moving images before 

registration. Second column: difference images between the target images and the deformed 

images after registration using Velocity™. Third column: difference images between the 

target images and the deformed images after registration using MS-DIRNet without 

discriminator. Fourth column: difference images between the target images and the 

deformed images after registration using MS-DIRNet with discriminator.
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Figure 8. 
First column: CT images of liver and bowel. Second column: difference images between the 

target images and the deformed images after registration. Third column: DVF magnitude 

overlaid on CT images. Red arrows indicate good registration results with smooth DVF and 

small intensity differences. Yellow arrows indicate poor registration near tissue-air interface 

with large intensity differences.
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Table 1.

Image similarity between the target image and the deformed image that were generated using MS-DIRNet 

with and without attention gates. Better values are shown in bold.

MS-DIRNet MAE (HU) PSNR (dB) NCC

Without attention gates 24.7 ± 5.7 45.3 ± 2.7 0.997 ± 0.001

With attention gates 25.4 ± 6.0 46.0 ± 2.9 0.998 ± 0.001

P-value <0.01 <0.01 <0.01
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Table 2.

Image similarity between the target image and the deformed image that were generated using MS-DIRNet 

with and without discriminator. Better values are shown in bold.

MS-DIRNet MAE (HU) PSNR (dB) NCC

Without discriminator 29.8 ± 6.2 44.4 ± 2.7 0.997 ± 0.001

With discriminator 25.4 ± 6.0 46.0 ± 2.9 0.998 ± 0.001

P-value 0.01 0.04 0.01
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Table 3.

Image similarity between the target image and the deformed image that were generated using MS-DIRNet 

with different LocalNet patch size. Better values are shown in bold.

MS-DIRNet MAE (HU) PSNR (dB) NCC

Patchsize-32 27.3 ± 6.3 45.5 ± 3.0 0.997 ± 0.001

Patchsize-48 25.1 ± 5.8 46.1 ± 2.9 0.998 ± 0.001

Patchsize-64 25.4 ± 6.0 46.0 ± 2.9 0.998 ± 0.001

P-value (32 vs 64) 0.26 0.53 0.30

P-value (48 vs 64) 0.85 0.88 0.82
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Table 4.

Registration results between T0 phase and every other phase using Velocity™ and MS-DIRNet in terms of 

TRE, MAE and PSNR. Better values are shown in bold.

Image 
phase

Before registration Velocity™ MS-DIRNet

TRE 
(mm)

MAE 
(HU)

PSNR 
(dB)

TRE 
(mm)

MAE 
(HU)

PSNR 
(dB) TRE (mm) MAE (HU) PSNR (dB)

T0-T1 7.1 ± 3.4 33.9 ± 9.9 42.1 ± 2.8 1.8 ± 0.7 22.7 ± 7.6 47.8 ± 3.8 0.6 ± 0.5 22.1 ± 6.7 47.9 ± 3.2

T0-T2 8.7 ± 2.6 47.9 ± 9.5 39.1 ± 2.5 2.4 ± 0.9 25.6 ± 7.6 46.3 ± 3.7 0.9 ± 0.6 24.5 ± 7.0 46.4 ± 3.4

T0-T3 10.3 ± 3.7 57.8 ± 9.3 37.4 ± 2.2 2.6 ± 0.6 27.8 ± 6.9 45.1 ± 2.9 1.4 ± 0.3 26.3 ± 6.6 45.4 ± 2.9

T0-T4 12.8 ± 4.1 63.7 ± 9.9 36.7 ± 1.9 2.2 ± 0.7 29.3 ± 6.7 44.4 ± 2.7 1.3 ± 1.0 27.5 ± 6.4 44.8 ± 2.8

T0-T5 12.0 ± 5.8 67.6 ± 
10.8 36.2 ± 1.9 3.7 ± 1.1 30.3 ± 6.3 43.9 ± 2.6 1.7 ± 0.6 28.1 ± 6.0 44.4 ± 2.7

T0-T6 12.1 ± 5.1 67.7 ± 
11.4 36.2 ± 1.8 3.5 ± 1.2 30.6 ± 6.1 43.8 ± 2.6 1.8 ± 0.7 28.4 ± 5.9 44.3 ± 2.7

T0-T7 9.6 ± 3.1 57.9 ± 
10.5 37.5 ± 1.9 2.3 ± 0.7 28.8 ± 6.5 44.7 ± 2.9 0.4 ± 0.6 27.1 ± 6.0 45.1 ± 2.8

T0-T8 8.0 ± 2.0 41.7 ± 8.5 40.5 ± 2.4 2.1 ± 0.8 24.8 ± 6.6 46.7 ± 3.2 1.0 ± 1.5 24.0 ± 6.0 46.8 ± 2.8

T0-T9 3.5 ± 2.0 24.3 ± 9.9 45.5 ± 3.0 1.9 ± 0.9 20.4 ± 7.6 49.2 ± 3.9 1.7 ± 1.2 20.5 ± 6.9 48.8 ± 3.3

Average 9.4 ± 3.4 51.4 ± 
17.0 39.0 ± 3.6 2.5 ± 0.8 26.7 ± 6.7 45.8 ± 3.2 1.2 ± 0.8 25.4 ± 6.0 46.0 ± 2.9
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