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N E U R O S C I E N C E

Visual number sense in untrained deep neural networks
Gwangsu Kim1*, Jaeson Jang2*, Seungdae Baek2, Min Song2,3, Se-Bum Paik2,3†

Number sense, the ability to estimate numerosity, is observed in naïve animals, but how this cognitive function 
emerges in the brain remains unclear. Here, using an artificial deep neural network that models the ventral visual 
stream of the brain, we show that number-selective neurons can arise spontaneously, even in the complete absence 
of learning. We also show that the responses of these neurons can induce the abstract number sense, the ability to 
discriminate numerosity independent of low-level visual cues. We found number tuning in a randomly initialized net-
work originating from a combination of monotonically decreasing and increasing neuronal activities, which emerges 
spontaneously from the statistical properties of bottom-up projections. We confirmed that the responses of these 
number-selective neurons show the single- and multineuron characteristics observed in the brain and enable the network 
to perform number comparison tasks. These findings provide insight into the origin of innate cognitive functions.

INTRODUCTION
Number sense, an ability to estimate numbers without counting (1, 2), 
is an essential function of the brain that may provide a foundation 
for complicated information processing (3). It has been reported that 
this capacity is observed in humans and various animals in the ab-
sence of learning. Newborn human infants can respond to abstract 
numerical quantities across different modalities and formats (4), and 
newborn chicks can discriminate quantities of visual stimuli without 
training (5). In single-neuron recordings in numerically naïve monkeys 
(6) and crows (7), it was observed that individual neurons in the 
prefrontal cortex (PFC) and other brain areas can respond selectively 
to the number of visual items (numerosity). These results suggest that 
number-selective neurons (number neurons) arise before visual train-
ing and that they may provide a foundation for an innate number 
sense in the brain. However, details of how this cognitive function 
emerges in the brain are not yet understood.

Recently, model studies with biologically inspired artificial neural 
networks have provided insight into the development of various 
functional circuits for visual information processing (8–11). For 
example, the brain activity initiated by various visual stimuli has 
been successfully reconstructed in deep neural networks (DNNs) 
(12–14), and the visual pattern designed to maximize the response of 
DNNs also maximized the spiking activity of cortical neurons be-
yond their naturally occurring levels (15). These results suggest that 
studies using DNN models can provide a possible scenario for the 
mechanism of the brain activities encoding visual information.

Previous studies using DNNs have suggested that number-selective 
response can emerge from unsupervised learning of visual images 
(16–18) without training for numbers (19). However, the number-
selective responses observed in these models were mostly dependent 
on low-level visual features, such as the total area of the stimulus; 
thus, an additional learning process was required to achieve the ab-
stract number sense (19, 20). A recent study showed that neurons 
with abstract number sense can emerge in DNNs after being trained 
for the classification of natural images (21), implying that the abstract 

number sense could be initiated by the learning of statistical proper-
ties of natural scenes. However, it still remains unclear whether such 
nonnumerical training processes are factors crucial to the emergence 
of a number-selective response.

Important clues were found from a randomly initialized, untrained 
feedforward network able to initiate various cognitive functions (22). 
It was reported that selective tunings, such as number-selective re-
sponses, can emerge from the multiplication of random matrices (23) 
and that the structure of a randomly initialized convolutional neural 
network can provide a priori information about the low-level statistics 
in natural images, enabling the reconstruction of the corrupted images 
without any training for feature extraction (24). Furthermore, a recent 
study showed that subnetworks from randomly initialized neural net-
works can perform image classification (25), implying the ability of a 
randomly initialized network to engage in visual feature extraction.

Here, we show that abstract number tuning of neurons can spon-
taneously arise even in completely untrained DNNs and that these 
neurons enable the network to perform number discrimination tasks. 
Using an AlexNet model designed on the basis of the structure of a 
biological visual pathway, we found that number-selective neurons 
are observed in randomly initialized DNNs in the complete absence 
of learning and that they show the single- and multineuron charac-
teristics of the types observed in biological brains following the 
Weber-Fechner law. The responses of these neurons enable the net-
work to perform a number comparison task, even under the condition 
that the numerosity in the stimulus is incongruent with low-level visual 
cues such as the total area, the size, and the density of visual patterns 
in the stimulus. From further investigations, we found that the neu-
ronal tuning for various levels of numerosity originated from the 
summation of monotonically decreasing and increasing activity units 
in the earlier layers (16–18, 26), implying that the observed number 
tuning emerges from the statistical variation of bottom-up projec-
tions. Our findings suggest that number sense can emerge sponta-
neously from the statistical properties of bottom-up projections in 
hierarchical neural networks.

