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C A N C E R

Synthetic lethality across normal tissues is strongly 
associated with cancer risk, onset, and tumor 
suppressor specificity
Kuoyuan Cheng1,2*, Nishanth Ulhas Nair1*, Joo Sang Lee1,3, Eytan Ruppin1,2†

Various characteristics of cancers exhibit tissue specificity, including lifetime cancer risk, onset age, and cancer 
driver genes. Previously, the large variation in cancer risk across human tissues was found to strongly correlate 
with the number of stem cell divisions and abnormal DNA methylation levels. Here, we study the role of synthetic 
lethality in cancer risk. Analyzing normal tissue transcriptomics data in the Genotype-Tissue Expression project, 
we quantify the extent of co-inactivation of cancer synthetic lethal (cSL) gene pairs and find that normal tissues 
with more down-regulated cSL gene pairs have lower and delayed cancer risk. Consistently, more cSL gene 
pairs become up-regulated in cells treated by carcinogens and throughout premalignant stages in vivo. We 
also show that the tissue specificity of numerous tumor suppressor genes is associated with the expression of 
their cSL partner genes across normal tissues. Overall, our findings support the possible role of synthetic lethality 
in tumorigenesis.

INTRODUCTION
Cancers of different human tissues have markedly different molec-
ular, phenotypic, and epidemiological characteristics, known as the 
tissue specificity in cancer. Various aspects of this intriguing phe-
nomenon include a considerable variation in lifetime cancer risk, 
cancer onset age, and the genes driving the cancer across tissue 
types. The variation in lifetime cancer risk is known to span several 
orders of magnitude (1, 2). Such variation cannot be fully explained 
by the difference in exposure to carcinogens or hereditary factors 
and has been shown to strongly correlate with differences in the 
number of lifetime stem cell divisions (NSCD) estimated across tissues 
(2, 3). As claimed by Tomasetti and Vogelstein (2), these findings 
are consistent with the notion that tissue stem cell divisions can prop-
agate mutations caused either by environmental carcinogens or 
random replication error (4). In addition, the importance of epi-
genetic factors in carcinogenesis has long been recognized (5), and 
Klutstein et al. (6) have recently reported that the levels of abnormal 
CpG island DNA methylation (LADM) across tissues are highly 
correlated with their cancer risk. Although both global (e.g., smoking 
and obesity) and various cancer type–specific (e.g., HCV infection 
for liver cancer) risk factors are well known (7), no factors other 
than NSCD and LADM have been reported to date to explain the 
across-tissue variance in lifetime cancer risk.

Besides lifetime cancer risk, cancer onset age, as measured by the 
median age at diagnosis, also varies among adult cancers (1). Although 
most cancers typically manifest later in life [more than 40 years old 
(1, 8)], some such as testicular cancer often have earlier onset (1). 
Many tumor suppressor genes (TSGs) and oncogenes are also tissue 
specific (9–11). For example, mutations in the TSG BRCA1 are pre-
dominantly known to drive the development of breast and ovarian 

cancer but rarely other cancer types (12). In general, factors explain-
ing the overall tissue specificity in cancer could be tissue intrinsic 
(10, 13), and their elucidation can further advance our understand-
ing of the forces driving carcinogenesis.

Synthetic lethality/sickness (SL) is a well-known type of genetic 
interaction, conceptualized as cell death or reduced cell viability 
that occurs under the combined inactivation of two genes but not 
under the inactivation of either gene alone. The phenomenon of SL 
interactions was first recorded in Drosophila (14) and then in 
Saccharomyces cerevisiae (15). In recent years, much effort has been 
made to identify SL interactions specifically in cancer, since target-
ing these cancer SLs (cSLs) has been recognized as a highly valuable 
approach for cancer treatment (16–19). The effect of cSL on cancer 
cell viability has led us to investigate whether it plays an additional 
role even before tumors manifest, i.e., during carcinogenesis. In this 
study, we quantify the level of cSL gene pair co-inactivation in nor-
mal (noncancerous) human tissue as a measure of resistance to cancer 
development (termed cSL load, explained in detail below). We show 
that cSL load can explain a considerable level of the variation in 
cancer risk and cancer onset age across human tissues, as well as the 
tissue specificity of some TSGs. Together, these correlative findings 
support the effect of SL in impeding tumorigenesis across human 
tissues.

RESULTS
Computing cSL load in normal human tissues
To study the potential effects of cSL in normal, noncancerous tis-
sues, we define a measure called cSL load, which quantifies the level 
of cSL gene pair co-inactivation based on gene expression of normal 
human tissues from the Genotype-Tissue Expression (GTEx) data-
set (20). Specifically, we used a recently published reference set of 
genome-wide cSLs that are common to many cancer types, identified 
from both in vitro and The Cancer Genome Atlas (TCGA) cancer 
patient data (21) via the identification of clinically relevant synthetic 
lethality (ISLE) (table S1A) (22, 23). For each GTEx normal tissue 
sample, we computed the cSL load as the fraction of cSL gene pairs 
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(among all the genome-wide cSLs) that have both genes lowly ex-
pressed in that sample (Methods; illustrated in Fig. 1). We further 
defined tissue cSL load (TCL) as the median cSL load value across 
all samples of each tissue type in GTEx (Methods and table S2A). 
We then proceed to test our hypothesis that TCL can be a measure 
of the level of resistance to cancer development intrinsic to each 
human tissue (outlined in Fig. 1).

