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Best-subset selection aims to find a small subset of predictors, so
that the resulting linear model is expected to have the most desir-
able prediction accuracy. It is not only important and imperative in
regression analysis but also has far-reaching applications in every
facet of research, including computer science and medicine. We
introduce a polynomial algorithm, which, under mild conditions,
solves the problem. This algorithm exploits the idea of sequenc-
ing and splicing to reach a stable solution in finite steps when
the sparsity level of the model is fixed but unknown. We define
an information criterion that helps the algorithm select the true
sparsity level with a high probability. We show that when the
algorithm produces a stable optimal solution, that solution is the
oracle estimator of the true parameters with probability one. We
also demonstrate the power of the algorithm in several numerical
studies.
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Subset selection is a classic topic of model selection in statis-
tical learning and is encountered whenever we are interested

in understanding the relationship between a response and a set of
explanatory variables. Naturally, this problem has been pursued
in statistics and mathematics for decades. The classic methods
that are commonly described in statistical textbooks include step-
wise regression with the Akaike information criterion (1), the
Bayesian information criterion (BIC) (2), and Mallows’s Cp (3).

Consider n independent observations (xi , yi), i = 1, . . . ,n ,
where xi ∈R1×p , yi ∈R. Let y = (y1, . . . , yn) and X = (x>1 , . . . ,
x>n )>. For convenience, we centralize the columns of X to have
zero mean. The following is the classic multivariable linear model
with regression coefficient vector β∈Rp×1 and error vector ε∈
Rn×1:

y = Xβ + ε. [1]

Parsimony is desired when we consider a subset of the p explana-
tory variables in Model 1 with comparable prediction accuracy.
When the regression coefficient vector β is sparse, we want to
identify this subset of nonzero coefficients. This is the commonly
known problem of the best-subset selection that minimizes the
empirical risk function, e.g., the sum of residual squares, under
the cardinality constraint in Model 1,

min
β∈Rp

1

2n
‖y− Xβ‖22, subject to ‖β‖0≤ s, [2]

where ‖β‖0 =
∑p

i=1 I (βi 6=0) is the `0 norm of β, and the
sparsity level s is usually an unknown nonnegative integer.

The Lagrangian of Eq. 2 represents a balance between good-
ness of fit and parsimony. The latter is characterized by model
complexity that is generally defined as an increasing function
of the number of nonzero β values. Thus, this Lagrangian is
not continuous and, of course, not smooth. Greedy methods
are usually applied to solve such Lagrangian but suffer from
computational difficulties even for a reasonably large p. Alterna-
tively, some relaxation methods, e.g., Least-Absolute Shrinkage
and Selection Operator (LASSO) (4), Adaptive LASSO (5),

Smoothly Clipped Absolute Deviation Penalty (SCAD) (6), and
Minimax Concave Penalty (MCP) (7) have been proposed and
investigated to ameliorate the computational issue by replacing
the nonsmooth penalty function with a smooth approximation.
These recently developed methods are computationally feasible
and provide near-optimal solutions even for large p. However,
their solutions do not lead to the best subset and are known for
lack of important statistical properties (8).

There has been little progress on how to find the best-subset
selection until recently because such a nonsmooth optimization
problem is generally nondeterministic polynomial-time–hard (9).
Recently, to make the best-subset selection problem compu-
tationally tractable, optimization strategies and algorithms are
proposed, including the Iterate Hard Thresholding (IHT) algo-
rithm (10), primal-dual active set (PDAS) methods (11), and
the Mixed Integer Optimization (MIO) approach (12). How-
ever, their solutions may converge to a local minimizer, and
IHT and PDAS may also suffer from the periodic iterative
issue. More importantly, these methods do not determine the
sparsity-level adaptively, and their statistical properties remain
unclear.

