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Redox biochemistry plays a key role in the transduction of
chemical energy in living systems. However, the compounds
observed in metabolic redox reactions are a minuscule fraction
of chemical space. It is not clear whether compounds that ended
up being selected as metabolites display specific properties that
distinguish them from nonbiological compounds. Here, we intro-
duce a systematic approach for comparing the chemical space of all
possible redox states of linear-chain carbon molecules to the cor-
responding metabolites that appear in biology. Using cheminfor-
matics and quantum chemistry, we analyze the physicochemical
and thermodynamic properties of the biological and nonbiological
compounds. We find that, among all compounds, aldose sugars
have the highest possible number of redox connections to other
molecules. Metabolites are enriched in carboxylic acid functional
groups and depleted of ketones and aldehydes and have higher
solubility than nonbiological compounds. Upon constructing the
energy landscape for the full chemical space as a function of pH
and electron-donor potential, we find that metabolites tend to
have lower Gibbs energies than nonbiological molecules. Finally,
we generate Pourbaix phase diagrams that serve as a thermody-
namic atlas to indicate which compounds are energy minima in
redox chemical space across a set of pH values and electron-
donor potentials. While escape from thermodynamic equilibrium
toward kinetically driven states is a hallmark of life and its origin,
we envision that a deeper quantitative understanding of the
environment-dependent thermodynamic landscape of putative
prebiotic molecules will provide a crucial reference for future
origins-of-life models.

origins of life | prebiotic chemistry | thermodynamics | redox
biochemistry | systems chemistry

Redox reactions are fundamental to biochemistry. Recent
work has uncovered quantitative thermodynamic principles

that influence the evolution of carbon redox biochemistry (1–3).
This line of work has focused on the three main types of redox
reactions that change the oxidation level of carbon atoms in
molecules: reductions of carboxylic acids (–COO) to aldehydes
(–C=O); reductions of aldehydes and ketones to alcohols
(hydroxycarbons) (C–O); and reductions of alcohols to hydro-
carbons (C–C). The “rich-get-richer” principle states that more
reduced carbon functional groups have higher standard redox
potentials (1–3). Thus, alcohol reduction to a hydrocarbon is
more favorable than aldehyde/ketone reduction to an alcohol,
which in turn is more favorable than carboxylic acid reduction to
an aldehyde. This explains why, across all six known carbon fix-
ation pathways, adenosine triphosphate is invested solely (with
ribulose-5P kinase as the single exception) to drive carboxylation
and the reduction of carboxylic acid functional groups (2, 4).
Quantitative analysis of biochemical redox thermodynamics has
also explained the emergence of NAD(P) as the universal redox
cofactor. With a standard redox potential of −320 mV, NAD(P)
is optimized to reversibly reduce/oxidize the vast majority of

central metabolic redox substrates (3). In addition, since its
standard potential is ∼100 mV lower than that of the typical
aldehyde/ketone functional group, it effectively decreases the
steady-state concentration of potentially damaging aldehydes/
ketones in the cell (3). Finally, other physicochemical properties
like hydrophobicity and charge act as constraints that shape the
evolution of metabolite concentrations (5).
Although the emergence of early self-reproducing systems re-

quires the underlying chemistry to be out of thermodynamic
equilibrium, a quantitative and comprehensive understanding of
the underlying energy landscape would be very valuable. For ex-
ample, high abundance of a given compound in a mixture of
thermodynamically equivalent molecules could be ascribed to a
kinetics-enabled, energy-driven process. However, the most likely
scenario is that even at equilibrium, some compounds may be
significantly more favorable than others, establishing the initial
conditions for subsequent out-of-equilibrium processes. In addi-
tion, kinetics of catalysis and thermodynamics are highly inter-
twined, jointly contributing to effective reaction rates (6–8).
Therefore, a comprehensive and quantitative understanding of the
underlying thermodynamic landscape could help inform kinetic
models of prebiotic redox chemistry.

Significance

Carbon redox chemistry plays a fundamental role in biology.
However, the thermodynamic and physicochemical principles
underlying the rise of metabolites involved in redox biochem-
istry remain poorly understood. Our work introduces the the-
ory and techniques that allow us to quantify and understand
the global energy landscape of carbon redox biochemistry. We
analyze the space of all possible oxidation states of linear-chain
molecules with two to five carbon atoms and generate a de-
tailed atlas of the thermodynamic stability of metabolites in
comparison to nonbiological molecules. Although the emer-
gence of life required the underlying chemistry to bootstrap
itself out of equilibrium, a quantitative understanding of the
environment-dependent thermodynamic landscape of prebi-
otic molecules will be extremely valuable for future origins of
life models.
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Despite these motivations, the thermodynamic and physico-
chemical principles underlying the rise of carbon redox biochem-
istry remain very poorly understood. Here, we combinatorially
generate the chemical space of all possible redox states of linear-
chain n-carbon compounds (for n = 2 to 5). We partition each
n-carbon linear-chain redox chemical space into biological me-
tabolites and nonbiological compounds and systematically explore
whether metabolites involved in biochemical redox reactions dis-
play features that would be unexpected elsewhere in redox
chemical space. To compare physicochemical and thermodynamic
properties of the biological and nonbiological molecules, we use
cheminformatic tools and a recently developed quantum-chemical
approach to estimate standard reduction potentials (Eo′) (3) of
biochemical reactions.
In addition to generating a molecular energy landscape of

