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Abstract

The quinolinate synthase of prokaryotes and photosynthetic eukaryotes, NadA, contains a
[4Fe-4S] cluster with unknown function. We report crystal structures of Pyrococcus horikoshii
NadA in complex with dihydroxyacetone phosphate (DHAP), iminoaspartate analogs, and
quinolinate. DHAP adopts a nearly planar conformation and chelates the [4Fe-4S] cluster via its
keto and hydroxyl groups. The active-site architecture suggests that the cluster acts as a Lewis acid
in enediolate formation, similar to zinc in class Il aldolases. The DHAP and putative
iminoaspartate structures suggest a model for a condensed intermediate. The ensemble of
structures suggests a two-state system, which may be exploited in early steps.
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De novo biosynthesis of nicotinamide adenine dinucleotide (NAD) occurs via the
intermediate quinolinate (QA) for which two major biosynthetic pathways are known.12 The
pathway used by most bacteria, plants, and algae starts from L-aspartate and requires two
enzymes, flavin adenine dinucleotide (FAD) dependent L-aspartate oxidase, NadB,3 and
[4Fe-4S] cluster dependent QA synthase, NadA.4-8 In some organisms, NadB is replaced by
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NAD(P) dependent L-aspartate dehydrogenase.” NadB catalyzes the oxidation of L-aspartate
to iminoaspartate (1A) via reduction of FAD to FADH,389 and structural studies suggest an
enamine product.19 NadA catalyzes two condensations to form the pyridine ring of QA from
IA and dihydroxyacetone phosphate (DHAP), eliminating phosphate and two waters
(Scheme 1).3:11

Labeling studies showed that the pyridine C4 originates from Cq, of DHAP, indicating the
mode of condensation.}2 Two mechanisms have been proposed.1:3 Both start with DHAP
and require a keto-aldo isomerization that precedes Schiff base formation between the imine
nitrogen of IA and C3 of DHAP. Nasu et al. proposed that these steps occur after C1-Cg
bond formation and phosphate elimination (Fig. S1A),2 whereas Begley et al. proposed that
ketose-aldose isomerization occurs at the outset, producing glyceraldehyde 3-phosphate
(G3P) and allowing the Schiff base to form first (Fig. S1B).1 Biochemical studies suggest
that DHAP rather than G3P condenses with 1A.11:13 However, little is known about the
mechanism and the role of the [4Fe-4S] cluster.

Crystal structures have been reported for Pyrococcus horikoshii NadA (PiNadA),14
Pyrocococcus furiosus NadA (PMNadA),1® and Thermotoga maritima NadA ( TrmNadA).16
The first structure of PANadA showed a triangular monomer containing three domains and a
bound malate identified the active site. However, the structure lacked a [4Fe-4S] cluster.14
The structure of PMNadA displayed an alternate domain arrangement and oligomeric state,
but also lacked a [4Fe-4S] cluster.1> The structure of 7/mNadA, reported recently, revealed
the location of the [4Fe-4S] cluster and identified a charge relay system.16 Finally, a second
structure of PANadA, also reported recently, showed a [4Fe-4S] cluster with bound QA.17

Here, we report high-resolution crystal structures of A/MNadA with a bound [4Fe-4S] cluster
and with bound DHAP, itaconate (1A analog), maleate, citraconate (enamine 4 analogs), and
L-malate (L-aspartate analog). We also report a high-resolution crystal structure of A/iNadA
with bound QA. PiNadA was prepared with a [4Fe-4S] cluster by coexpression with the
Escherichia coli sufoperon using £. coli BL21 (DE3) as the host strain.18:19 Purification and
crystallization were performed in an anaerobic chamber. Crystals were irradiated at beam
lines NE-CAT 24-ID-E of the Advanced Photon Source (APS) and Al and F1 of the Cornell
High Energy Synchrotron Source (CHESS). The structure of PAiNadA lacking a [4Fe-4S]
clusterl# was used as a search model for molecular replacement. COOT,2% PHENIX,%! and
CHIMERA?2 were used for model building, refinement, and analysis. Difference electron
density for the ligands is shown in Fig. S2 and data collection and refinement statistics are
given in Tables S1-S3.