In this paper, we directly deal with Eq. 2 and solve the
best-subset selection problem with two critical ideas: a splic-
ing algorithm and an information criterion. Our contribution is
threefold. Firstly, we propose “splicing,” a technique to improve
the quality of subset selection, and derive an efficient itera-
tive algorithm based on splicing, Adaptive Best-Subset Selection
(ABESS), to tackle problem 2. The ABESS algorithm is appli-
cable to analyze high dimensional datasets with tens of thou-
sands of observations and variables. Secondly, we prove that
ABESS algorithm consistently selects important variables and its
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computational complexity is polynomial. Our algorithm is strin-
gently shown to solve problem 2 within polynomial times. Finally,
to determine the most suitable sparsity level, we design an
information criterion (special information criterion [SIC]) whose
theoretical best-subset selection consistency is rigorously proven.

We define some useful notations for the content below. For
β = (β1, . . . ,βp)> ∈Rp , we define the `q norm of β by ‖β‖q =

(
∑p

j=1 |βj |
q)1/q , where q ∈ [1,∞). Let S = {1, . . . , p}, for any

set A⊆S, denote Ac =S\A as the complement of A and |A|
as its cardinality. We define the support set of vector β as
supp(β) = {j :βj 6=0}. For an index set A⊆{1, . . . , p}, βA=

(βj , j ∈A)∈R|A|. For matrix X ∈Rn×p , define XA= (Xj , j ∈
A)∈Rn×|A|. For any vector t and any set A, tA is defined to be
the vector whose j th entry (tA)j is equal to tj if j ∈A and zero
otherwise. For instance, β̂

A
is the vector whose j th entry is β̂j if

j ∈A and zero otherwise. t̂
{j}

is the vector whose j th entry is t̂j
and zero otherwise.

Method
Splicing. In this section, we describe the splicing method. Consider the `0

constraint minimization problem,

min
β
Ln(β), s.t ‖β‖0≤ s,

where Ln(β) = 1
2n‖y−Xβ‖2

2. Without loss of generality, we consider
‖β‖0 = s. Given any initial setA⊂S = {1, 2, . . . , p}with cardinality |A|= s,
denote I=Ac and compute

β̂= arg min
βI=0

Ln(β).

We call A and I as the active set and the inactive set, respectively.
Given the active set A and β̂, we can define the following two types of

sacrifices:

1) Backward sacrifice: For any j∈A, the magnitude of discarding
variable j is,

ξj =Ln

(
β̂
A\{j}

)
−Ln(β̂

A
) =

X>j X j

2n
(β̂j)

2
. [3]

2) Forward sacrifice: For any j∈I, the magnitude of adding variable j is,

ζj =Ln(β̂A)−Ln

(
β̂
A

+ t̂
{j}
)
=

X>j X j

2n

(
d̂j

X>j X j/n

)2

, [4]

where t̂ = arg mint Ln

(
β̂
A

+ t{j}
)

, d̂j = X>j (y−Xβ̂)/n.

Intuitively, for j∈A (or j∈I), a large ξj (or ζj) implies the jth variable is
potentially important. Unfortunately, it is noteworthy that these two sac-
rifices are incomparable because they have different sizes of support set.
However, if we exchange some “irrelevant” variables inA and some “impor-
tant” variables in I, it may result in a higher-quality solution. This intuition
motivates our splicing method.

Specifically, given any splicing size k≤ s, define

Ak =

j∈A :
∑
i∈A

I(ξj ≥ ξi)≤ k


to represent k least relevant variables in A and

Ik =

j∈I :
∑
i∈I

I(ζj ≤ ζi)≤ k


to represent k most relevant variables in I. Then, we splice A and I by
exchanging Ak and Ik and obtain a new active set

Ã= (A\Ak)∪Ik.

Let Ĩ= Ãc, β̃= arg minβĨ=0 Ln(β), and τs > 0 be a threshold. If τs <

Ln(β̂)−Ln(β̃), then Ã is preferable to A. The active set can be updated

iteratively until the loss function cannot be improved by splicing. Once the
algorithm recovers the true active set, we may splice some irrelevant vari-
ables, and then the loss function may decrease slightly. The threshold τs

can reduce this unnecessary calculation. Typically, τs is relatively small, e.g.,
τs = 0.01s log(p) log(log n)/n.

