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Residual transmission is the persistence of malaria transmission after scale-up
of appropriate vector control tools and is one of the key challenges for malaria
elimination today. Although long associated with outdoor biting, other
mosquito behaviours such as partly feeding upon animals contribute greatly
to sustaining transmission. Peri-domestic livestock can be used as decoy to
protect humans from blood-seeking vectors but this approach often leads
to an increased malaria risk in a phenomenon known as zoopotentiation.
Treating the said livestock with drugs capable of killing intestinal parasites
as well as mosquitoes that feed upon them has the potential to tackle malaria
through a previously unexplored mechanism. The advantages and challenges
associated with this approach are briefly discussed here. Numerous
references are purposely provided.

This article is part of the theme issue ‘Novel control strategies for
mosquito-borne diseases’.

1. The problem of residual transmission

Residual transmission, defined as ‘persistence of malaria transmission follow-
ing the implementation in time and space of a widely effective malaria
programme’ [1] is one of the greatest challenges currently faced for eliminating
malaria and achieving the 2030 targets proposed by WHO [2].

Residual transmission is the result of evolution [3]. At least two mechanisms
could explain this: (i) mosquitoes with pre-existing behavioural traits that
favour survival in the presence of scaled-up, home-centred vector control
tools such as long-lasting insecticidal nets (LLINs) or indoor residual spraying
(IRS) will thrive and eventually replace the vector population with susceptible
behaviour, and (ii) the same measures could induce a shift in species compo-
sition when two or more vector species coexist. Although strongly associated
with outdoor biting [4-6], residual transmission is a complex phenomenon
that includes several other behavioural traits of mosquitoes, including crepus-
cular biting, early exit from houses and intermittently feeding upon animals [7].

2. Zoophagic vectors and residual transmission

Zoophagy, the tendency to feed upon animals, more concretely livestock, is one
of such behavioural traits favouring residual transmission [8,9]. The most effec-
tive malaria vectors (predominantly feeding upon humans and at night, when
humans are most vulnerable) represent a small fraction of all Anopheles species,
while the number of vectors predominantly feeding upon animals is much
larger. Given the vast numbers of predominantly zoophagic vectors, even
sporadic feeding upon humans can contribute to sustain malaria transmission
[10]. In addition, feeding upon animals is often associated with other traits
that fuel residual transmission, such as outdoor biting and crepuscular activity
[7,11], which makes evolutionary sense given the availability of livestock blood
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outside protected spaces. Anopheles arabiensis, opportunisti-
cally feeding on animals and humans outdoors and
potentially shifting peak biting times to avoid insecticides
in LLINs and IRS [12], and shifts in species compositions
are good examples of this problem [13].

3. Good decoys and detrimental decoys

Using livestock as a decoy to divert vectors feeding upon
humans, a strategy known as zooprophylaxis, has been tried
in the past with mixed results [14-16]. Most evidence suggests
that while animals can indeed divert some vectors, proximity
to the households is critical and short distances between
animal pens and human dwellings can actually increase
malaria transmission in a phenomenon known as zoopotentia-
tion [17,18]. This phenomenon is not exclusive to malaria as
peri-domestic livestock are well known to increase the
presence of vectors and risk of Chagas disease in a distance-
dependent manner [19,20] and there is a possibility of the
same effect regarding Japanese encephalitis virus [21].

4. Veterinary endectocides

Tackling residual transmission will require innovative vector
control approaches [22]. Endectocides are drugs capable of
killing endo- and ectoparasites and their deployment at the
community level has been advocated as a potential comp-
lementary strategy to reduce malaria transmission [23-25].
Using endectocides in peri-domestic livestock has the poten-
tial to greatly reduce the population of zoophagic vectors and
hence opportunistic feeding upon humans [26].

This idea is currently supported by semi-field data [27,28]
as well as modelling for malaria [29], which predicts impor-
tant reductions in transmission with the treatment of pigs
[30] or cattle [31,32]. Here again, the models also predict
remarkable reduction of transmission for other vector-borne
diseases such as Chagas [33] and human African trypanoso-
miasis [34,35].