RESULTS
Emergence of number selectivity in untrained networks
We simulated the response of AlexNet, a conventional DNN that 
models the ventral visual stream of the brain (table S1) (8). The net-
work consists of five convolutional layers for feature extraction and 

1Department of Physics, Korea Advanced Institute of Science and Technology, 
Daejeon 34141, Republic of Korea. 2Department of Bio and Brain Engineering, Korea 
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. 
3Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science 
and Technology, Daejeon 34141, Republic of Korea.
*These authors contributed equally to this work.
†Corresponding author. Email: sbpaik@kaist.ac.kr

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).



Kim et al., Sci. Adv. 2021; 7 : eabd6127     1 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 9

three fully connected layers for object classification. In the current 
study, to investigate the selective responses of neurons rather than 
the performance of the system, the classification layers were discarded 
and the responses of units in the last convolutional layer (Conv5) 
were examined. We tested the number-selective responses of neu-
rons for images of dot patterns depicting numbers spanning from 1 
to 30 (Fig. 1A) (27). With a test design introduced in earlier work 
(21), we used three different sets of stimuli to ensure the invariance 
of the observed number tuning for certain geometric factors, in this 
case the stimulus size, density, and area (set 1, circular dots of the 
same size; set 2, dots equal the total dot area; and set 3, items of 
different geometric shapes with an equal overall convex hull).

To examine whether number tuning of neurons can arise even in 
completely untrained DNNs, we devised an untrained network by 
randomly initializing the weights of filters in each convolutional layer 
(Fig. 1B, top) (28). Unexpectedly, we found that number-selective 
neurons were observed in this untrained network (Fig. 1B, bottom; 
8.52% of Conv5 units). We also found that the preferred numerosity 
(PN) of number-selective neurons was consistent across different 
stimulus types (Fig. 1C and fig. S1) and across new stimulus sets of 
the same type (fig. S1). The response of number-selective neurons 

to the PN remained consistently stronger than that to other numero
sities, even when change in the other low-level visual cues (including 
size, rotation angle, and color) was applied to the images (fig. S2). 
To confirm that number-tuned units appear consistently across dif-
ferent conditions of random initialization, we varied the width of 
random weight distribution (normal and uniform) in each layer, under 
different initialization methods (28, 29). We confirmed that number-
selective neurons are consistently observed (Fig. 1D), even when the 
weight variation was substantially reduced (10−3 times smaller) from 
the original condition (Fig. 1D, black and gray triangles) of random 
initialization.

Previously observed characteristics of tuned neurons in monkeys 
(27), including the Weber-Fechner law, were also reproduced by 
number neurons in the untrained AlexNet (Fig. 2). First, the distri-
bution of the PN covered the entire range (1 to 30) of the presented 
numerosity, but number neurons preferring 1 or 30 were most 
frequently observed. Thus, the ratio of neurons increases as the PN 
decreases to 1 or increases to 30, with a profile similar to the exper-
imental observation in monkeys (Fig. 2A) (27). In addition, we 
observed that the average tuning curves indicating the preference of 
each numerosity were a good fit to the Gaussian function, particu-
larly on a logarithmic scale, as observed in biological brains (Fig. 2B, 
*P < 10−40, Wilcoxon rank sum test) (27). We found that the sigma 
of the Gaussian fit () of the averaged tuning curve increases pro-
portionally with increase in the PN on a linear scale. Moreover, it 
remains constant on a logarithmic scale (Fig. 2C; linear, slope = 0.29; 
log, slope = 0.044) following the Weber-Fechner law (27).

It is notable that the tuning properties of the untrained AlexNet 
examined in Fig. 2 are similar to those of the AlexNet trained for the 
classification of natural images (pretrained AlexNet; ILSVRC2010 
ImageNet database was used for training) (fig. S3) (8). One notice-
able difference between the number tuning of the two networks was 
that the ratio of number-selective neurons to the total neurons was 
significantly smaller in the pretrained AlexNet (untrained, 8.52% 
versus pretrained, 3.65% of Conv5 units; fig. S3E, left). Our analysis 
suggests that this difference could be dependent on the bias of the 
average convolutional weights in the pretrained network. We found 
that the average weights in the pretrained network were negatively 
shifted (−0.13, in unit of the SD of convolutional weights), while 
those of untrained networks were set to 0 (28). Additional simula-
tion shows that when the weights of untrained networks are shifted 
with a similar negative bias, the ratio of number-selective neurons 
decreases in a manner similar to that of a pretrained network 
(fig. S3E, right). This observation implies that strong negative bias 
reduces the probability that a stimulus image will generate a nonzero 
response of the rectified linear unit (ReLU) activation function in 
Conv5, and thus also reduces the probability of generating number-
selective responses.