broad applicability to the study of biochemical evolution, our
analysis provides specific insight on redox biochemistry, which
we summarize in the following five major conclusions: 1) the
oxidation level and asymmetry of aldose sugars makes them
unique in that they have the highest possible number of con-
nections (reductions and oxidations) to other molecules; 2) bi-
ological compounds (metabolites) tend to be enriched for carboxylic
acid functional groups and depleted for aldehydes/ketones; 3) me-
tabolites tend to have, on average, higher solubilities and lower
lipophilicities than the nonbiological molecules; 4) across a range of
pH and electron-donor/-acceptor potentials, metabolites tend to
have, on average, lower Gibbs energies relative to the nonbiological
compounds; and 5) by adapting Pourbaix phase diagrams—an im-
portant conceptual tool in electrochemistry—to the study of redox
biochemistry, we find that the n-carbon linear-chain dicarboxylic
acids and fatty acids (e.g., succinate and butyrate in four-carbon
redox chemical space) are the local minima in the energy land-
scape across a range of conditions and thus may have a spontaneous
tendency to accumulate. Our results suggest that thermodynamics
may have played an important role in driving the rise of dominant
metabolites at the early stages of life and yield insight into the
principles governing the emergence of metabolic redox
biochemistry.

Results
Aldose Sugars Have the Maximal Number of Redox Connections. We
combinatorially generated all possible redox states of n-carbon
linear-chain compounds (for n = 2 to 5 carbon atoms per mol-
ecule) and studied the properties of the resulting chemical
spaces (Fig. 1). For every molecule in n-carbon redox chemical
space, each carbon atom can be in one of four different oxidation
levels: carboxylic acid, ketone or aldehyde, hydroxycarbon (al-
cohol), or hydrocarbon (Fig. 1A). Molecules in redox chemical
space are connected to each other by three different types of two-
electron reductions (or the reverse oxidations) that change the
oxidation level of a single carbon atom: reduction of a carboxylic
acid to an aldehyde; reduction of an aldehyde/ketone to a
hydroxycarbon; and reduction of a hydroxycarbon to a hydrocar-
bon. In order to make the redox chemical space model system
tractable to analysis, we decreased its complexity by excluding
carbon–carbon bond cleavage/formation reactions (e.g., reductive
carboxylations or oxidative decarboxylations), keto–enol tauto-
merizations, intermediate carbon–carbon double-bond formation,
intramolecular redox reactions, or different stereoisomers for a
given molecular oxidation level (see SI Appendix, Table S1 for how
the number of compounds increases when these reactions are
included). In what follows, we focus the majority of our analysis on
the properties of the four-carbon linear-chain redox chemical
space (see SI Appendix, Figs. S7–S14 for corresponding results in
two-, three-, and five-carbon linear-chain redox chemical space).
The four-carbon linear-chain redox chemical space contains

78 molecules connected by 204 reactions. The molecules span 11
different molecular oxidation levels, from the fully oxidized 2,3-

dioxosuccinic acid (2 carboxylic acids and 2 ketones) to the fully
reduced alkane butane (Fig. 1A); 84 reactions reduce aldehydes/
ketones to hydroxycarbons (or oxidize hydroxycarbons to alde-
hydes/ketones), and the same number reduce hydroxycarbons to
hydrocarbons (or oxidize hydrocarbons to hydroxycarbons).
Since carboxylic acids are restricted to carbon atoms at the edges
of a molecule (i.e., carbon nos. 1 and 4 in 4-carbon linear-chain
molecules), only 36 reactions reduce carboxylic acids to alde-
hydes (or oxidize aldehydes to carboxylic acids) (Fig. 1C).
The number of reactions that connect a molecule to its oxi-

dized or reduced products—the redox degree of a molecule—
ranges from 2 to 2n (Fig. 1B). In n = 4-carbon redox chemical
space, we find that only a single molecule in the network, the
aldose sugar erythrose (and its stereoisomers), has the maximal
degree value of 2n = 8. This holds true for all redox chemical
spaces regardless of the number of carbon atoms: only the cor-
responding aldose sugars in the two-, three-, five-, and six-carbon
redox chemical spaces have the maximal-degree value, 2n
(Fig. 1B). This is explained by the fact that the n-carbon aldose
sugar satisfies the two constraints required to have the maximal
number of redox connections: 1) each atom must be in an “in-
termediate” oxidation level that can be both oxidized and reduced.
Therefore, all inner carbon atoms (i.e., atom nos. 2 and 3 in four-
carbon linear-chain molecules) must be in the hydroxycarbon ox-
idation level, while carbon atoms at the edges (i.e., atom nos. 1
and 4) can be either in the aldehyde or hydroxycarbon oxidation
level. 2) The molecule must not be symmetric under a 180° ro-
tation along its center. Thus, the two edge atoms must be in dif-
ferent oxidation levels. This leads uniquely to the aldose sugar
molecular redox-state configuration.