PhNadA contains three domains displaying pseudo three-fold symmetry that each contribute
a cysteine residue for ligation to a centrally located [4Fe-4S] cluster (Fig. S3A-C). The
overall structure resembles that of the enzymes IspH and Dph2.1° Each cysteine thiolate
resides at the positive end of a 5-residue helix (Fig. S3D). IspH contains a similar cluster-
binding motif except the helices are ~3 times longer.23 In contrast, Dph2 positions one of the
thiolates near the positive end of a short helix; the other two reside in short turns.24
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DHAP binds the unique (unligated) iron of the [4Fe-4S] cluster via its keto and hydroxyl
groups and forms several hydrogen bonds with P/NadA via its phosphate (Fig. 1A). The
conformation of DHAP is nearly planar having O,—C,—C3-03, C1—C,—C3-03, 01-C1—-Co—
C3, and O1—C1—Co—0,, torsional angles of —14.2°, -179.7°, -14.8°, and 179.6°, respectively.
O3 is 2.6 A from the carboxylate of Glu198 and sp3 geometry at C3 places the proR and
proS protons near the hydroxyl of Tyr23 and the carboxylate of Glu198, respectively. O, is
3.8 A from the side chain NH, of Asn111. The phosphate group is within hydrogen bonding
distance of N, of His21 and His196, the hydroxyl group of Ser38, Ser126, and Thr213, and
the backbone NH of Ser38 and Thr213, and may also be stabilized by helix dipoles.

Itaconate is synclinal and occupies the DHAP phosphate site; two waters bind near the
[4Fe-4S] cluster (Fig. 1B). The C; carboxylate forms hydrogen bonds with the backbone NH
of Ser38 and Ser126 and with the hydroxy! of Tyr109; the Cy carboxylate forms hydrogen
bonds with the hydroxyl and backbone NH of Thr213 and with N, of His21 and His196.
The methylene points toward the hydroxyl of Tyr109 and the carboxylate of Glu198.

QA chelates the unique iron of the [4Fe-4S] cluster via its pyridine nitrogen and the
carboxylate at Co, which is also within hydrogen bonding distance of the hydroxyl of Ser38
and Tyr109 (Fig. 1C and Ref. 17). The carboxylate at C3 forms hydrogen bonds with N, of
His21 and with the backbone NH of Ser38. The binding mode is similar to that reported
recently;17 however, in our structure chloride binds 3.2 A from N, of His196 and the
backbone NH of Thr213, and Asn111 and Tyr109 are oriented differently.

Maleate and citraconate bind similar to itaconate but adopt a more planar conformation
consistent with a double bond between C, and C3 (Fig. S4A and B). L-malate shows a
unique binding mode in which the C4 carboxylate binds to the unique iron of the [4Fe-4S]
cluster and no interactions are made with helix H3 (Fig. S4C). This leads to conformational
changes that result in a more open active site cavity, similar to the holoenzyme structure.
The ensemble of PANadA structures suggests a two-state system (Fig. 2).

The structure of DHAP and the nearby architecture support an electrophilic role for the
[4Fe-4S] cluster in enediolate formation with phosphate elimination disfavored prior to
ternary complex formation. O3, C3, C5, Oy, and C; are nearly coplanar, consistent with an
enediol(ate)-like structure, and the binding mode is strikingly similar to the mode of binding
of phosphoglycolohydroxamate (PGH) to zinc in fuculose-1-phosphate aldolase 2° (FucA)
(Fig. 3A). PGH is a cisenediolate analog used in studies of triose phosphate isomerase
(TPI),26-28 methylglyoxal synthase (MGS),29 and class Il aldolases,25:3% which form an
enediolate from DHAP via polarization of the C, carbonyl, proton abstraction from Cs, and
stabilization of the negative charge acquired by O,. TPI uses a histidine and lysine
residue26.27:31-33 for electrophilic catalysis whereas class 11 aldolases use zinc;2%:30:34 Fig.
3A suggests that a [4Fe-4S] cluster could play a similar role as zinc. The side chain NH, of
Asnlll in PANadA is also well positioned to contribute to O, oxyanion stabilization and
assist DHAP binding.26:35:36 TP| and FucA utilize a glutamate residue as the catalytic
base26:37 whereas MGS utilizes an aspartate residue.3® The side chains of Tyr23 and Glu198
in PANadA, which are part of a predicted charge relay system and essential for activity,16:17
are well positioned to perform proton abstractions from C3 or the C3 hydroxyl.
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Biochemically, an enediol(ate) links intermediates 5 and 6 and may account for the TPI
activity reported for NadA in the absence of IA (Fig. S5).13 The 04-C4 bond is “in-plane”,
which stereoelectronically disfavors the elimination of phosphate from the enediolate.25:34.39
Phosphate elimination is likely suppressed further initially by the conformational changes
that close the active site cavity in around the bound DHAP (Fig. 2), similar to the role of a
mobile loop in TPI, the absence of which accelerates degradative loss of phosphate leading
to methylglyoxal.*® The planarity of the 01-C1-C5-O» torsion (~180°) raises the possibility
of conjugation.