Numerosity comparison by number-selective neurons
Next, we determined whether these number-selective neurons could 
perform a number comparison task (Fig. 3A; see Materials and Methods 
for details), as performed in previous model studies (19, 20). In the 
task, two images of dot patterns were presented to the network, and 
a support vector machine (SVM) was trained with the response of 
256 number-selective neurons to determine which stimulus had 
greater numerosity. The measured correct performance rate of the 
network was found to be 85.1 ± 1.7% (Fig. 3B, red solid bar). This is 
significantly higher than that of the SVM trained with the response 

Fig. 1. Spontaneous emergence of number selectivity in untrained neural 
networks. (A) Examples of the stimuli used to measure number tuning (21). Set 1 
contains dots of the same size. Set 2 contains dots with a constant total area. Set 3 
contains items of different geometric shapes with an equal overall convex hull 
(white dashed pentagon). (B) Top: Architecture of the untrained AlexNet, where 
the weights in each convolutional layer were randomly initialized by a controlled 
normal distribution (28). Bottom: Examples of tuning curves for individual number-
selective network units observed in the untrained AlexNet. A.U., arbitrary unit. 
(C) Left: The preferred numerosity (PN) outcomes measured with different stimulus 
conditions are significantly correlated with each other, implying consistency of the 
preferred numerosity. Right: The average numerical distance between PNs of each 
number-selective neuron measured with different stimulus conditions is close to 
zero. Dashed lines indicate the average. (D) Ratio of number-selective neurons is 
consistently observed, even when the weight variation was substantially reduced 
from the original random initialization condition (28), suggesting that the emergence 
of number-selective neurons does not strongly depend on the initialization condition. 
Black and gray triangles indicate the degree of weight variation for the standard 
random initialization suggested previously (28, 29).
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of nonselective neurons (Fig. 3B, red open bar; number neurons 
versus nonselective neurons, *P = 1.28 × 10−34, Wilcoxon rank sum 
test). The performance of the number-selective neurons was also 
higher than that when the SVM was directly trained with stimulus 
images [Fig. 3B, gray solid bar; number neurons versus images (red 
solid versus gray solid bar), *P = 1.28 × 10−34, Wilcoxon rank sum 
test]. This implies that number-selective neurons encode numerosity 

information exclusively, rather than those other visual features ex-
tracted from the stimulus images.

Subsequently, we found that the performance of the network shows 
profiles of numerosity comparison similar to those observed in 
humans and animals. In the performance of numerosity comparison 
across different combinations of numerosities (Fig. 3C), the perfor-
mance increases as the numerical distance between two numerosities 

Fig. 2. Tuning properties of number-selective neurons in the untrained network. (A) Distribution of preferred numerosity in the network and the observation in 
monkeys (27). Inset: The root mean square error between the red and green curves (untrained versus data) is significantly lower than that in the control with the distribution 
of shuffled preferred numerosity (tall pink line; P < 0.05, n = 100). (B) Left and middle: Average tuning curves of different numerosities on a linear scale and on a logarithmic 
scale. Right: The goodness of the Gaussian fit (r2) is greater on a logarithmic scale, as reported (27). *P < 10−40, Wilcoxon rank sum test. (C) The tuning width (sigma of the 
Gaussian fitting) increases proportionally on a linear scale and remains constant on a logarithmic scale, as predicted by the Weber-Fechner law (n = 100) (27).