Biological Compounds Are Enriched in Carboxylic Acids and Depleted
of Aldehyde/Ketone Groups. What distinguishes the subset of
compounds in redox chemical space that appear in cellular me-
tabolism from those that do not? To address this question, we
subdivided the 78 molecules from the full 4-carbon redox
chemical space into 30 biological compounds (also referred to
from here onward simply as metabolites or “natural” com-
pounds), which were identified based on matches with Kyoto
Encyclopedia of Genes and Genomes (KEGG) database entries
(9, 10), and the remaining 48 “nonbiological” compounds
(Fig. 2A). Compounds in KEGG that correspond to molecules in
redox chemical space but have alcohol groups substituted by amines
or phosphates were considered a match, as these functional groups
have the same oxidation level (seeMaterials and Methods for further
details). For example, the metabolites oxaloacetate and aspartate
have the same oxidation level at every carbon atom but differ by the
substitution of an alcohol into an amine; both are considered a
match to the corresponding molecule in our network. Similarly, we
consider metabolites with carboxylic acid groups that are activated
with either thioesters or phosphates groups as matches to molecules
in redox chemical space.
As a first comparison between metabolites and nonbiological

compounds, we analyzed the enrichment or depletion of func-
tional groups (i.e., carbon atom oxidation levels) in the two cat-
egories (Fig. 2B). Specifically, we counted the number of times
that each functional group appears in the set of metabolites and
compared it to analytically derived expected null distributions for
random sets of compounds (Materials and Methods). We found
that in four-carbon linear-chain redox chemical space, metabolites
are significantly enriched in carboxylic acids (P < 0.001) while
being significantly depleted for ketones (P < 0.001) (Fig. 2B). We
find similar trends in three- and five-carbon redox chemical spaces
(SI Appendix, Figs. S8–S11). Since all but one molecule in two-
carbon redox chemical space are biological metabolites, this space
is not amenable to such statistical analysis. Furthermore, after
normalizing for observed single functional-group statistics (see
Materials and Methods for further details), we computed the null
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distributions for higher-order functional-group patterns, i.e., pair
(2mer) and triplet (3mer) patterns (SI Appendix, Fig. S1).
According to our analysis, only the 2mer pattern with a hydrox-
ycarbon next to a hydrocarbon is depleted in the metabolites, albeit
not significantly (P = 0.05). The number of times that all other 2mer
and 3mer functional-group patterns appear in metabolites—
including the highly uncommon dicarbonyl pattern—can be
explained by the underlying single functional-group statistics.
We then asked whether the observed functional-group en-

richments and depletions translate to differences in physico-
chemical properties of the metabolites and the nonbiological
compounds. In particular, the significant enrichment of carbox-
ylic acids is likely expected to result in higher average solubility
and lower lipophilicity for the natural relative to the nonnatural
compounds. However, given the fact that solubility and lip-
ophilicity depend on the combination of all functional groups in a
given molecule—with polar groups like carboxylic acids increasing
solubility and nonpolar groups like hydrocarbons decreasing it—
and that there is a enrichment (albeit not statistically significant)
of hydrocarbons in the natural compounds, the combined effect of
these two trends may be nontrivial. We therefore explicitly com-
puted the solubility (logS) and lipophilicity (as captured by the
octanol–water distribution coefficient [logD]) at pH 7. Indeed, we
find that, in correlation with their enrichment for carboxylic acid
functional groups, metabolites have significantly higher solubilities
(P < 0.005) (Fig. 2C) and significantly lower logD values (P <
0.01) (SI Appendix, Fig. S2) than the set of nonbiological com-
pounds. We observe similar trends in three- and five-carbon redox
chemical spaces (SI Appendix, Figs. S9 and S13).

Metabolites Have on Average Lower Gibbs Energies than Nonbiological
Compounds. We next focused on estimating the energy landscape
of our redox compounds, with special attention to the question of
whether metabolites and nonbiological compounds display dif-
ferent patterns in this landscape. We used a recently developed
calibrated quantum-chemistry approach (3) to accurately predict
the apparent standard redox potentials Eo′(pH) of all reactions in

n-carbon linear-chain redox chemical space (n = 2 to 5). Previous
work has shown that the calibrated quantum-chemistry method
achieves significantly better accuracy than the group-contribution
method (GCM) (3), the most commonly used approach to esti-
mate thermodynamic parameters of biochemical compounds and
reactions (11–14). Briefly, the quantum-chemistry method relies
on density functional theory with a double-hybrid functional (15,
16) to compute the differences in molecular electronic energies
and utilizes a two-parameter calibration against available experi-
mental data. We computed the energies of several geometry-
optimized conformations of the fully protonated species of each
compound. We then estimated the standard redox potential Eo of
the fully protonated species as the difference in electronic energies
of the products and substrates, ΔEelectronic. Using cheminformatic
pKa estimates (Marvin 17.7.0, 2017; ChemAxon) and the Alberty
Legendre transform (17, 18), we converted the standard redox
potentials to transformed standard redox potentials Eo′(pH),
which depend on pH. Finally, in order to correct for systematic
errors in the quantum-chemistry calculations and the chem-
informatic pKa estimates, we calibrated—via linear regression—
the transformed standard redox potentials Eo′(pH) against a
dataset of available experimental values (see Materials and Meth-
ods for further details).
We note that the improvement in accuracy of the quantum-

chemical approach over GCM is particularly striking for the
linear-chain compounds in our redox chemical spaces. This is most
apparent for the set of aldehyde/ketone to hydroxycarbon reduc-
tions (SI Appendix, Fig. S3): while GCM prediction is no better
than an average value predictor (R2 = −0.04), the redox potentials
predicted with the calibrated quantum-chemistry method correlate
linearly with experimental values (Pearson r = 0.50). GCM ac-
counts only for the difference in group energies of products and
substrates to estimate redox potentials. Thus, for redox reactions,
it effectively ignores the molecular environment surrounding the
reduced/oxidized carbon atom, collapsing all of the potentials
associated to aldehyde/ketone functional-group reductions to two