TCL in normal tissues is inversely correlated with their 
lifetime cancer risk
SL is widely known to be context specific across species, tissue types, 
and cellular conditions (24). In theory, a cancer-specific cSL gene 
pair can be co-inactivated in the normal tissue without reducing 
normal cell fitness, while conferring resistance to the emergence of 
malignantly transformed cells due to the lethal effect specifically on 
the cancer cells. Different normal tissues can have varied TCLs (rep-
resenting the levels of cSL gene pair co-inactivation) as a result of 
their specific gene expression profiles, and we hypothesized that 
normal tissues with higher TCLs should have lower cancer risk, as 
transforming cancerous cells in these tissues will face higher cSL-
mediated vulnerability and lethality. To test this hypothesis, we 
obtained data on the tissue-specific lifetime cancer risk in humans 
(Methods) and correlated that with the TCL values computed for the 
different tissue types. We find a strong negative correlation between 
the TCL (computed from older-aged GTEx samples, age ≥50 years) and 
lifetime cancer risk across normal tissues (Spearman’s  = −0.664, 
P = 1.59 × 10−4; Fig. 2A and table S2A). This correlation is robust, as 
comparable results are obtained when this analysis is carried out in 
various ways (e.g., different cutoffs for low expression of genes, dif-
ferent cSL network sizes, and different cancer type–normal tissue 
mappings; fig. S1 and note S3). We also showed that this correlation 
is not confounded by the number of poised genes associated with 

bivalent chromatin, variation in cancer driver gene expression, and 
immune cell or fibroblast abundance (notes S11 to S13 and figs. S12 to 
S14). Notably, the cSL load varies with age due to age-related gene 
expression changes, and the correlation with lifetime cancer risk is 
not found when the TCL is computed on samples from the young 
population (20 ≤ age < 50 years, Spearman’s  = −0.0251, P = 0.901; 
fig. S2A); this is consistent with the observation that lifetime cancer 
risk is mostly contributed by cancers occurring in older populations 
(1). We still see a marked negative correlation between TCL and 
lifetime cancer risk when analyzing samples from all age groups to-
gether (Spearman’s  = −0.49, P = 0.01; fig. S2B). Repeating these 
analyses using different control gene pairs including (i) random 
gene pairs, (ii) shuffled cSL gene pairs, and (iii) degree-preserving 
randomized cSL network (same size as the actual cSL network; note 
S4) results in significantly weaker correlations (empirical P < 0.001; 
fig. S3, A to C, and note S4), confirming that the associations found 
with cancer risk results from a cSL-specific effect.

While the randomized cSL networks used in the control tests 
described above provide significantly weaker correlations with cancer 
risk than those observed with cSLs, many of these correlations are 
still significant by themselves (fig. S3, B and C). This suggests that 
there may be a possible association between the expression of single 
genes in the cSL network (cSL genes) and cancer risk. To investigate 
this, we computed the tissue cSL single-gene load (SGL; the fraction 
of lowly expressed cSL genes) for each tissue (Methods). We do 
find a significant negative correlation between tissue SGL levels 
and cancer risk (Spearman’s  = −0.49, P = 0.01; fig. S3D and note S5). 
This correlation vanishes when we use random sets of single genes 
(fig. S3F). However, after controlling for the single-gene effect, the 
partial correlation between TCL and cancer risk is still highly sig-
nificant (Spearman’s  = −0.69, P = 6.10 × 10−5; fig. S3G), pointing 
to the dominant role of the SL genetic interaction effect (note S5).

Fig. 1. A schematic diagram providing an overview of this study. This diagram illustrates the computation of cSL load for each sample and each tissue type (i.e., TCL) 
and depicts the outline of this study, where we attempted to explain the tissue-specific lifetime cancer risk, cancer onset age, and TSGs using TCL. See main text and 
Methods for details.
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TCL predicts lifetime cancer risk across tissues in addition 
to the number of tissue stem cell divisions and abnormal 
DNA methylation levels
We next compared the predictive power of TCL to those obtained 
with the previously reported measures of NSCD (2, 3) and LADM 
(6), using the set of GTEx tissue types investigated here (Methods). 
We first confirmed the strong correlations of NSCD and LADM with 
tissue lifetime cancer risk in our specific dataset (Spearman’s  = 0.72 
and 0.74, P = 2.6 × 10−5 and 1.3 × 10−4, respectively; fig. S4). These 
correlations are stronger than the one we reported above between TCL 
and cancer risk. However, adding TCL to either NSCD or LADM in linear 
regression models leads to enhanced predictive models of cancer risk 
compared to those obtained with NSCD or LADM alone [log-likelihood 
ratio (LLR) = 2.18 and 2.39, P = 0.037 and 0.029, respectively]. Further-
more, adding TCL to each of these factors increases their prediction 
accuracy under cross-validation (Spearman’s ’s from 0.67 and 0.69 with 
NSCD and LADM alone to 0.71 and 0.77, respectively; Fig. 2, B and C). 
LADM and NSCD are significantly correlated (Spearman’s  = 0.66, 
P = 0.02), while the TCL correlates only in a borderline significant 
manner with either NSCD (Spearman’s  = −0.57, P = 0.06) or LADM 
(Spearman’s  = −0.52, P = 0.08). Together, these observations sup-
port the hypothesis that TCL is associated with tissue cancer risk, 
with a partially independent role from either NSCD or LADM.