The remaining problem is to determine the initial set. Typically, we select
the first s variables that are most correlated with y variables as the initial
set A. Let kmax be the maximum splicing size, kmax ≤ s. In the following, we
summarize our arguments in the above:

Algorithm 1: BESS.Fix(s): Best-Subset Selection with a given support
size s.

1) Input: X, y, a positive integer kmax , and a threshold τs.

2) Initialize A0 = {j :
∑p

i=1 I(|
X>j y√
X>j X j

| ≤ | X>i y√
X>i X i

≤ s}, I0 = (A0)c,

and (β0, d0):
β0
I0 = 0,

d0
A0 = 0,

β0
A0 =

(
X>A0 XA0

)−1X>A0 y,

d0
I0 =X>I0

(
y−Xβ0

)
/n.

3) For m= 0, 1, . . . , do
(βm+1, dm+1,Am+1, Im+1) = Splicing(βm, dm, Am, Im, kmax , τs).

If (Am+1, Im+1)= (Am, Im), then stop
end for

4) Output (β̂, d̂, Â, Î)= (βm+1, dm+1Am+1, Im+1).

Note that splicing size k is an important parameter in splicing. Typically,
we can try all possible values of k≤ s.

Algorithm 2: Splicing (β, d, A, I, kmax , τs).

1) Input: β, d, A, I, kmax , and τs.
2) Initialize L0 = L= 1

2n‖y−Xβ‖2
2, and set

ξj =
X>j X j

2n (βj)2, ζj =
X>j X j

2n ( dj

X>j X j/n
)2, j = 1, . . . , p.

3) For k = 1, 2, . . . , kmax , do
Ak = {j∈A :

∑
i∈A

I(ξj ≥ ξi)≤ k},

Ik = {j∈I :
∑
i∈I

I(ζj ≤ ζi)≤ k}.

Let Ãk = (A\Ak)∪Ik, Ĩk = (I\Ik)∪Ak and solve

β̃Ãk
=
(

X>Ãk
XÃk

)−1
X>Ãk

y, β̃Ĩk
= 0,

d̃ =X>(y−Xβ̃)/n, Ln(β̃)= 1
2n‖y−Xβ̃‖2

2.

If L>Ln(β̃), then
(β̂, d̂, Â, Î)= (β̃, d̃, Ãk, Ĩk),
L=Ln(β̃).

End for
4) If L0− L<τs, then (β̂, d̂, Â, Î)= (β, d,A, I).
5) Output (β̂, d̂, Â, Î).

ABESS. In practice, the support size is usually unknown. We use a data-
driven procedure to determine s. Information criteria such as high-
dimensional BIC (HBIC) (13) and extended BIC (EBIC) (14) are commonly used
for this purpose. Specifically, HBIC (13) can be applied to select the tuning
parameter in penalized likelihood estimation. To recover the support size s
for the best-subset selection, we introduce a criterion that is a special case
of HBIC (13). While HBIC aims to tune the parameter for a nonconvex penal-
ized regression, our proposal is used to determine the size of best subset.
For any active set A, define an SIC as follows:

SIC(A) = n logLA + |A| log(p) log log n,

where LA = minβI=0 Ln(β), I= (A)c. To identify the true model, the
model complexity penalty is log p and the slow diverging rate log log n
is set to prevent underfitting. Theorem 4 states that the following ABESS
algorithm selects the true support size via SIC.

Let smax be the maximum support size. Theorem 4 suggests smax = o( n
log p )

as the maximum possible recovery size. Typically, we set smax = [ n
log p log log n ],

where [x] denotes the integer part of x.
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Algorithm 3: ABESS.

1) Input: X, y, and the maximum support size smax.
2) For s= 1, 2, . . . , smax , do

(β̂s, d̂s, Âs, Îs)=BESS.Fixed(s).
End for

3) Compute the minimum of SIC:
smin = arg min

s
SIC(Âs).

4) Output (β̂smin
, d̂smin , Âsmin , Îsmin ).

Theoretical Results
We establish the computational complexity and the consistency
of the best subset recovery from the ABESS algorithm.