A

B C

oxidized reduced

Fig. 1. The structure of n-carbon linear-chain redox chemical space. (A) The redox chemical space defined by the set of all possible four-carbon linear chain
molecules that can be generated from three different types of redox reactions: reduction of a carboxylic acid to an aldehyde group; reduction of an aldehyde/
ketone group to a hydroxycarbon (alcohol); and reduction of a hydroxycarbon to a hydrocarbon (and corresponding oxidations). Carbon atoms are repre-
sented as colored circles, with each color corresponding to an oxidation state: yellow, carboxylic acid; orange, aldehyde/ketone; blue, hydroxycarbon; and
gray, hydrocarbon. Compounds within each column have the same molecular oxidation state and are organized from most oxidized (left) to most reduced
(right). (B) The degree distributions for the four-, five-, and six-carbon linear-chain redox chemical spaces. In all cases, the aldose sugar is the only compound
with the maximal number of possible reductions and oxidations (black arrows). (C) Number of reactions in the four-, five-, and six-carbon linear-chain redox
chemical spaces that belong to each of the three types of redox reactions considered.
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values (the average aldehyde and ketone reduction energies), thus
lowering its prediction accuracy (SI Appendix, Fig. S3). Therefore,
the use of our calibrated quantum-chemical method is essential in
order to accurately predict and analyze the energetics of n-carbon
linear-chain redox chemical spaces.
We used the predicted Eo′(pH) values to generate the energy

landscape of redox chemical space. To do this, we assumed that
each compound is coupled to an electron donor/acceptor with a
given steady-state redox potential, E(electron donor). This potential
could represent that set by a steady-state ratio of NAD+/NADH or
other abundant redox cofactor inside the cell (19). Alternatively, in
the context of prebiotic chemistry, it could represent the potential
associated with a given concentration of molecular hydrogen in an
alkaline hydrothermal vent or different iron oxidation states in
prebiotic oceans (20, 21). Given a value of E(electron donor), we
convert the Eo′(pH) of each reaction into a Gibbs reaction energy,
using ΔGr(pH) = −nF(Eo′(pH) − E(electron  donor)) (where n is
the number of electrons and F is Faraday’s constant). The set of
Gibbs reaction energies for all redox transformations—as a function
of pH and electron-donor potential—defines the energy landscape
of our redox chemical space (Fig. 3A and SI Appendix, Figs. S5
and S6).

A notable finding of this analysis is that, across a range of
cofactor potentials, metabolites in four-carbon linear-chain re-
dox chemical space have, on average, significantly lower relative
Gibbs energies than the nonbiological compounds (Fig. 3B). We
find a similar trend for metabolites in three- and five-carbon
linear-chain redox chemical space (SI Appendix, Figs. S10–S14);
however, because of the few number of nonnatural compounds in
three-carbon redox chemical space, the trend there is not statis-
tically significant (SI Appendix, Fig. S10). An important exception
to this general trend (and one that is conserved across spaces with
different numbers of carbon atoms) is that the aldose sugars (e.g.,
erythrose), the ketose sugars (e.g., erythrulose), and the sugar
alcohols (e.g., threitol) have a higher relative Gibbs energy than all
compounds in redox chemical space across a large range of pH
and electron-donor potential.

A Pourbaix Phase Diagram of Redox Chemical Space Maps Local
Minimal-Energy Compounds. In addition to the trends observed
for average energy differences between biological and nonbio-
logical compounds, the relative energies of individual com-
pounds change as a function of pH and E(electron donor) (SI
Appendix, Figs. S5 and S6). To further investigate the detailed

- amine

- phosphate

oxidized reduced

*

A

B C

Fig. 2. Functional-group statistics and aqueous solubilities of biological compounds in the four-carbon linear-chain redox chemical space. (A) The subset of
molecules in four-carbon linear-chain redox chemical space that matches biological metabolites in the KEGG database. Compounds that match KEGG me-
tabolites but with alcohol groups substituted by either amines or phosphates are marked with black and red squares, respectively. (B) Enrichment and de-
pletion of functional groups in the set of biological compounds. The vertical position of each colored circle corresponds to the number of times each
functional group appears in the set of biological compounds. The light gray rectangles show the corresponding expected null distributions for random sets of
molecules sampled from redox chemical space. See SI Appendix, Fig. S1 for statistical analysis of functional-group pairs and triplets. (C) Comparison of
predicted aqueous solubility log(S) at pH 7 for biological and nonbiological compounds in the four-carbon linear-chain redox chemical space. Biological
compounds have significantly higher solubilities than the nonbiological set (P < 0.005).
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structure of the thermodynamic landscape, we set out to map
which molecules are local minima at each value of pH and
E(electron donor). A molecule is a local minimum in redox
chemical space if its Gibbs energy is lower than that of all of its
neighbors with whom it is connected through a reduction or an
oxidation. We adapt Pourbaix phase diagrams, a powerful stan-
dard visualization tool in the field of electrochemistry (22), to the
problem of mapping out regions of pH, E(electron donor) phase
space in n-carbon linear-chain redox chemical space. In a Pourbaix
diagram, the predominant equilibrium states of an electro-
chemical system and the boundaries between these states are
mapped out as a function of two-phase space parameters. Fig. 4
shows a Pourbaix phase diagram representation of four-carbon
linear-chain redox chemical space (see SI Appendix, Figs. S7, S8,
and S12 show the corresponding Pourbaix diagrams for two-,
three-, and five-carbon linear-chain redox chemical spaces).
At the lower left corner of the diagram in Fig. 4, in the region