cSL pairs that are more specific to cancer are more predictive 
of cancer risk in normal tissues
We have shown results that support the role of TCL in impeding 
cancer development, and we reason that such an effect is dependent 

on the notion that many of the cSLs are specific to cancer while 
having weaker or no lethal effects in normal tissues. We tested and 
found that the co-inactivation of cSL gene pairs is under much 
weaker negative selection in GTEx normal tissues versus matched 
TCGA cancers [Wilcoxon rank sum test P = 2.93 × 10−6 (fig. S5A), 
also shown using cross-validation (note S7)]. Moreover, we hypoth-
esize that those cSLs with the highest specificity to cancer (i.e., with 
the strongest SL effect in cancer and no or the weakest effect on 
normal cells) should have the strongest effect on cancer develop-
ment. To test this, we identified the subset of such cSLs (termed 
“highly specific cSLs” or “hcSLs”) and those with the lowest speci-
ficity to cancer (termed “lowly specific cSLs” or “lcSLs”; Methods) 
and recomputed the TCLs of all normal GTEx tissues using these 
two cSL subsets, respectively. The TCLs computed from the hcSLs 
correlate much stronger with cancer lifetime risk than those com-
puted from the lcSLs (Spearman’s  = −0.593 versus −0.319; Fig. 2D), 
testifying that these cSLs with high functional specificity to cancer 
are more relevant to carcinogenesis. These hcSLs are enriched for cell 
cycle, DNA damage response, and immune-related genes [false dis-
covery rate (FDR) < 0.05; table S5 and Methods], which are known 
to play key roles in tumorigenesis.

Higher TCL in the younger population is associated 
with delayed cancer onset
We have thus established that TCL in the older population is in-
versely correlated with lifetime cancer risk across tissues. We next 
hypothesized that higher cSL load in a given normal tissue in the 
young population may delay cancer onset, which typically occurs 

Fig. 2. TCL can explain the variance in lifetime cancer risk across human tissues. (A) Scatterplot showing Spearman’s correlations between lifetime cancer risk and 
TCL computed for the older population (age ≥50 years) (ranked values are used as lifetime cancer risk spans several orders of magnitude.) (B) Lifetime cancer risks across 
tissues were predicted using linear models (under cross-validation) containing different sets of explanatory variables: (i) TCL only, (ii) the number of stem cell divisions 
(NCSD) only, and (iii) TCL and NSCD (27 data points). The prediction accuracy is measured by Spearman’s , shown by the bar plots. The result of a likelihood ratio test 
between models (ii) and (iii) is also displayed. (C) A similar bar plot as in (B) comparing the predictive models for cancer risk involving the following variables: (i) TCL only, 
(ii) the LADM only, and (iii) TCL and LADM combined (21 data points only due to the smaller set of LADM data). A model containing all the three variables does not increase 
the prediction power (Spearman’s  = 0.77 under cross-validation) and is not shown. (D) Bar plot showing the correlations between lifetime cancer risk with TCLs comput-
ed (age ≥50 years) using subsets of cSLs: hcSLs, lcSLs, and all cSLs. Spearman’s  and P values are shown. The hcSLs and lcSLs are identified using data of matched TCGA 
cancer types and GTEx normal tissues (Methods), which correspond to only a subset of tissue types. To facilitate comparison, here, the correlation for all cSLs was also 
computed for the same subset of tissues, and therefore, the resulting correlation coefficient is different from that in (A).
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later (age >40 years) (1). To test this, we use the median age at can-
cer diagnosis (1) of a certain tissue as its cancer onset age (table S3 
and Methods). We find that the TCL values (for age ≤40 years) are 
markedly correlated with cancer onset age (Spearman’s  = 0.502, 
P = 0.011; Fig. 3A). This result is again robust to variations in our 
methods to compute TCL and cancer onset age (fig. S6, table S3, 
and note S3). We note that the cancer onset age is not significantly 
correlated with lifetime cancer risk (Spearman’s  = 0.279, P = 0.28).

Similar to our earlier analysis, we see that the TCLs computed 
from the hcSLs correlate much stronger with onset age than those 
from the lcSLs or all cSLs (Spearman’s  = 0.603 versus −0.157; 
Fig. 3B and fig. S7A) and also stronger than those obtained from 
control tests performed as before (empirical P < 0.001; fig. S7, B to D). 
As with the case of cancer risk, the observed correlation is dominated 
by the SL genetic interaction effects rather than the single-gene 
effects (fig. S7, E to G, and note S5).