Conditions. Let β∗ be the true regression coefficient with
the sparsity level s∗ in Model 1. Denote the true active
set by A∗= supp(β∗) and the minimal signal strength by
b∗= minj∈A∗(β

∗
j )2. Without loss of generality, assume the

design matrix X has
√
n-normalized columns, i.e., X>j X j =n, j =

1, 2, . . . , p. We say that X satisfies the Sparse Restricted Condi-
tion (SRC) (15) with order s and spectrum bound 0< c−(s)<

c+(s)<∞ if ∀A⊂S with |A|≤ s and ∀u 6=0, u∈R|A|,

c−(s)≤ ‖XAu‖22
n‖u‖22

≤ c+(s).

We denote this condition by X ∼ SRC{s, c−(s), c+(s)}. The
SRC gives the range of the spectrum of the diagonal subma-
trices of the Gram matrix G = X>X/n . The spectrum of the
off-diagonal submatrices of G can be bounded by the sparse
orthogonality constant θa,b, defined as the smallest number such
that

θa,b ≥
‖X>AXBu‖2
n‖u‖2

,

for ∀A,B⊂S, |A|≤ a, |B|≤ b and A∩B=∅ and ∀u 6=0, u∈
R|B|. For any 0<∆< 1

2
, denote

δs
.
=

8c+(s)
(

(1 + ∆)
θs,s

c−(s)

(
1 +

θs,s
c−(s)

))2
(1−∆)

(
c−(s)− θ2s,s

c−(s)

) . [5]

To prove the theoretical properties of the `0 estimator, we
assume the following conditions:

1) The random errors ε1, . . . , εn are i.i.d with mean zero and sub-
Gaussian tails; that is, there exists a σ> 0 such that P{|εi | ≥
t}≤ 2 exp(−t2/σ2), for all t ≥ 0.

2) X ∼ SRC{2s, c−(2s), c+(2s)}.
3) δs < 1, where δs is defined in Eq. 5.
4) τs =O( s log p log log n

n
).

5) s∗ log p
n

= o(1).
6) 1

b∗ = o( n
s log p log log n

).

7) s∗ log p log(log n)
n

= o(1) and smax log p
n

= o(1).

Remark 1: The sub-Gaussian condition is often assumed in the
related literature and slightly weaker than the standard normal-
ity assumption. Condition 2 imposes bounds on the 2s-sparse
eigenvalues of the design matrix. As a typical condition in mod-
eling involving high-dimensional data, it restricts the correlation
among a small number of variables and thus guarantees the iden-
tifiability of the true active set. For example, the SRC has been
assumed in existing methods (15–17). Sufficient conditions are
provided for a design matrix to satisfy the SRC in propositions
4.1 and 4.2 in ref. 15.

Remark 2: To verify condition 3, let c(s) = (1− c−(2s))∨
(c+(2s)− 1), which is closely related to the restricted isome-
try property (RIP) (18) constant δ2s for X . By lemma 20 in
ref. 19, a sufficient condition for condition 3 is c(s)≤ 0.1877,
i.e., c−(2s)≥ 0.8123, c+(2s)≤ 1.1877, which is weaker than the
condition c(s)≤ 0.1599 in ref. 19.
Remark 3: Condition 4 ensures that the threshold τs can con-
trol random errors. Condition 6 is the minimal magnitude
of the signal for the best subset recovery. To discriminate
between the signal and threshold, the signal needs to be stronger
than the threshold. The condition is slightly stronger than the
condition in ref. 20.
Remark 4: For the recovery of the true active set, the true sparsity
level s∗ and the maximum model size smax cannot be too large.
Condition 7 is weaker than the condition in ref. 13 as we con-
sider the least-squares loss function without concave penalty. As
shown in the SI Appendix, condition 5 can be removed.

Computational Theory. Firstly, we show that the splicing method
converges in finite steps.
Theorem 1. Algorithm 1 terminates in a finite number of iterations.