Fig. 3. Number neurons can perform numerosity comparison, reproducing statistics observed in animal behaviors. (A) Number comparison task using the SVM. 
(B) Task performance in the case that the response of number neurons, nonselective neurons, and the pixel values of raw stimulus images were provided to train the 
SVM. The dashed line indicates the chance level. (C) Performance of numerosity comparison across different combinations of numerosities. (D) Left: Performance as a 
function of the difference between two numbers. The performance increases as the number difference increases (numerical distance effect) and is significantly higher 
than the chance level for all cases (*P = 8.70 × 10−17, Wilcoxon rank sum test). Right: Even when the difference between two numbers is identical [e.g., 12 versus 2 and 
26 versus 16; black versus white squares in (C)], the performance is greater for the pairs of small numbers (numerical size effect; *P = 3.25 × 10−17, Wilcoxon rank sum test). 
(E) Left: Average activity of number-selective units as a function of the numerical distance. Right: Response to the preferred numerosity; note that the response during 
correct trials is significantly higher than that during incorrect trials, as observed in actual neurons recorded from a monkey prefrontal cortex during a numerosity matching 
task (*P = 2.82 × 10−39, Wilcoxon rank sum test) (27).
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increases (numerical distance effect; Fig. 3D, left; for a difference = 2, 
*P = 8.70 × 10−17, Wilcoxon rank sum test), as observed in humans 
and monkeys (30, 31). Across the pairs of identical numerical dis-
tance (e.g., 10; green solid boxes in Fig. 3C), the performance was 
higher for the pair of smaller numerosities (numerical size effect; 
Fig. 3D, right; for 20 versus 30, *P = 3.25 × 10−17, Wilcoxon rank 
sum test). To investigate the contributions of the number-selective 
neurons for correct choices in greater depth, we compared the average 
tuning curves obtained in correct and incorrect trials, as in previous 
experimental studies (27). As expected, the average response to the 
PN in incorrect trials significantly decreased to 78.3% of that in cor-
rect trials (Fig. 3E; *P = 2.82 × 10−39, Wilcoxon rank sum test), as 
observed in the numerosity matching task with monkeys (27). This 
result suggests that the selective responses of the observed number 
neurons can provide a network capable of comparing numbers.

Abstract number sense independent of low-level visual cues
In the conventional numerosity comparison task (19, 21, 32) with 
two numerosities presented in different images, it is possible that 
the numerosity in the image is estimated by low-level visual cues 
correlated with the numerosity. For example, the total area of the 
stimulus is proportional to the numerosity in stimulus sets 1 and 3 
(Fig. 4A), which means that the images with greater numerosity have 
larger total area in 79.8% of the image pairs used in the test. This 
implies that the SVM may have achieved high performance by 

comparing the total area of the stimulus, instead of encoding the 
abstract numerosity.

To address this critical issue, we designed a revised comparison 
task appropriate for testing the abstract numerosity independent of 
other low-level visual features, which is reported previously in both 
experimental (33, 34) and model (16) studies. First, we designed a 
new stimulus set using various levels of the total area (16) (Fig. 4B; 
eightfold variation on the area; 81/2 = 2.83-fold on the one-dimensional 
scale). The performance of the network with this new stimulus set 
was 83.0 ± 1.5%, practically equivalent to that in the previous result. 
This suggests that the performance of the network for number com-
parison task does not substantially depend on the stimulus area. Next, 
we classified test image pairs into congruent (C) and incongruent 
(I) cases, depending on whether the values of numerosity and the 
low-level visual features in each pair, such as the total area, were 
correlated or not (Fig. 4C). In the revised task, the SVM was trained 
with congruent pairs but was tested with incongruent pairs, so that 
the network could generate a correct answer only when it encoded 
the abstract numerosity of a stimulus image, independently of other 
visual cues such as total area (Fig. 4D).

As a result, the SVM trained with the response of number neurons 
achieved the correct ratio of 71.4 ± 2.1% (Fig. 4E). Although the 
performance in this strict task appears to be slightly lower than that 
in the original task (85.1 ± 1.7%; Fig. 3B), it is still significantly higher 
than that with nonselective neurons and that with pixel information 

Fig. 4. Abstract number sense independent of low-level visual features. (A) Correlation between the numerosity and total area of the stimuli used for the task in Fig. 3. 
(B) Newly designed stimulus set with greater variation of the total area (eightfold variation; 120 to 960 pixel2) (16). (C) Image pairs were grouped as congruent and in-
congruent pairs, depending on the correlation between the values of numerosity and the total area. (D) In the revised task, the SVM was trained with the response to 
congruent pairs but was tested using incongruent pairs. (E) Task performances when the SVM was trained with the response of number neurons, of nonselective neurons, 
and with pixel values of raw stimulus image, respectively (*P = 1.28 × 10−34, Wilcoxon rank sum test). (F) Similar classification of image pairs by dot size and density. (G) Task 
performances with image pairs in (E) suggest that number-selective neurons encode the abstract number sense independent of low-level visual features of the stimulus 
(*P = 1.28 × 10−34, Wilcoxon rank sum test). (H) Task performances with the logistic regression as a classifier, instead of SVM (*P = 1.28 × 10−34, Wilcoxon rank sum test).
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about stimulus images [Fig. 4E; number neurons versus nonselective 
(red solid versus red open bar), *P = 1.28 × 10−34; number neurons 
versus images (red solid versus gray solid bar), *P = 1.28 × 10−34, 
Wilcoxon rank sum test], implying that number neurons encode 
the abstract numerosity of a stimulus image, independently of other 
visual cues.