cSL load decreases in cells treated by chemical carcinogens 
and throughout pre-cancer stages
To further corroborate the relevance of cSL load to carcinogenesis, 
we next investigated whether carcinogen treatment in normal (non-
cancer) cell lines and primary cells in vitro can lead to cSL load de-
crease. First, we analyzed gene expression data from a recent study 
where human primary hepatocytes, renal tube epithelial cells, and 
cardiomyocytes were treated with the carcinogen and hepatotoxin 
thioacetamide-S-oxide (25). We computed the cSL load in each cell 
type after treatment versus control and found a significant decrease 
of cSL load only in the hepatocytes (Wilcoxon rank sum test 
P = 0.014; Fig. 4A), which is consistent with thioacetamide-S-oxide’s 
role as a hepatotoxin and a carcinogen primarily in the liver. Second, 
we collected the gene expression signatures of chemotherapy drug 
treatments in a total of four primary cells and normal cell lines from the 
Connectivity Map (CMAP) (26). We quantified the drug-induced 
cSL load changes indirectly from the gene signatures (Methods), 
comparing the strongly mutagenic DNA-targeting drugs (n = 6) in-
cluding alkylating agents and DNA topoisomerase inhibitors to the 
weak/nonmutagenic taxanes and vinca alkaloids (n = 5), which act 
on the cytoskeleton and not directly on DNA (27). We find that the 
strong mutagenic chemotherapy drugs lead to a significantly larger 

decrease in cSL load (Fig. 4B, P = 0.03 from a linear model controlling 
for cell type; Methods). The strong mutagenicity of alkylating agents 
and DNA topoisomerase inhibitors is consistent with their mecha-
nisms of actions; they are also World Health Organization class I 
carcinogens (28), supported by incidence of secondary cancers in 
patients treated by these drugs for their primary cancers (29). In 
contrast, taxanes and vinca alkaloids have shown negative or weak/
inconclusive results in mutagenic tests (27, 30). These results are 
not likely affected by cell death, as the cSL decreased specifically 
only for the two classes among all tested chemotherapy drugs. 
Although the CMAP dataset used for this analysis does not include 
cell viability information, the gene expression of the cells does not 
show an apoptotic signature after the drug treatment.

Further beyond these in vitro findings, analyzing a recently pub-
lished lung cancer dataset (31), we find that cSL load decreases pro-
gressively as cancers develop from normal tissues throughout the 
multiple stages of premalignant lesions in vivo (normal versus cancer 
Wilcoxon rank sum test P = 4.47 × 10−5, ordinal logistic regression 
P = 5.89 × 10−7 with negative coefficient −28.7; Fig. 4C). These re-
sults provide further evidence supporting cSL as a factor that may 
be involved in cancer development.

The activity state of cSL partners of some TSGs predicts 
the specific tissues in which they are known to drive cancer
Given the role of cSLs in cancer development, we turned to ask 
whether cSL may also contribute to the tissue/cancer-type specificity 
of TSGs (10, 32). Specifically, we reasoned that the loss of function 
of a gene is unlikely to have cancer-driving effects in tissues where 
its cSL partner genes are lowly expressed, due to the synthetic lethal 
effect of such co-inactivation on the emerging cancer cells. In other 
words, this gene is unlikely to be a TSG in such tissues. To study this 
hypothesis, we obtained a list of TSGs together with the tissues in 
which their loss is annotated to have a tumor-driving function from 
the COSMIC database (table S6A) (11). We further identified the cSL 
partner genes of each such TSG using ISLE (Methods and table S6B) 
(22). In total, there are 23 TSGs for which we were able to identify 
more than one cSL partner gene. Consistent with our hypothesis, 
we find that in most of the cases, the cSL partner genes of TSGs have 
higher expression levels in the tissues where the TSGs are known 
drivers compared to the tissues where they are not established drivers 
(binomial test for the direction of the effect P = 0.023; Fig. 5A). We 
identified 10 TSGs whose individual effects are significant (FDR < 0.05) 
and cSL specific (as shown by the random control test), and all these 
10 cases exhibit the expected direction of effect (labeled in Fig. 5A 
and table S6C; two example TSGs, FAS and BRCA1, are shown in 
Fig. 5B, details are in fig. S8 and Methods). Reassuringly, these find-
ings disappear under randomized control tests involving random 
partner genes of the TSGs and shuffled TSG–tissue type mappings 
(note S9), further consolidating the role of cancer-specific cSLs of 
normal tissues in cancer risk and development.

DISCUSSION
In this work, we show that the cSL load in normal tissues is a strong 
predictor of tissue-specific lifetime cancer risk and is much stronger 
than the pertaining predictive power observed on the individual gene 
level. Consistently, we find that higher cSL load in the normal tissues 
from young people is associated with later onset of the cancers of 
that tissue. As far as we know, no other factor has been previously 

Fig. 3. TCL can explain the variance in cancer onset age across human tissues. 
(A) Scatterplot showing Spearman’s correlations between cancer onset age and 
TCL (age ≤40 years). (B) Bar plot showing the correlations between cancer onset 
age with TCLs computed (age ≤40 years) using subsets of cSLs: hcSLs, lcSL, and all 
cSLs. Spearman’s  and P values are shown. As in Fig. 2D, this analysis was done for 
a subset of GTEx normal tissues for which we had matched TCGA cancer types to 
identify the hcSLs and lcSLs (Methods); therefore, the correlation result for all cSLs 
is also different from that in (A).
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reported to be predictive of cancer onset age across tissues. Further-
more, cSL load decreases upon carcinogen treatment in vitro and 
during cancer development through stages of precancerous lesions 
in vivo. Last, we show that the activity status of cSL partners of TSGs 
can explain their tissue-specific inactivation.