This follows immediately from the fact that Ln(βm+1)<
Ln(βm). Furthermore, the next theorem delineates the polyno-
mial complexity of the ABESS algorithm.
Theorem 2. Suppose conditions 1 and 4 hold. Assume conditions
2, 3, and 6 hold with smax. The computational complexity of ABESS
for a given smax is

O

((
smax log

‖y‖22
log p log log n

+
n‖y‖22

log p log log n

)
(npsmax +

ns2max + kmaxpsmax
))
.

If s ≥ s∗, Algorithm 1 will find the true active set in high proba-
bility under conditions 1–4 (Lemma 1). Furthermore, by splicing,
the loss function decreases drastically at the first several itera-
tions and the convergence rate O(log

‖y‖22
s log p log log n

) of Algorithm
1 is presented in Theorem 3. However, if s< s∗, we can deter-
mine the iterations O(

n‖y‖22
s log p log log n

) of Algorithm 1 by using
thresholding τs to exclude useless splicing. Thus, we can show
that the number of iterations of Algorithm 1 is polynomial.

Statistical Theory. Let γs(n, p) =O(exp{log p− Ksnb
∗

s
}) +

O(exp{log p− Ksn
s∗ }), where Ks is some constant depending

on s . The following lemma gives an interesting property of the
active set output by Algorithm 1.
Lemma 1. Suppose (β̂, d̂, Â, Î) is the solution of Algorithm 1 for a
given support size s ≥ s∗ and conditions 1–4 hold. Then, we have

P(Â⊇A∗)≥ 1− γs(n, p).

Furthermore, if conditions 5 and 6 hold,

lim
n→∞

P(Â⊇A∗) = 1.

Especially, if s = s∗, we have

lim
n→∞

P(Â=A∗) = 1.

Lemma 1 indicates that our estimator of the active set will
eventually include the true active set. The next theorem char-
acterizes the number of iterations and the `2 bound error of the
splicing method.
Theorem 3. Suppose (βm , dm ,Am , Im) is the mth iteration of
Algorithm 1 for a given support size s ≥ s∗. Suppose conditions 1–4
hold. Then, with probability 1− γs(n, p), we have
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1)

Am ⊇A∗, if m ≥ log 1
δs

(
‖y‖22
Cs,1

)
,

where Cs,1 =n(1−∆)

(
c−(s)− θ2s,s

c−(s)2

)
b∗, b∗ is the minimal

signal strength, and δs is defined in condition 3;
2)

‖βm −β∗‖22≤Cs,2δ
m‖y‖22.

where Cs,2 = (1 + ∆ +
θs,s

c−(s)
)/

(
(1−∆)n(c−(s)− θ2s,s

c−(s)
)

)
.

With the threshold τs , Theorem 3 suggests that our splic-
ing method terminates at a logarithm number of iterations. The
estimation error decays geometrically.

The next theorem guarantees that the splicing method can
recover the true active set with a high probability.
Theorem 4 (Consistency of Best-Subset Recovery). Suppose con-
ditions 1, 4, and 7 hold. Assume conditions 2, 3, and 6 hold with
smax. Then, under the information criterion SIC, with probability
1−O(p−α), for some positive constant α> 0 and a sufficiently
large n , the ABESS algorithm selects the true active set, that is,
Âsmin =A∗.

Theorem 4 implies that the solution of the splicing method is
the same as the oracle least-squares estimator with an unknown
sparsity level. Since our approach can recover the true active set,
we can directly deduce the asymptotic distribution of β.
Corollary 1 (Asymptotic Properties). Suppose the assumptions
and conditions in Theorem 4 hold. Then, with a high probability,
the solution β̂smin

of ABESS is the oracle estimator, i.e.,

P{β̂smin
= β̂

o
}= 1−O(p−α),

where α> 0 and β̂
o

is the least-squares estimator given the true
active set A∗. Furthermore,

β̂A∗ ∼N (β∗A∗ , Σ),

where Σ = (X>A∗XA∗)−1.