A similar task was repeated for other visual cues by classifying 
image pairs by congruency to the dot size or to the local density of 
dots (Fig. 4F). Similarly, the correct performance ratio of the net-
work was 75.7 ± 1.7% and 79.5 ± 1.6%, respectively [Fig. 4G; 
number neurons versus nonselective (red solid versus red open bar), 
*P = 1.28 × 10−34 for dot size, *P = 1.28 × 10−34 for density; number 
neurons versus images (red solid versus gray solid bar), *P = 1.28 × 
10−34 for dot size, *P = 1.28 × 10−34 for density, Wilcoxon rank sum 
test]. We also observed similar results with the performance using 
the logistic regression instead of the SVM, suggesting that these re-
sults do not rely on a particular type of classifier for numerosity es-
timation [Fig. 4H; 66.1 ± 2.7%, 59.5 ± 3.5%, and 66.9 ± 3.7% for tests 
1, 2, and 3 using number neurons; number neurons versus non-
selective (red solid versus red open bar), *P = 1.28 × 10−34, 1.28 × 10−34, 
1.28 × 10−34; number neurons versus images (red solid versus gray 
solid bar), *P = 1.28 × 10−34, 1.53 × 10−34, 1.28 × 10−34, Wilcoxon 
rank sum test]. These results indicate that number-selective neurons 
can perform number comparison tasks by encoding the abstract 
numerosity, instead of low-level visual features.

Number tuning by monotonically decreasing and  
increasing units
Subsequently, we examined how number-selective neurons emerge 
in untrained random feedforward networks on the basis of the sum-
mation coding model in previous studies (Fig. 5A) (16–18, 26). In 
our model neural network, important clues were found in the neu-
rons observed in the earlier layer (Conv4), the responses of which 
monotonically decrease or increase as the stimulus numerosity in-
creases (Fig. 5B). We found that these neural responses do not 
substantially vary due to changes of the total stimulus area (16), 
virtually realizing area-invariant, monotonically increasing and de-
creasing responses to stimulus numerosity (fig. S4, A and B; see 
Materials and Methods for details; 1129 ± 253 decreasing units and 
5620 ± 898 increasing units in Conv4; 1.74 ± 0.39% and 8.66 ± 1.39% 
of all Conv4 units). Notably, the ratio of monotonic units is less 
than 0.3% in Conv1 and Conv2, whereas it sharply increases to 
approximately 10% in Conv3 (fig. S4C). These results suggest that 
the hierarchy across the three convolutional layers is required to 
generate monotonic activities in the current randomly initialized 
networks, while such activities could arise in a single layer if the 
network has been trained for numerosity estimation (17). The 
average width (sigma of the Gaussian fit) of the decreasing response 
curves was smaller than that of the increasing units (Fig. 5B, 
insets; mean ± SD of the sigma = 8.28 ± 2.55 for decreasing 
units, 13.2 ± 0.94 for increasing units; P < 10−40, Wilcoxon rank 

Fig. 5. Emergence of number tuning from the weighted sum of increasing and decreasing unit activities. (A) Summation coding model (16–18, 26). (B) Monotonically 
decreasing/increasing neuronal activities as the numerosity increases were observed in earlier layers. Inset: The sigma of the Gaussian fit. Red solid lines indicate the average. 
(C) Number tuning as the weighted summation of decreasing/increasing units. Black solid lines, the average of individual tuning curves. (D) Left: Distributions of the 
preferred numerosity from the model simulation and observations in monkeys (27). Inset: The similarity test as performed in Fig. 2A (P < 0.01, n = 100). Right: The tuning 
width increases proportionally on a linear scale and remains constant on a logarithmic scale, as predicted by the Weber-Fechner law (27). (E) In the model simulation, 
neurons tuned to smaller numbers receive strong inputs from the decreasing units and receive weak inputs from the increasing units and vice versa. Right: The average 
weights of units preferring 4 and 24. (F) Weight bias of all number neurons observed in Conv5 of the untrained AlexNet. As predicted by the model simulation, the neurons 
tuned to smaller numbers receive stronger inputs from decreasing units and vice versa.
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sum test), as observed in the number neurons in Conv5 (PN = 1 
versus 30; Fig. 2C).