We have shown that the correlation between cSL and cancer risk 
in normal tissues may be explained by the fact that many of the cSLs 
are specific to cancer and have weak or no functional lethal effect in 
the normal tissues (Figs. 2D and 3B and fig. S5); therefore, normal 
tissues can bear relatively high cSL loads without being detrimentally 
affected—quite to the contrary, they become more resistant to cancer 
due to the latent effect of these cSLs on potentially emerging cancer 
cells. We emphasize that while we quantified the cSL loads using the 
normal tissue data from GTEx, the set of cSLs we used was derived 
exclusively in cancer from completely independent cancer datasets 
(and without using any information regarding lifetime cancer risk, 
onset, or tumor suppressor tissue specificity), so there is no circu-
larity involved. The cSL load in normal tissues was computed to 
reflect the summed effects of individual cSL gene pairs. The under-
lying assumption is that the low expression of each cSL gene pair is 
synthetic sick (i.e., reducing cell fitness to some extent) and that the 
effects from different cSL gene pairs are additive, consistent with 
the ISLE method of cSL identification (22). Many experimental screen-
ings of SL interactions also rely on techniques such as RNA interference 
that inhibits gene expression rather than completely knocks out a 
gene (33), and it is evident that most of the resulting SL gene pairs 
have milder than lethal effects. While these cSLs likely act via a di-
verse range of biological pathways and thus do not provide pathway-
specific mechanisms, the additive cancer-specific lethal effect of such 
cSL gene pairs, however, could form a negative force impeding can-
cer development from normal tissues.

Obviously, as we are studying the across-tissue association be-
tween cSL load and cancer risk, it is essential to focus on cSLs that 
are common to many cancer types (i.e., pan-cancer). Therefore, we 
focused on cSLs identified computationally by ISLE via the analysis 
of the pan-cancer TCGA patient data (22). In contrast, most exper-
imentally identified cSLs are obtained in specific cancer cell lines 
and are thus less likely to be pan-cancer [and possibly, less clinically 
relevant (22)]. However, for completeness, we also compiled a set of 
experimentally identified cSLs from published studies (22, 34) (note S1 
and table S1B). The corresponding TCL values computed using this 
set of cSLs correlate significantly with lifetime cancer risk but not with 
cancer onset age; the correlation with cancer risk is also markedly 
weaker than that obtained from ISLE-derived cSLs [Spearman’s 
 = −0.433, P = 0.024 (fig. S9A), control tests and detailed analysis 
are explained in note S4]. These experimentally identified cSLs can 
explain some cases of tissue-specific TSGs including BRCA1 and 
BRCA2 (fig. S9E) but do not result in overall significant account-
ability for a large proportion of TSGs present in the analysis (like in 
Fig. 5A). This corroborates the importance of pan-cancer cSLs and 
their relevance to cancer risk.

TCL is not likely to be a corollary of NSCD and LADM [while 
LADM was thought to be closely related to NSCD (6)], as the 
cSL load is computed by analyzing expression data of bulk tissues, 
where stem cells occupy only a minor proportion. We have shown 
that TCL significantly adds to either NSCD or LADM in predicting 
lifetime cancer risk (Fig. 2, B and C), which also suggests that 
cSL load is an independent factor correlated with cancer risk with 
unique underlying mechanisms. Furthermore, NSCD is measured 

Fig. 4. Experimental and clinical evidence further supports that cSL load 
may play a functional role in cancer development. (A) Box plots showing the 
cSL loads in control versus thioacetamide-S-oxide–treated samples in human 
primary hepatocytes (“liver”), renal tube epithelial cells (“kidney”), and cardio-
myocytes (“heart”), using the data from (25). One-sided Wilcoxon rank-sum test 
P values are shown. (B) Box plots showing the cSL load changes after treatment 
by different classes of chemotherapy drugs in four cell types, using the CMAP 
data (26). Asterisk indicates that the cSL load change is estimated indirectly from 
the CMAP drug treatment gene expression signatures (Methods). Strongly mu-
tagenic drugs (n = 6), including alkylating agents (green points) and DNA to-
poisomerase inhibitors (purple points), lead to a significantly larger cSL load 
decrease compared to weak or nonmutagenic drugs (n = 5), including taxanes 
(red points) and vinca alkaloids (blue points); P = 0.03 from a linear model con-
trolling for cell type. HA1E is an immortalized kidney cell line; PHH, primary hu-
man hepatocyte; ASC, adipose-derived stem cell; SKB, human skeletal myoblast. 
(C) Box plots showing the cSL load in samples of different stages of premalignant 
lesions in the lung (including normal tissue and lung squamous cell carcinoma) 
(28). The cSL load shows an overall decreasing trend from normal to different 
pre-cancer stages to cancer (one-sided Wilcoxon rank sum test of normal versus 
cancer P = 4.47 × 10−5; ordinal logistic regression has negative coefficient −28.7, 
P = 5.89 × 10−7).
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as the product of the rate of tissue stem cell division and the number 
of stem cells residing in a tissue (2), and we confirmed that TCL is 
correlated with lifetime cancer risk independent of both of these 
components (partial Spearman’s  = −0.510 and −0.567, P = 0.007 
and 0.002, respectively; fig. S10, A and B). We additionally tested 
and verified that proliferation indices computed for the bulk 
normal tissues do not correlate with lifetime cancer risk across 
tissues (Spearman’s  = 0.062, P = 0.77; fig. S10C and note S10). 
Furthermore, we verified that our observed correlations are not con-
founded by the number of samples from each cancer or tissue type 
(fig. S11).