corresponding to more acidic pH values and more negative
electron-donor potentials, the fully reduced four-carbon alkane
butane is the only local (and the global) energy minimum
(Fig. 4). Thus, assuming all compounds are kinetically accessible,
butane would be expected to accumulate in these conditions.
The structure of redox chemical space becomes richer as pH and
E(electron donor) increase. Succinate and the four-carbon short-
chain fatty acid (SCFA) butyrate—two biologically important
metabolites—emerge as two additional local minima at more
oxidative regions of the phase diagram (Fig. 4). Both succinate
and butyrate consist of inner carbon atoms in the hydrocarbon
(fully reduced) oxidation level and edge carbon atoms in either
the hydrocarbon or the carboxylic acid (fully oxidized) state.
Notably this pattern—where the n-carbon linear-chain dicar-
boxylic acid (oxalate, malonate, succinate, and glutarate for two-,
three-, four-, and five-carbon atoms, respectively), the fatty acid
(acetate, propionate, butyrate, and valerate), and the alkane
(ethane, propane, butane, and pentane) emerge as the only local
minima in a large region of phase space—is conserved in redox
chemical spaces with different number of carbon atoms (SI Ap-
pendix, Figs. S7, S8, and S12). Further increases in either pH or
electron-donor potential result in the emergence of additional
compounds, both metabolites and nonbiological molecules, as

local energy minima in the landscape (Fig. 4 and SI Appendix,
Figs. S7, S8, and S12).
Can we predict from simple physicochemical principles the identity

of the local minimal-energy compounds? A simple mean-field toy
model (Fig. 4C) that focuses on the average standard redox potentials
<Eo′(pH)> of the different carbon functional groups can help in-
tuitively predict which metabolites accumulate at given values of pH
and E(electron donor). Fig. 5, Upper shows the distributions of
standard potentials at a fixed pH (pH 7) for all compounds in four-
carbon redox chemical space categorized by the type of functional
group undergoing reduction. Given a fixed value of E(electron do-
nor), the average redox potentials for each functional-group category
can be used to compute average Gibbs reaction energies for each

Fig. 3. Thermodynamic landscape of the four-carbon linear-chain redox chemical space. (A) Relative Gibbs energies of metabolites at pH 7 and E(electron
donor/acceptor) = −300 mV. Gibbs energies are normalized relative to the metabolite with the lowest energy. Compounds within a column (same molecular
oxidation state) are sorted from highest (bottom) to lowest (top) relative energies. The structures of the three compounds that are local minima in the
thermodynamic landscape are shown: succinate (Top Left Inset), butyrate (Top Right Inset), and butane (Bottom Right Inset). These compounds have lower
Gibbs energies than all of their neighboring molecules accessible by a reduction or oxidation. (B) Relative Gibbs energies of biological and nonbiological
compounds for a range of pH and E(electron donor/acceptor) values. At each value of pH and E(electron donor/acceptor), Gibbs energies are normalized
relative to the compound with the lowest energy. Asterisks indicate statistically significant differences of average values (Welch’s t test; P < 0.05).

Fig. 4. Pourbaix phase diagram for the four-carbon linear-chain redox
chemical space. Molecules that are local minima in the energy landscape at
each region of pH, E(electron donor/acceptor) phase space are shown. At
low pH and E(electron donor/acceptor) values, butane is both the global and
the only local minimum-energy compound. At intermediate values of pH
and E(electron donor/acceptor), several metabolites emerge as local minima
and would thus tend to accumulate. For example, the metabolites oxalo-
acetate, acetoacetate, and α-ketobutyrate emerge as local energetic minima
in the region of phase space shown in green. Finally, in the upper right
corner of the phase diagram, characterized by higher values of both pH and
E(electron donor/acceptor), the fully oxidized four-carbon compound 2,3-
dioxosuccinic acid emerges as the only local (global) minimum.
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type of carbon redox transformation via the following equation:
ΔGr pH( ) = −nF < Eo’ pH( )> − E electron  donor( )( ) (where n is
the number of electrons and F is Faraday’s constant). We use this to
generate Fig. 5,Lower, which schematically shows the relative average
Gibbs energies of the four different carbon oxidation levels at dif-
ferent values of E(electron donor) at pH 7. The boundaries delim-
iting different regions of the E(electron donor) axis mark the values
where the rank-ordering of relative average Gibbs energies for the
four carbon oxidation-level changes.
As an illustrative example, we focus on region III in Fig.