We hypothesized that these increasing and decreasing units can 
be the building blocks of number-selective neurons tuned to various 
numerosity values, as in the summation coding model suggested 
previously (16–18, 26). To test this idea, we performed a model sim-
ulation that holds that tuning curves tuned to various preferred 
numbers develop from a combination of increasing and decreasing 
unit activities. For this, 60 increasing and decreasing units were 
modeled as log-normal distributions peaking at 1 and 30, respectively 
(Fig. 5C, left), from the Gaussian parameters observed in the un-
trained AlexNet (see Materials and Methods for details). From 1000 
repeated trials of simulations in which the weights of feedforward 
projections were randomly sampled from the Gaussian distribution 
of the untrained AlexNet (28), we found that number-selective neu-
rons of all PNs can arise from the weighted sum of increasing and 
decreasing units (Fig. 5D). The number of tuned neurons increased 
as the PN decreases toward 1 or increases toward 30 (Fig. 5D, left), 
as observed in monkey experiments (27). In this simulation, we also 
confirmed that the sigma of the Gaussian fit of the average tuning 
curve follows the Weber-Fechner law, similar with that in the un-
trained AlexNet (Fig. 5D, right; linear, slope = 0.27; log, slope = 0.016).

We found that the number-selective neurons generated by this 
simulation show a predicted bias of feedforward weights between 
decreasing and increasing units such that neurons tuned to smaller 
numbers receive strong inputs from the decreasing units and receive 
weak inputs from the increasing units, while neurons tuned to larger 
numbers receive stronger inputs from increasing units (Fig. 5E; P < 
10−40; Wilcoxon rank sum test; Fig. 5F, black solid curve). We con-
firmed that this feedforward bias was also observed in Conv5 of the 
untrained AlexNet (Fig. 5F, red solid curve), implying that the ob-
served neuronal tuning for various levels of numerosity originated 
from the summation of the monotonically decreasing and increasing 
activity units in the earlier layers. We also observed that monotonic 
units in Conv4 provide stronger inputs to number neurons than to 
the other neurons in Conv5 (fig. S4D), implying that number tuning 
in Conv5 arises from the monotonic units in Conv4.

DISCUSSION
Using biologically inspired DNN models, we showed that number 
neurons can spontaneously emerge in a randomly initialized DNN 
without learning. We found that a statistical variation of the weights 
in feedforward projections is a key factor to generate neurons tuned 
to numbers. These results suggest that neuronal tunings that initialize 
the abstract number sense could arise from the statistical complexity 
embedded in the deep feedforward projection circuitry.

Notably, we devised a new numerosity comparison task (Fig. 4) 
able to validate the abstract number sense independent of other 
low-level visual cues. Previously, it was suggested that the reported 
number sense might be observed because of the correlation between 
the numerosity and other continuous magnitudes such as total area, 
because it is hardly possible to design visual stimuli in which numer-
osity is completely independent of other nonnumerical visual mag-
nitudes (e.g., if the total area is fixed, then the single dot size must 
decrease as numerosity increases) (35). However, this scenario was 
refuted in a number of commentaries (36–40) and after further studies 
(41, 42), from the fact that the observed number sense does not 
depend on various visual features in each controlled test. To address 

this issue carefully, we devised a new numerosity comparison task 
that could be successfully performed, only when the network makes 
decisions based on estimation of abstract numerosity. This new test 
can be used for future studies of abstract numerosity in behavioral 
tests of both animals and artificial neural networks.

Although AlexNet is not an impeccable model of the ventral vi-
sual pathway, the current results provide a possible scenario for 
understanding the developmental mechanism of number-selective 
neurons with unrefined feedforward projections (6, 7). Notably, this 
mechanism could also be applied to the other cognitive functions in 
the brain, such as the orientation selectivity in the primary visual 
cortex (V1). Regarding this issue, our previous studies showed that 
neuronal orientation tuning, and its spatial organization across the 
cortical surface, can emerge from the early circuits of the retina 
without any refinement of feedforward and recurrent circuits by 
visual experience (43–47). Extending this notion, our current results 
obtained from artificial DNNs may provide insight into the emer-
gence of cognitive functions observed in early brains before learning 
begins with sensory inputs, which can be fine-tuned by various types 
of synaptic plasticity during the developmental process (48, 49).

It must be also noted that our current model is about how num-
ber sense arises initially and does not consider the complete process 
of development of number sense in adult animals. The training of 
DNN on natural images does not reconstruct all the changes in the 
properties of biological number tuning through lifelong experience. 
For example, we observed that the tuning curves of both untrained 
and pretrained networks are well fitted to a logarithmic scale (Fig. 2C 
and fig. S3B). However, the number tuning in infants on a logarithmic 
scale becomes a linear scale as they grow to adults (50), probably by 
experience with number system and by learning mathematics. We 
expect that a DNN model trained on numerical tasks would be able 
to implement the entire development process of number tuning, in-
cluding the transition from a logarithmic to a linear scale by experience.