Simulation
In this part, we compare the proposed ABESS algorithm with
other variable selection algorithms under Model 1, where the
rows of the design matrix are i.i.d-sampled from the multivari-
ate normal distribution with mean 0 and covariance matrix Σ.
The n error terms are i.i.d-drawn from the normal distribution
N (0,σ2).

We consider four criteria to assess the methods. The first
two criteria, true-positive rate (TPR) and true-negative rate
(TNR), are used to evaluate the performance of variable selec-
tion. The estimation accuracy for β is measured by the relative
error (ReErr): ‖β̂−β‖2/‖β‖2. We also examine the dispersion
between the sparsity level estimation ŝ and the ground truth,
which is measured by the sparsity-level error (SLE): ŝ − s∗. All
simulation results are based on 100 synthetic datasets.

Low-Dimensional Case. We begin with a low-dimensional setting
and compare ABESS and all-subsets regression (ASR), which
exhaustively searches for the best subsets of the explanatory vari-
ables to predict the response via an efficient branch-and-bound
algorithm (21). We use SIC (ASR-SIC) to select a model size
for ASR.

We adopt a simulation model from ref. 6. Specifically, the
coefficient is fixed at β = (3, 1.5, 0, 0, 2, 0, 0, 0)>, the covariance

matrix Σ has a decayed structure, i.e., Σij = 0.5|i−j | for all i , j ∈
{1, . . . , p}. The pair of sample size and noise level (n,σ) varies
as (40, 3), (40, 1), and (60, 1). It can be seen from Table 1 that
when the noise level is large but the sample size is small, the per-
formance of ABESS and ASR is close, although ASR is slightly
better. When the noise level reduces, the slight advantage of
ASR-SIC disappears. The fact that ABESS performs as well as
the exhaustive ASR algorithm, when the setting is simple enough
for the latter to be computationally feasible, demonstrates the
power of ABESS in selecting the best subset.

Next, we study the computational time and computational
complexity of the ASR and ABESS algorithms by adding zeros
to β in the previous experiment to form a new β of a total of
p coefficients. Without loss of generality, we consider the run-
time of algorithms when p increases from 20 to 40 with step
size 1. Fig. 1 presents the simulation results. On the one hand,
from Fig. 1A, we can see that the difference between ASR-SIC
and ABESS in the three criteria are all under control in interval
(−5× 10−3, 5× 10−3), and, hence, we can conclude that ABESS
and ASR have a negligible difference in this setting. On the other
hand, from Fig. 1 B and C, the computational time of ASR is
20 s when dimensionality reaches 40, while that of ABESS is less
than 0.03 s. More importantly, from Fig. 1B, the computational
time of ABESS grows linearly when the dimension increases, as
proven in Theorem 2. In contrast, from Fig. 1C, the runtime of
ASR increases exponentially. In summary, ABESS not only can
recover the support but also is computationally fast.

High-Dimensional Case. We consider the case when the dimension
is in hundreds or even thousands, for which the exhaust search is
computationally infeasible. It is of interest to compare ABESS
and modern variable selection algorithms, including LASSO (4),
SCAD (6), and MCP (7). The solutions of the three algorithms
are given by the coordinate descent algorithm (22, 23) imple-
mented in R packages glmnet and ncvreg. For all of these meth-
ods, we use SIC to select the optimal regularized parameters.
We also consider cross-validation (CV), a widely used method,
to select the tuning parameter. For MCP/SCAD/LASSO, the l
regularized parameters to be selected are prespecified values fol-
lowing the default setting in R packages glmnet and ncvreg. For
a fair comparison, the input argument of the ABESS algorithm,
smax, is also set as l . Here, l is set to be [ n

log p log log n
]. Note that

the concavity parameter γ of the SCAD and MCP penalties is
fixed at 3.7 and 3, respectively (6, 7).