5, which is approximately delimited by the values
−360 mV≤E(electron  donor)≤ − 180 mV. In this region, the
reduction of carboxylic acids to aldehydes (yellow to orange) is
highly unfavorable (alternatively, the oxidation of aldehydes to
carboxylic acids is highly favorable). On the other hand, the re-
duction of ketones to hydroxycarbons (orange to blue), as well as
the reduction of hydroxycarbons to hydrocarbons (blue to gray),
are thermodynamically favorable. Thus, at pH 7 and for this range
of E(electron donor) values, the edge carbon atoms (atom nos. 1
and 4 in the four-carbon linear-chain compounds) are driven to
either the most-oxidized (carboxylic acid) or the most-reduced
(hydrocarbon) oxidation level, while the inner carbon atoms
(atom nos. 2 and 3)—which cannot exist in the carboxylic acid
oxidation level—are driven to the hydrocarbon oxidation level.
This corresponds precisely to the molecular oxidation levels of
dicarboxylic acids, fatty acids, and alkanes (e.g., succinate, buty-
rate, and butane), the local and global minimal-energy compounds
in this region of pH, E(electron donor) phase space.

Discussion
In this work, we introduced the chemical spaces of all molecular
oxidation levels of n-carbon linear-chain compounds and ana-
lyzed their structural, physicochemical, and thermodynamic
properties. In some respects, our work is related to that of
Morowitz et al. (23) in that it similarly explores the chemical
properties of a portion of chemical space in search for possible
traces of their relevance to the rise of biological systems. How-
ever, our work does not rely on chemical databases—which may
be biased toward certain categories of compounds (24)—but

rather analyzes a portion of chemical space in a way that is
general, unbiased, and potentially arbitrarily extendible. In ad-
dition, while Morowitz et al. imposed a priori solubility, oil–
water partition coefficients and combustion energies as criteria
for the selection of metabolism-like organic compounds, our
work systematically compares metabolites to the rest of the
molecules in redox chemical space and demonstrates significant
differences in these physicochemical parameters.
Our results are applicable and agnostic to “genetics-first”

(25–28), or “metabolism-first” (29–32), scenarios for the early
stages of life. Thermodynamics is a fundamental constraint in
chemistry, and comprehensively and accurately mapping out the
energy landscape of well-defined portions of redox chemical
space should be of value to a wide variety of prebiotic chemistry
models involving carbon redox chemistry. Thus, our capacity to
estimate the thermodynamic landscape of molecules in a key
region of the chemical space relevant to living systems could be
equally valuable for metabolism-first studies aimed at charac-
terizing possible avenues toward primitive organized autocata-
lytic networks, as well as for genetics-first studies exploring
conditions conducive to the formation of nucleotides.
Examining the connectivity of redox chemical space, we found

that aldose sugars—e.g., glyceraldehyde (n = 3), erythrose (n =
4), ribose (n = 5), and glucose (n = 6) and their corresponding
stereoisomers—are unique in that they are the only compounds
with the highest possible number of oxidative and reductive
connections (2n) to neighboring molecules. Whether this maxi-
mal number of connections, coupled to their relatively high
Gibbs energies, played a role in the emergence of aldose sugars
as key players in cellular metabolism remains to be explored.
One hypothesis is that a high degree value in redox chemical
space could influence their role as central metabolic hubs in
metabolic networks, optimally positioning them as high-energy
substrates with many biochemical roads leading to a wide variety
of compounds (33). However, a preliminary statistical analysis
revealed that the connectivity of aldose sugars in the KEGG
compound of metabolic reactions is not significantly high in
comparison to other compounds (Dataset S1). It is also possible
that, among the compounds with high energy, those accessible
through multiple routes (i.e., with high connectivity) would have
a higher chance of becoming incorporated into a rising metab-
olism. Although these interpretations are purely speculative, the
quantitative knowledge provided by our work provides the basis
for further exploration.
We found that the set of biological compounds is significantly

enriched for carboxylic acid functional groups and have, on av-
erage, significantly higher solubilities (logS at pH 7) than the set of
nonbiological compounds. In addition to an increase in aqueous
solubility, other reasons for why carboxylic acids may have been
selected during the evolution of metabolism potentially include a
decrease in permeability across lipid membranes (34). This is
reflected in the predicted values of octanol–water distribution
coefficients, logD(pH 7) for the biological and nonbiological
compounds (SI Appendix, Fig. S2). In addition, the enrichment for
carboxylates may have enhanced the ability of enzymes to recog-
nize small molecule substrates. Our analysis also showed that bi-
ological compounds are significantly depleted in aldehyde/ketone
functional groups. Notably, in the four-carbon network, only one
biological compound, diacetyl—which appears in the metabolic
networks of yeast and several bacterial species (35, 36)—contains
two ketone functional groups. This is consistent with the fact that
aldehyde/ketone groups are significantly more reactive than car-
boxylic acids or hydroxycarbons and can cause oxidative damage,
spontaneously cross-link proteins, inactivate enzymes, and muta-
genize DNA (37).
Our analysis brings to the field of origin of life a recently

developed quantum-chemical method for calculating biochemi-
cal redox potentials (3) that can have multiple applications for