The biological implications of our results also provide a testable 
prediction for experimental studies about the anatomical substrates 
of the summation model in the brain. Number-selective neurons in 
the brain are observed mostly in the PFC (27, 34, 51), and neurons 
of monotonically increasing and decreasing activities are observed 
in the lateral intraparietal area (LIP) (33). Although the functional 
circuits from the LIP to the PFC for numerosity estimation has not 
been thoroughly examined anatomically, these two regions are ob-
served to coactivate during the visual tasks of subjects (52). Such a 
correlation might be due to feedforward projection from the LIP to 
the PFC, considering that the LIP showed shorter latency than the 
PFC during a task involving visual categories (53). These results im-
ply the possibility that the PFC and LIP are regions of interest that 
house the actual number neurons and their key component units. 
Further tests, to determine such as whether the number tuning in 
PFC weakens when the neural activity of the LIP is silenced, may 
validate the summation model as an underlying mechanism of number 
tuning in the brain.

In summary, we conclude that the number tuning of neurons can 
spontaneously arise in a completely untrained hierarchical neural 
network, solely from the statistical variance of feedforward projec-
tions. These results highlight the computational power of randomly 
initialized networks, as studied in relation to reservoir computing 
(54, 55) or zero-shot training for visual tasks (56, 57). Our findings 
suggest that various neural tunings may originate from the random 
initial wirings of neural circuits, providing insight into the mechanisms 
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underlying the development of cognitive functions in hierarchical 
neural networks.

MATERIALS AND METHODS
Neural network model
AlexNet (8) was used as a representative model of a convolutional 
neural network. It consists of five convolutional layers with ReLU 
activation, followed by three fully connected layers. The detailed 
designs and hyperparameters of the model were determined on the 
basis of earlier work (8). On the basis of the architecture described 
above, the untrained version of AlexNet was investigated. For each 
layer, the values of the weights were randomly sampled from a nor-
mal distribution, where the mean of weights was set to 0, and the SD 
of the weights was determined to balance the strength of input 
signals across convolutional layers (bias = 0) (28). All simulations 
underwent 100 trials.

Stimulus dataset
The stimulus sets (Fig. 1A) were designed on the basis of earlier 
work (21). Briefly, images (size, 227 × 227 pixels) that contain N = 1, 
2, 4, 6 … 28, 30 circles were provided as inputs to the network. To 
ensure the invariance of the observed number tuning for geometric 
factors such as the stimulus size, density, and area, three stimulus 
sets in which spatial overlap between the dots is avoided were de-
signed. In set 1, dots were located at random locations but with a 
nearly consistent radius (generated by the normal distribution; 
mean = 7, SD = 0.7). In set 2, the total area of the dots remains con-
stant (1200 pixel2) across different numerosities, and the average 
distance between neighboring dots is constrained in a narrow range 
(90 to 100 pixels). In set 3, a convex hull of the dots was fixed as a 
regular pentagon; the circumference of which is 647 pixels. The 
shape of each dot was determined to be that of a circle, a rectangle, 
an ellipse, and a triangle with an equal probability for each. Fifty 
images were generated for each combination of the numerosity and 
the stimulus set, meaning that 50 × 16 × 3 = 2400 images were used 
in total to evaluate the responses of the network units. Area-varying 
stimulus sets with eight levels of the total area (120, 240, 360 … 
960 pixel2) (Fig. 4B) were designed on the basis of previous work 
(16). For each level, the total area of the dots remains constant across 
different numerosities, as in set 2 in Fig. 1A.

Analysis of the responses of the network units
The responses of network units in the final convolutional layer (after 
ReLU activation of the fifth convolutional layer) were analyzed. 
Similar to the method used to find number-selective neurons in 
monkeys (27) and to detect number-selective network units (21), a 
two-way analysis of variance (ANOVA) with two factors (numerosity 
and stimulus set) was used. To detect number-selective units gener-
ating a significant change of the response across numerosities but 
with an invariant response across stimulus sets, a network unit was 
considered to be number selective if it exhibited a significant change 
for numerosity (P < 0.01) but no significant change for the stimulus 
set or interaction between two factors. In contrast, a network unit 
was considered to be nonselective if it exhibited a significant change 
for the stimulus set (P < 0.01) but no significant change for the 
numerosity or for the interaction between two factors. The PN of a 
unit was defined as the numerosity that induced the largest response 
on average among the responses for all presentations. The tuning 

width of each unit was defined as the sigma of the Gaussian fit of the 
average tuning curve on a logarithmic number scale.