The dimension, p, of the explanatory variables increases as
500, 1,500, and 2,500, but only 10 randomly selected variables
from them would affect the response. Among the 10 effec-
tive variables, 3 of them have a strong effect, 4 of them have
a moderate effect, and the rest have a weak effect. Here, a
strong/moderate/weak effect means that a coefficient is sam-
pled from a zero-mean normal distribution with SD10/5/2. We
consider two structures of Σ. The first one is the uncorre-
lated structure Σij = I (i = j ), and the second one is a constant

Table 1. Simulation results in the low-dimensional setting

Method TPR TNR ReErr SLE

n= 40,σ2 = 3
ABESS 0.90 (0.17) 0.86 (0.15) 0.20 (0.19) 0.40 (0.89)
ASR-SIC 0.91 (0.17) 0.87 (0.15) 0.14 (0.13) 0.38 (0.85)
n= 40,σ2 = 1
ABESS 1.00 (0.00) 0.87 (0.14) 0.02 (0.02) 0.63 (0.72)
ASR-SIC 1.00 (0.00) 0.87 (0.14) 0.02 (0.02) 0.63 (0.72)
n= 60,σ2 = 1
ABESS 1.00 (0.00) 0.90 (0.13) 0.01 (0.01) 0.48 (0.64)
ASR-SIC 1.00 (0.00) 0.90 (0.13) 0.01 (0.01) 0.49 (0.64)
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Fig. 1. (A) For each of the three metrics (TPR, TNR, and ReErr), the difference (y axis) is calculated by subtracting an ABESS metric from its corresponding
ASR metric. Different colors correspond to different metrics. (B) Dimension (x axis) versus ABESS’s runtime (y axis) scatterplot. The blue straight line is
characterized by equation y = a + bx. (C) Dimension (x axis) versus ASR’s runtime (y axis) scatterplot. The red curve is y = a + b2x . In B and C, the coefficients
a, b are estimated by the ordinary least squares.

structure Σij = 0.8I (i 6=j), corresponding to the case that any two
explanatory variables are highly correlated. The sample size n is
fixed at 500, and the noise level σ2 is fixed at 1.

The simulation results are presented in Fig. 2 A and B. A few
observations are noteworthy. First, among all of the methods,
ABESS or the CV-based LASSO estimator have the best per-
formance for correctly identifying the true effective variables;
moreover, ABESS can reasonably control the false-positive rate
at a low level like SCAD and MCP. Second, SIC helps ABESS
efficiently detect the true model size and its SLE approaches
to 0. In conjunction with the first point, the empirical results
demonstrate ABESS’s performance as proven in Theorem 4. In
contrast, the MCP and SCAD underestimate the model size,

whereas LASSO overestimates it. Also, we see that like BIC (24),
SIC avoids overfitting (see additional simulation studies in SI
Appendix). Finally, the parameter estimation of ABESS is supe-
rior to the other algorithms because ABESS not only effectively
recovers the support set but also yields an unbiased parameter
estimate. Fig. 2C compares the runtime. We see that ABESS’s
runtime is computationally efficient. Furthermore, as expected,
ABESS is much faster than the CV-based LASSO/SCAD/MCP
methods.

Summary
We present an iterative splicing method that distinguishes the
active set from the inactive set iteratively in variable selection.
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Fig. 2. (A and B) The boxplots of TPR, TNR, ReErr, and SLE of different algorithms in the high-dimensional setting when any two covariates have no
correlation (Left) and constant correlation 0.8 (Right). (C) Average runtime comparison under two correlation structure settings: uncorrelated and constant.
The runtime (y axis) is measured in seconds.

The estimated active set is shown to contain the true active set
when the given support size is no less than the true size, or to
be included in the true active set when the given support size is
less than the true size. We also introduce a selection information
criterion to adaptively determine the sparsity level, which can

guarantee to choose the true active set with a high probability.
We show that our solution is globally optimal for the Lagrangian
of Eq. 2 with SIC and has the oracle properties with a high prob-
ability. Numerical results demonstrate the theoretical properties
of ABESS. However, when there are a large number of weak
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effects, the ambiguity makes it challenging for us to detect sig-
nals. ABESS as well as other methods such as LASSO, SCAD,
and MCP face a similar difficulty. How to perform an effec-
tive subset selection with many weak effects warrants further
research.

Data Availability. All study data are included in the article and SI
Appendix.
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