Since cSL load can vary with age, one may wonder whether cSL 
load could be extended to correlate with age-specific cancer risk with-
in a tissue (as opposed to across tissues). However, variations in 
cancer risk across tissues and across ages can be driven by different 
factors. We did not find a consistent correlation between cSL load 
computed by age range and age-specific cancer risk in all tissue types 
(note S14 and fig. S15). Another extension to our current research 
question is studying the effect of higher-order genetic interactions 
on cancer risk, which is plausible but challenging to study due to the 
limited knowledge available on such complex interactions.

While revealing cSL as a previously unknown factor associated with 
cancer development, our study has several limitations. First, because of 
the importance of using pan-cancer cSLs as discussed above, we mainly 
relied on the cSLs computationally inferred by ISLE (22) as one of 
the most comprehensive pan-cancer cSL datasets. However, current 
cSL prediction algorithms are far from perfect and should not be 
regarded as the gold standard for general cSL identification. Only a 
minor fraction of the large number of predicted cSLs have been ex-
perimentally validated only in specific cell types. The cSLs inferred 
by ISLE should be best viewed as a set of candidate cSL pairs that 

emerge from genetic screen data in vitro but with further support 
from patient and phylogenetic data. Future studies that provide ex-
perimentally validated pan-cancer cSLs are needed to consolidate 
our current findings. Second, we have relied on analyzing the gene 
expression data of bulk tissues from GTEx and not the expression 
data of the specific cells of origin of the corresponding cancers. More 
refined future analysis is desirable using single-cell data across normal 
human tissues as such data becomes more widely available. Last, our 
study does not establish a causal relationship between the cSL load 
and the risk of cancer, as it is challenging to experimentally perturb 
a large number of cSLs simultaneously. The results shown are 
descriptive and association based, and the causal role of SLs in car-
cinogenesis remains to be studied mechanistically.

Together, our findings demonstrate strong associations between 
SL and cancer risk, onset time, and context specificity of tumor sup-
pressors across human tissues. This suggests that beyond the effect 
on cancer after it has developed, cSL could also play an important 
role during the entire course of carcinogenesis, although further 
studies are needed to establish causality. While SL has been attract-
ing tremendous attention as a way to identify cancer vulnerabilities 
and target them, this is the first time that its potential role in medi-
ating cancer development is uncovered.

METHODS
cSL interaction networks
The cSL gene pairs computationally identified by the ISLE (identifi-
cation of clinically relevant SL) pipeline were obtained from (22). 
We used the cSL network identified with FDR < 0.2 for the main 
text results, containing 21,534 cSL gene pairs, which is a reasonable 
size representing only about one cSL partner per gene on average. 

Fig. 5. The expression levels of the cSL partner genes of TSGs can explain their tissue specificity. (A) For each tissue-specific TSG gene Gi, the expression levels of its 
cSL partner genes in the tissue type(s) where gene Gi is a TSG were compared to those where gene Gi is not an established TSG, using GTEx normal tissue expression data. 
The volcano plot summarizes the result of comparison with linear models. Positive linear model coefficients (x axis) mean that the expression levels of the cSL partner 
genes are, on average, higher in the tissue(s) where gene Gi is a TSG. Many cases have near-zero P values and are represented by points (half-dots) on the top border line 
of the plot. Overall, there is a dominant effect of the cSL partner genes of TSGs having higher expression levels in the tissues where the TSGs are known drivers (binomial 
test P = 0.023). All TSGs with FDR < 0.05 that also passed the random control tests are labeled. (B) Examples of two well-known TSGs, FAS and BRCA1, are given. The heat-
maps display the normalized expression levels of their cSL partner genes (rows) in tissues of where these two genes are known to be TSGs [according to the annotation 
from the COSMIC database (11)] and in tissues where they are not established TSGs (columns), respectively. High and low expressions are represented by red and blue, 
respectively. For clarity, one typical tissue type where the TSG is a known driver (e.g., testis for FAS) and three other tissue types where the TSG is not an established driv-
er (and the least frequently mutated) are shown.
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This also allows us to capture the effects of many weak genetic inter-
actions. Nevertheless, we also used the cSL network with FDR < 0.1 
(only 2326 cSLs) to demonstrate the robustness of the results to this 
parameter (notes S1 and S3). Each gene pair is assigned a significance 
score [the “SL-pair score” defined in (22)], that a higher score indi-
cates that there is stronger evidence that the gene pair is SL in cancer. 
Out of these, we used 20,171 cSL gene pairs whose genes are present 
in the GTEx data (table S1A). The experimentally identified cSL gene 
pairs were collected from 18 studies [obtained from the supplemen-
tary data 1 of Lee et al. (22) except for those from Horlbeck et al. 
(34)]. Horlbeck et al. (34) provided a gene interaction (GI) score for 
each gene pair in two leukemia cell lines. Gene pairs with GI scores 
of <−1 in either cell line were selected as cSLs. A total of 27,975 
experimentally identified cSLs were obtained, out of which 27,538 
have both their genes present in the GTEx data (table S1B).