Fig. 5. A mean-field toy model explains the identity of molecular oxidation
states of local minima. The schematic diagram illustrates how the average
standard redox potentials of different carbon functional groups dictate the
identity of the minimal-energy compounds. Top shows the distributions of
standard redox potentials (pH 7) of all reactions in the four-carbon linear-
chain redox chemical space, grouped according to the functional group that
is reduced during the transformation: carboxylic acid (yellow), aldehyde/
ketone (orange), and hydroxycarbon (blue). Bottom shows—for different
values of E(electron donor/acceptor)—the resulting relative average Gibbs
energies of the functional groups. For example, in the region where
E(electron donor/acceptor) is between about −360 and −190 mV, aldehydes/
ketones (orange) have, on average, the highest relative Gibbs energy, fol-
lowed by hydroxycarbons (blue), carboxylic acids (yellow), and hydrocarbons
(gray). Therefore, minimal-energy compounds will have inner carbon atoms
(atom nos. 2 and 3 in four-carbon molecules) that equilibrate to the hy-
drocarbon oxidation state and edge carbon atoms (atom nos. 1 and 4) that
equilibrate to either the carboxylic acid or the hydrocarbon oxidation state.
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studying early biomolecules irrespective of any specific hypoth-
esis on putative early pathways or on whether genes or metab-
olism emerged first. Our thermodynamic calculations, which rely
on a recently developed calibrated quantum-chemistry approach
that was shown to have better accuracy than cheminformatic
methods (3), revealed that metabolites have, on average, lower
Gibbs energies than the nonbiological set of compounds across a
range of pH and electron-donor potentials. One could speculate
on the relevance of these results in the context of the very early
stages of the emergence of metabolism. In particular, there may
have been a stage, prior to the rise of efficient catalysis, in which
prebiotic carbon redox chemistry had not bootstrapped itself
completely yet out of the equilibrating forces of thermodynamics.
Under these circumstances, the equilibration process would have
led to accumulation of a pool of compounds, which could serve as
initial substrates or replenishing intermediates for downstream,
kinetically controlled processes such as autocatalytic cycles or
pathways that synthesized monomers for replicative polymers.
Importantly, the identity of these thermodynamically favored and
metabolite-enriched molecules depends on the values of the two
environmental parameters (pH and environmental redox-couple
potential), as shown in our Pourbaix phase diagrams. For example,
low potential and acidic regions of phase space—e.g., E(electron
donor) = −350 mV, pH 7—lead to accumulation of few metabolites
(e.g., succinate and butyrate in four-carbon chemical space), whereas
other regions of phase space—e.g., E(electron donor) = −200 mV,
pH 7—would accumulate a more complex ensemble of compounds.
Future work could explore whether particular ensembles of
metabolite-enriched compounds (i.e., regions of phase space) are
better primed to evolve into prebiotic pathways.
The resulting thermodynamic landscape also revealed in detail

which compounds—both biological and nonbiological—are en-
ergetic local minima as a function of pH and E(electron donor)
and would thus tend to accumulate. We find that some regions of
phase space—such as those leading to the production of large
quantities of volatile short hydrocarbons like butane and other
alkanes—would be problematic for prebiotic chemistry. Indeed,
although bacterial alkane production has been described (38,
39), the high volatility of these compounds likely limits their role
in metabolism. However, as mentioned above, other regions of
phase space would be expected to lead to complex metabolite-
enriched mixtures of molecules that could provide a rich source
of starting substrates for downstream kinetically controlled
processes. Furthermore, spatial or temporal gradients of the
environmental parameters—which have been proposed in the
context of origins of life models (40, 41)—would open up the
possibility of complex dynamic behavior, shifting the balance
between different local minima. Finally, although our work dis-
sects the energy minima of each isolated n-carbon redox chem-
ical space, these are, in reality, embedded in a larger chemical
space. Recent developments will help dissect and understand the
properties of such expanded chemical networks (42, 43).
In the context of known living organisms, in the Pourbaix

phase diagram representation of four-carbon linear-chain redox
chemical space, the biological metabolites succinate and butyrate
are local minima across a range of physiologically relevant pH
and E(electron donor) values. Succinate is a key intermediate in
the tricarboxylic acid cycle (TCA) cycle, with numerous recently
elucidated signaling functions (44, 45). Interestingly, succinate
accumulation occurs in a number of different organisms, in-
cluding bacteria such as Escherichia coli (46), Mycobacterium
tuberculosis (47), as well as several bacterial members of the
human gut microbiome (48–51) and the bovine rumen (52–55);
fungi such as the yeast Saccharomyces cerevisiae (56) and mem-
bers of the genus Penicillium (57); green algae (58); parasitic
helminths (59); the sleeping sickness-causing parasite Trypano-
soma brucei (60); marine invertebrates (61); and humans
(52–55). More specifically, our observations are consistent with

the behavior of the TCA cycle under anaerobiosis and hypoxia
(62–65). In these conditions, the reactions of the TCA cycle
operate like an “incomplete fork,” with a portion of the pathway
running in a reductive (“counterclockwise”) modality,
i.e., oxaloacetate sequentially reduced to malate, fumarate, and
succinate. Thus, despite the fact that in these examples, succinate
is part of biochemical networks of higher complexity than our
redox chemical space, its empirically observed accumulation is
consistent with its identity as a local energy minimum. We also
note that the SCFA butyrate accumulates to high (millimolar)
levels in the gut lumen as a product of bacterial fermentation
(66, 67). We found that this pattern—where the n-carbon linear-
chain dicarboxylic acid and the fatty acid emerge as the only local
minima in a large region of phase space—is conserved in the
Pourbaix diagrams for redox chemical spaces with different
numbers of carbon atoms (SI Appendix, Figs. S7, S8, and S12).
Therefore, in analogy to succinate accumulation, it would be
reasonable to search for evidence of n-carbon linear-chain di-
carboxylic acid accumulation in different biological systems un-
der physiological conditions matching the relevant region of
phase space. Studying glutarate accumulation in hypoxic and/or
acidic conditions would be particularly enticing, since pathways
for its biosynthesis (e.g., as part of lysine metabolism) are con-
served across many species.
There are several caveats and limitations associated with our