5. Additional advantages of using endectocides
in livestock

Endectocides are widely deployed in high-income countries.
They are used to improve livestock growth and yield by redu-
cing the burden of intestinal parasites [36]. In developing
regions, the wider use of endectocides in herds and house-
hold-based livestock would have benefits in human health
beyond the potential reduction of malaria. This is because
the livestock parasites (zoonotic or not) greatly reduce
income and food security, and reduce household wealth and
capital available for healthcare or house improvement [37].
While human use of endectocides to reduce malaria trans-
mission is limited by a stringent regulatory framework [38],
animal use would provide several advantages, allowing for:
(i) higher doses of endectocides, which are directly related
to their anti-mosquito efficacy [39]; (ii) longer-lasting formu-
lations with the potential to sustain mosquitocidal effects
throughout the transmission season [26,40]; (iii) use of endec-
tocides not currently approved for human use such as fipronil
[41,42], which opens the possibility of mosaic deployment of
different endectocides in herds and humans; (iv) adding a
second drug as pharmacokinetic booster to improve the

systemic exposure of the endectocide (this could also inhibit [ 2 |

metabolic resistance mechanisms in the mosquito to amplify
mortality [43] and possibly reverse resistance to endectocides
in intestinal helminths of veterinary relevance [44]); (v)
potential leverage of agricultural development funds not
usually tapped by global health initiatives; and finally, (vi)
creative use of endectocides targeting wild birds, as has
been proposed to tackle West Nile virus [45], an approach
that translated to monkeys, could also to be considered for
Plasmodium knowlesi.

6. Some challenges

When employing veterinary endectocides to reduce malaria
transmission, several challenges need to be overcome. First,
the challenge posed by coordinating human and animal auth-
orities—broad deployment of veterinary endectocide would
require close interaction between the human and animal
health authorities for regulatory and logistic purposes.
Another issue to counter are withdrawal times. Endectocides,
when used in animals for human consumption, can also pose
a risk to human health. This is currently addressed by regu-
lating the admissible drug residues in animal products such
as milk or meat. These limits define the withdrawal periods
for milking or slaughtering livestock after treatment [46].
As an example, the current guidelines of the Joint FAO/
WHO Expert Committee on Food Additives (JECFA) estab-
lish withdrawal times of between 14 and 122 days after
ivermectin treatment, varying according to the formulation,
route of administration and dose. Respecting withdrawal
times could be challenging in areas where slaughter and
milking are not regulated or supervised by qualified person-
nel, and will require close surveillance for potential effects on
the health of humans that consume animal products in areas
where veterinary endectocides are used against malaria.
Furthermore, as the transmission is reduced, interventions
will need to be tailored to the local bionomics. Targeting
the one-health intervention for optimal impact will require
defining areas where malaria transmission is driven by
zoophagic vectors and where livestock density and malaria
burden are above a certain threshold [47]. An additional chal-
lenge lies in resistance in veterinary helminths, which is
already broadly prevalent (reviewed in [48]). Since the pri-
mary indication of most veterinary endectocides is the
reduction of the intestinal parasite burden in herds, it will
be important to monitor the primary efficacy of these drugs
as broader deployment could fuel resistance. The same con-
cern could apply to malaria vectors as broader use in
multiple blood sources, particularly with long-lasting formu-
lation, could expose large mosquito populations to sublethal
concentrations, potentially selecting for resistance. Concerns
about helminth or mosquito resistance can be addressed
with refugia, that is, leaving some animals intentionally
untreated, which allows for the local parasite/mosquito
gene pool to remain heterogeneous and reduces the possibi-
lities of population replacement with resistant phenotypes
[49,50]. Moreover, one theoretical risk with scaled-up veterin-
ary endectocides is the disproportionate selective pressure
put upon zoophagic vectors. In the presence of multiple
vector species competing for the same ecological niche, this
pressure could select for vectors feeding predominantly
upon humans and increase malaria transmission. It is advisa-
ble to manage this risk by either conducting carefully
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controlled semi-field experiments or deploying endectocides
simultaneously in human and livestock in the field and com-
paring against human-only use as planned in the BOHEMIA
trials (www.bohemiaconsortium.org). Lastly, the effect of
endectocide residua in cattle dung and environmental water
must be carefully monitored to avoid negative impact on
the biodiversity of non-target fauna [51,52].

The use of veterinary endectocides to reduce malaria trans-
mission is a relatively unexplored field with enormous
potential to tackle residual transmission and help the malaria
community to get back on track to achieving the goals
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need to be addressed but none seems unsurmountable. With
a stall in progress in reducing annual cases and malaria
deaths, it is perhaps time to go beyond thinking out of the
box and start acting out of the box.
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