GTEx and TCGA data
The V6 release of GTEx (20) RNA sequencing (RNA-seq) data [gene-
level reads per kilobase of transcript, per million mapped reads (RPKM) 
values] was obtained from the GTEx Portal (https://gtexportal.org/
home/). The associated sample phenotypic data were downloaded from 
dbGaP (35) (accession number phs000424.vN.pN). For comparing the 
level of negative selection to co-inactivation of cSL gene pairs between 
normal and cancer tissues, the RNA-seq data of TCGA and GTEx as 
RNA-seq by expectation-maximization (RSEM) values that have been 
processed together with a consistent pipeline that helps to remove batch 
effects were downloaded from UCSC Xena (36). The expression data for 
each tissue type (normal or cancer) was normalized separately (inverse 
normal transformation across samples and genes) before being used for 
the downstream analyses. We mapped the GTEx tissue types to the cor-
responding TCGA cancer types (table S2B), resulting in one-on-many 
mappings, e.g., the normal lung tissue was mapped to both lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma (LUSC).

Cancer risk data and onset age
Lifetime cancer risk denotes the chance a person has of being diag-
nosed with cancer during his or her lifetime. Lifetime cancer risk 
data (table S2A) are from Tomasetti and Vogelstein (2), which are 
based on the U.S. statistics from the SEER (Surveillance, Epidemiol-
ogy, and End Results) database (1). We derived the cancer onset age 
based on the age-specific cancer incidence data from the SEER data-
base with the standard formula (37). Specifically, for each cancer 
type, SEER provides the incidence rates for 5-year age intervals from 
birth to 85+ years old. The cumulative incidence (CI) for a specific 
age range S is computed from the corresponding age-specific inci-
dence rates (IRi, i ∈ S) as CI = 5i ∈ S IRi, and the corresponding risk 
is computed as risk = 1 − exp(−CI). The onset age for each cancer 
type (table S3) was computed as the age when the CI from birth is 
50% of the lifetime CI (i.e., birth to 85+ years old). Usually, the on-
set age defined as such is between two ages where the actual CI data 
are available, so the exact onset age was obtained by linear interpola-
tion. Alternative parameters were used to define onset age (note S3) 
to show the robustness of the correlation between TCL and cancer 
onset age based on different definitions.

Computing cSL load
For each sample, we computed the number of cancer-derived SL 
gene pairs that have both genes lowly expressed and divided it by 
the total number of cSLs available to get the cSL load per sample. In 

the ISLE method described in (22), low expression was defined as 
having expression levels below the 33 percentile in each tissue or 
cell type. Thus, the ISLE-derived cSL gene pairs were shown to ex-
hibit synthetic sickness effects when both genes in the gene pair are 
expressed at levels below the 33 percentile in each tissue, even 
though this appears to be a very tolerant cutoff (22). We therefore 
adopted the same criterion for low expression for the main results, 
although we also explored other low expression cutoffs to demon-
strate the robustness of the results (note S3).

Computing TCL and correlation with lifetime cancer risk 
and cancer onset age
TCL of each tissue type is the median value of the cSL loads of all the 
samples (or a subpopulation of samples) in that tissue, with the cSL 
load of a sample computed as above. For example, TCL for the older 
population (age ≥50 years) is the median cSL load for the samples 
of age ≥50 years in each tissue type. For analyzing the correlation 
between the TCLs computed from GTEx normal tissues and cancer 
risk, we mapped the GTEx tissue types to the corresponding cancer 
types for which lifetime risk data are available from Tomasetti and 
Vogelstein (2), resulting in 16 GTEx types mapped to 27 cancer 
types (table S2A). Gallbladder nonpapillary adenocarcinoma and 
osteosarcoma of arms, head, legs, and pelvis are not mapped to 
GTEx tissues and excluded from our analysis. Similarly for the correla-
tion between TCLs and cancer onset age, we mapped GTEx tissue 
types to the tissue sites from the SEER database (as given in the data 
slot “site recode ICD-O-3/WHO 2008”) by their names (table S3).

Computing cSL SGL
To investigate the effect on the single-gene level, we computed the 
cSL SGL in a paralleling way to the computation of the cSL load. 
Among all the unique genes constituting the cSL network (i.e., cSL 
genes), we computed the fraction of lowly expressed cSL genes for 
each sample as the cSL SGL, where low expression was defined in 
the same way as the computation of cSL load as elaborated above. 
Similarly, tissue cSL SGL is the median value of the cSL SGLs of all 
the samples in a tissue.

Predicting tissue lifetime cancer risk with linear models
The lifetime cancer risks across tissue types were predicted with linear 
models containing three different sets of explanatory variables: 
(i) the number of total stem cell divisions (NSCD) alone, (ii) TCL 
alone, and (iii) NSCD together with TCL. LLR test was used to de-
termine whether model (iii) (the full model) is significantly better 
than model (i) (the null model) in predicting lifetime cancer risks. 
The three models were also used to predict the lifetime cancer risks 
with a leave-one-out cross-validation procedure, and the prediction 
performances were measured by Spearman correlation coefficient. 
A similar analysis was performed to predict lifetime cancer risks 
across tissue types with three linear models involving the level of 
abnormal DNA methylation levels of the tissues (6): (i) the number 
of LADM alone, (ii) TCL alone, and (iii) LADM together with TCL.