analysis. The first one is that our redox chemical-space analysis is
based solely on thermodynamics and does not account for ki-
netics. Thus, we assume that all molecular oxidation levels are
accessible, effectively ignoring kinetic constraints. While it is
clear that the emergence of early self-reproducing systems re-
quires the underlying chemistry to bootstrap itself out of equi-
librium, our quantitative and comprehensive analysis of the
underlying energy landscape of redox reactions should be of
value to prebiotic chemistry models. Furthermore, it may be
interesting for future work to explore the relative role of ther-
modynamic and kinetic control in establishing early metabolism
and ask whether kinetically controlled pathways that kick-started
life were preceded by a prebiotic chemical era predominated by a
strongly biased thermodynamically dominated mixture of
compounds.
In our study, we explicitly did not want to bias our results

toward biologically relevant molecules and redox reactions, and
therefore the set of redox transformations considered here is not
restricted to only those catalyzed by present-day enzymatic re-
action mechanisms. For instance, the reduction of a hydrox-
ycarbon (alcohol) functional group to a hydrocarbon occurs
enzymatically through a C=C double-bond intermediate (for
example, the reduction of malate to succinate occurs via fuma-
rate). Therefore, a hydroxycarbon functional group that is inca-
pable of undergoing elimination cannot undergo such a
reduction using known enzymatic mechanisms. Since it is plau-
sible that these transitions could have occurred through nonen-
zymatic mechanisms in prebiotic chemistry, we purposefully did
not exclude these instances from our analysis.
In addition, our redox chemical space ignores further bio-

chemical details: we do not include intramolecular redox trans-
formations (where an electron transfer within a molecule
changes the oxidation level of two different carbon atoms) or
keto–enol tautomerizations; we do not account for non–linear-
chain carbon compounds nor the different possible stereoiso-
mers of a given molecular oxidation level (e.g., L-malate vs.
D-malate), which may differ in energy; and we do not consider
functional-group activation chemistry (e.g., the conversion of
carboxylic acids to thiols), which has an important effect on
thermodynamics. Finally, our partitioning of molecules into
metabolites and nonbiological compounds relies on what is
found in the KEGG database, which is only a proxy for the
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absolute set of compounds that partake in nature’s redox
biochemistry.
However, despite these caveats, we propose that our simplified

redox chemical space is rich enough to serve as a baseline for a
better understanding of the underlying thermodynamic and
physicochemical principles of carbon redox biochemistry. In fu-
ture work and following recent exciting developments in the field
of heuristically aided quantum chemistry (42, 43, 68, 69), our
chemical space model could be expanded to include the addi-
tional types of biochemical transformations mentioned above and
begin to account for kinetic accessibility. It would be particularly
interesting to include carboxylation and decarboxylation reactions
(both reductive/oxidative and nonreductive/nonoxidative), which
would effectively connect the different n-carbon redox chemical
spaces to each other but would significantly increase the com-
plexity of the analysis. Including additional types of reactions such
as aldol/retro–aldol reactions and hydrations/dehydrations would
fully map the chemical space model to experimentally tractable
reaction networks (21, 70–72).
Finally, given the importance of redox chemistry at the early

stages of life’s history, it is possible to think of our landscape as a
generalization of the space of metabolites found in current living
systems (9, 10, 73). By taking into account this extended space,
future models for the rise and evolution of biochemistry (42, 69,
74) could more specifically compare the evolutionary trajectory
of life as we know it to alternative paths potentially involving
transiently relevant molecules and reactions (31, 75).

Materials and Methods
To generate the reactions, we used the RDKit cheminformatics software to
design simplified molecular-input line-entry system (SMILES) reaction tem-
plates (reaction strings), which, when applied to a compound, will reduce it

according to the functional groups detected. In order to classify compounds
in the full redox networks as biological or nonbiological, we looked for
matches in the KEGG database of metabolic compounds using the RDKit
toolbox. To compute the null distribution for the expected number
functional-group patterns in n-carbon molecules, we derived the analytical
solution for the probability of observing m instances of a given functional
group in a sample size N (SI Appendix). For functional-group patterns of
larger size, we computed the null distributions empirically by sampling
compounds from redox chemical space. For all tests of statistical significance
(i.e., differences in solubilities, n-gram counts, octanol–water partition co-
efficients, Gibbs energies of biological vs. nonbiological compounds), we
performed Welch’s unequal variance t test.

We used the cheminformatics software ChemAxon (Marvin 17.7.0, 2017;
ChemAxon) to predict the pH-dependent solubility, logS(pH), and octanol–
water distribution coefficients, logD(pH). To predict standard redox poten-
tials with quantum chemistry, we computed the electronic structure and
energy of the fully protonated species of each metabolite using the Orca
quantum-chemistry software (SI Appendix). We then calibrated predictions
against available experimental data using linear regression. Our group-
contribution calculations to estimate redox potentials rely on the method
as implemented by Noor et al. (14).

Data Availability. All study data are included in the article, SI Appendix, and
Datasets 1–4.
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