To determine the average tuning curves of all number-selective 
units, the tuning curve of each unit was normalized by mapping the 
maximized response to 1 and was then averaged across units using 
the PN value as a reference point. To compare the average tuning 
curves across different numerosities, the tuning curve of each unit 
was averaged across units preferring the same numerosity and was 
then normalized by mapping the minimized and maximized responses 
to 0 and 1, respectively.

Numerosity comparison task for the network
A numerosity comparison task was designed to examine whether 
number-selective neurons can sufficiently perform a numerical task 
that requires an estimation of numerosity from images. For each trial, 
a sample and a test stimulus (randomly selected from 1, 2, 4 … 28, 30) 
were presented to the network, and the resulting responses of the 
number-selective neurons were recorded. Then, an SVM was trained 
with the responses of 256 randomly chosen neurons (10 trials of 
sampling for each untrained network) to predict whether the nu-
merosity of the sample stimulus is greater than that of the test stim-
ulus. In this case, 100 sample stimuli were generated for each form 
of numerosity (1600 stimuli in total), and the test stimuli for each 
sample were generated while avoiding the numerosity of the corre-
sponding sample stimulus. To calculate the average tuning curves 
for the correct and incorrect trials, the tuning curve of each neuron 
was normalized so that response for the PN in the correct trial was 
mapped to 1.

Model simulation for weighted summation of increasing 
and decreasing units
A model simulation was designed to show that the summation of 
decreasing and increasing unit activities (Fig. 5B) can reproduce the 
number-selective activities of all numerosities. The tuning curve of 
a model output neuron (R) was defined by

	​ R  =  ReLU( ​w​ Dec,i​​ ​r​ Dec,i​​ +  ​w​ Inc,i​​ ​r​ Inc,i​​)​	 (1)

where wDec,i and wInc,i are the weight of the ith decreasing or in-
creasing units, respectively, and rDec,i and rInc,i indicate their tuning 
curve. The decreasing and increasing unit activities (r) were mod-
eled as log-normal distributions peaking at 1 and 30, respectively, 
mimicking the tuning curves observed in Conv4 of the untrained 
AlexNet. The tuning width of 60 decreasing or increasing sample 
units was randomly sampled from the Gaussian distribution, mod-
eled following the statistics measured in the untrained AlexNet 
[means ± SD = 1.94 ± 1.5 (decreasing), 2.19 ± 1.5 (increasing)]. The 
feedforward weight (w) was also randomly sampled from the Gaussian 
distribution estimated from the untrained AlexNet. In a trial, 10,000 
output neurons were generated, and 1000 trials were performed for 
the simulation.

The definition of increasing (or decreasing) units in Conv4 of the 
untrained AlexNet was adapted from previous work (16). In detail, 
those units were defined by regressing the response of unit i (Ri) with 
the logarithm of numerosity (N) and total area (A) across the entire 
image set (fig. S4; all variables used in the regression were scaled 
from 0 to 1)

	​​ R​ i​​  = ​ ​ N​​ log(N ) + ​​ A​​ log(A ) +  ​ 	 (2)
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Increasing (or decreasing) units were defined if the regression ex-
plained at least 10% of the variance (R2 > 0.1) in its response and the 
regression coefficient of the total area, A, was smaller than 0.1, so 
that the response of increasing (or decreasing) units increases (or 
decreases) as the stimulus numerosity increases but does not vary 
across the change of total area of the stimuli.

Statistical analysis
All statistical variables, including the sample sizes, exact P values, 
and statistical methods, are indicated in the corresponding texts or 
figure legends. The one-sided Wilcoxon rank sum test was used for 
most comparison analyses, except for the comparison between two 
different distributions of the PN (bootstrap analysis; the root mean 
square error between two curves was compared with that in the 
control with a shuffled distribution; Figs. 2A and 5D). Shaded areas 
or error bars indicate the SD in Figs. 1D, 2 (A and B), 3 (B, D, and E), 
4 (E, G, and H), and 5 (E and F), and figs. S3 (B to E) and S4 (C and 
D), and indicate the SE in Fig. 1B and figs. S2D and S3A.

Code availability
MATLAB (MathWorks Inc.) with deep learning toolbox was used 
to perform the analysis. The MATLAB codes used in this work are 
available at https://github.com/vsnnlab/Number (DOI: 10.5281/
zenodo.4118252).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/1/eabd6127/DC1

View/request a protocol for this paper from Bio-protocol.
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