Identifying and analyzing hcSLs and lcSLs
For each pair of GTEx normal–TCGA cancer of the same tissue 
type (table S2B), we computed the fraction of samples where a cSL 
gene pair i has both genes lowly expressed (defined above) among 
the normal samples (fni) and cancer samples (fci) and computed a 
specific score as rsi = fni − fci. We selected the hcSLs as those whose 

https://gtexportal.org/home/
https://gtexportal.org/home/
http://phs000424.vN.pN
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specific scores are greater than the 75% percentile of all scores and 
lcSLs as those with a score below the 25% percentile (table S4, A and B). 
We compared SL significance scores between the hcSLs and lcSLs in 
each tissue using a Wilcoxon rank sum test. For each type of the 
GTEx normal tissues used in this analysis (i.e., those that can be 
mapped to TCGA cancer types), we also computed the TCL as 
above but using the hcSLs, lcSLs, or all cSLs, respectively, and ana-
lyzed their correlation with lifetime cancer risk or cancer onset age 
across the tissues.

Pathway enrichment of the hcSLs
We designed an empirical enrichment test as below to account for 
the fact that each cSL consists of two genes. For the hcSLs in each 
tissue type and each given pathway from the Reactome database 
(38), we computed the odds ratio (OR) for the overlap between the 
genes in hcSLs and the genes within the pathway based on the Fisher’s 
exact test procedure, with the “background” being all the genes in 
the ISLE-inferred cSLs. A greater than 1 OR indicates that the hcSLs 
are positively enriched for the genes of the pathway. To determine 
the significance of the enrichment, we repeatedly and randomly 
sampled the same number of cSLs as that of the hcSLs, computed 
the ORs similarly, and computed the empirical P value as the frac-
tion of cases where the OR from the random cSLs is greater than 
that from the hcSLs. We corrected for multiple testing across path-
ways with the Benjamini-Hochberg method.

CMAP data analysis and estimation of drug-induced cSL load 
change from gene expression signature
The phase I CMAP (26) data were downloaded from the Gene Ex-
pression Omnibus database (GSE92742). Level 5 data that represent 
the consensus perturbation-induced differential expression signa-
ture were used. We focused on CMAP data that involve treatment 
by specific classes of chemotherapy drugs (mutagenic: alkylating 
agents and DNA topoisomerase inhibitors; nonmutagenic: taxanes 
and vinca alkaloids) in normal cell lines or primary cells. We iden-
tified a total of 11 drugs tested in four cell types. Given the signature 
(z score) of a drug treatment in a cell, we estimated the drug-induced 
cSL load change as follows

	​​ ​ 1 ─ |S| ​​(​​​  ​ 
(i,j)∈S

​​I(​z​ i​​ < − 0.5 ∧ ​z​ j​​ < − 0.5 ) − ​  ​ 
(i,j)∈S

​​I(​z​ i​​ > 0.5 ∨ ​z​ j​​ < 0.5 )​)​​​​	

where S is the set of cSLs, and |S| is the total number of cSL gene 
pairs. A gene pair is denoted by (i, j), and zi and zj are the z scores of 
gene i and gene j, respectively. I() is the indicator function. Intui-
tively, the above formula quantifies the number of cSL gene pairs 
where both genes are down-regulated with a z score cutoff of −0.5 
(i.e., contributing to cSL load increase), minus the number of cSL 
gene pairs where either gene is up-regulated with a z score cutoff of 
0.5 (i.e., contributing to cSL load decrease), normalized by the total 
number of cSL gene pairs. We then tested whether the mutagenic 
drugs lead to a larger decrease in cSL load compared to nonmutagenic 
drugs with a linear model that controls for both cell type and drug.

Analyzing the tissue specificity of TSGs
We obtained the list of TSGs and their associated tissue types from 
the COSMIC database (11) (https://cancer.sanger.ac.uk/cosmic/
download, the “Cancer Gene Census” data; table S6A). For each 
TSG, their cSL partner genes were identified using the ISLE pipeline 

(22) with an FDR cutoff of 0.1 (table S6B). Here, the FDR cutoff is 
more stringent than that used for the pan-cancer genome-wide cSL 
network (FDR < 0.2 for the main results) since, here, FDR correc-
tion was performed for each TSG, corresponding to a much lower 
number of multiple hypotheses. As a result, the FDR correction has 
more power, and a relatively more stringent cutoff can give rise to a 
more reasonable number of cSL partner genes per TSG. We focused 
our analysis on 23 TSGs for which more than one cSL partner genes 
were identified (no cSL partner was identified for most of the other 
TSGs). The expression levels of the cSL partner genes were then 
compared between tissue type(s) where the TSG is a known driver 
and the rest of the tissues where the TSG is not an established driver 
with linear models. Specifically, the expression levels of the cSL 
partners were modeled with two explanatory variables: (i) driver 
status of the TSG in the tissue (binary) and (ii) cSL partner gene 
(categorical, indicating each of the cSL partner genes of a TSG). The 
coefficient and P value associated with variable (i) were used to 
analyze the general trend of differential expression among the cSL 
partner genes. Positive coefficients of variable (i) means that the 
expression levels of the cSL partner genes are, on average, higher in 
the tissue(s) where the TSG is a known driver compared to those in 
the tissues where the TSG is not an established cancer driver.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/1/eabc2100/DC1

View/request a protocol for this paper from Bio-protocol.
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