The bound 1A analogs clash severely with the DHAP phosphate (Fig. S6), requiring
structural changes for ternary complex formation and phosphate elimination. The nature of
these changes and the timing of phosphate elimination are unknown; however, the open state
(Fig. 2) is likely required to provide the space needed for binding both substrates and to
create an opening for ejecting phosphate. Helix H3 forms a portion of the phosphate-binding
site (Fig. 1A) and its conformation depends on the liganded state (Fig. 2). Its conformation
in the holo and L-malate bound structures, which is also a minor conformation in the
itaconate bound structure, yields an open cavity from which phosphate can be eliminated
from an orthogonal conformation (Fig. S7).

After phosphate is eliminated, the closed active site cavity neatly accommodates
intermediate 5 and structurally similar intermediates (Fig. S1A). Itaconate, maleate, and
citraconate adopt a similar conformation that is also adopted by malate in the absence of the
[4Fe-4S] cluster.1* The conformation is stabilized by several hydrogen bonds and possibly
by helix dipoles, suggesting that it is likely adopted by the 1A moiety at some point along
the reaction coordinate. Superimposition of the [4Fe-4S] cluster with bound DHAP onto the
[4Fe-4S] cluster in the itaconate bound structure places the keto and hydroxyl groups by the
two waters near the cluster and, without the phosphate, leads to geometry at the C;-Cg bond
consistent with intermediate 5: C; and Cg are 1.67 A apart with C1-Cp-Cq and C1-Cg-C,,
angles of 108.6° and 133.0°, respectively (Fig. 3B). An energy-minimized model is given in
Fig. 3C.

The pyridine nitrogen and the adjacent carboxylate in QA chelate the [4Fe-4S] cluster
similar to the way the amino and carboxylate groups of S-adenosylmethionine bind a
[4Fe-4S] cluster in radical SAM enzymes.17:41.42 From one point of view, the orientation of
QA places C4 and hydroxylated Cs of intermediate 8 between the side chains of the essential
residues Glu198 and Tyr23, suggesting a potential catalytic role (Fig. 1C). However, the
reactions forming intermediate 8 and QA likely do not require enzyme catalysis.3 This
suggests a simpler interpretation of QA formation from transitions between a two-state
system starting from bound DHAP activated by the [4Fe-4S] cluster: a closed-to-open cavity
transition allowing ternary complex formation, condensation, and phosphate elimination,
and an open-to-closed cavity transition stabilizing a later intermediate associated with
[4Fe-4S] cluster dependent keto-aldo isomerization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
NadA catalyzed reaction.
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Figure 1.
Stereo diagrams (left) and schematic drawings (right) of the active site of PANadA with

bound (A) DHAP, (B) itaconate, and (C) QA. Black broken lines denote potential hydrogen
bonds, red spheres denote waters, and the green sphere denotes chloride.
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Figure 2.
(A) Superimposition of C,_traces showing open (holo and L-malate bound structures;

salmon) and closed (DHAP, itaconate, maleate, and citraconate bound structures; light
green) states of P/NadA. (B) Close-up of holo and DHAP bound structures indicating side
chain clashes.
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Figure 3.
(A) Stereo diagram of the superimposition of DHAP bound to the [4Fe-4S] cluster in

PhNadA onto PGH bound to zinc (cyan) in FucA (green). (B) Superimposition of the
[4Fe-4S] cluster with bound DHAP onto the [4Fe-4S] cluster in the itaconate bound
structure of PANadA. (C) Stereo diagram (left) and schematic drawing (right) of
intermediate 5 based on the result in panel B, with Cy and Cg joined, followed by energy
minimization with positional restraints applied to the protein atoms.
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