
D862–D870 Nucleic Acids Research, 2021, Vol. 49, Database issue Published online 19 November 2020
doi: 10.1093/nar/gkaa1064

CSEA-DB: an omnibus for human complex trait and
cell type associations
Yulin Dai 1,†, Ruifeng Hu 1,†, Astrid Marilyn Manuel1, Andi Liu2, Peilin Jia 1,* and
Zhongming Zhao 1,2,3,*

1Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX 77030, USA, 2Human Genetics Center, School of Public Health, The University of Texas
Health Science Center at Houston, Houston, TX 77030, USA and 3MD Anderson Cancer Center UTHealth Graduate
School of Biomedical Sciences, Houston, TX 77030, USA

Received August 15, 2020; Revised October 18, 2020; Editorial Decision October 19, 2020; Accepted October 21, 2020

ABSTRACT

During the past decade, genome-wide association
studies (GWAS) have identified many genetic vari-
ants with susceptibility to several thousands of
complex diseases or traits. The genetic regulation
of gene expression is highly tissue-specific and
cell type-specific. Recently, single-cell technology
has paved the way to dissect cellular heterogene-
ity in human tissues. Here, we present a refer-
ence database for GWAS trait-associated cell type-
specificity, named Cell type-Specific Enrichment
Analysis DataBase (CSEA-DB, available at https://
bioinfo.uth.edu/CSEADB/). Specifically, we curated
total of 5120 GWAS summary statistics data for a
wide range of human traits and diseases followed by
rigorous quality control. We further collected >900
000 cells from the leading consortia such as Hu-
man Cell Landscape, Human Cell Atlas, and exten-
sive literature mining, including 752 tissue cell types
from 71 adult and fetal tissues across 11 human or-
gan systems. The tissues and cell types were an-
notated with Uberon and Cell Ontology. By applying
our deTS algorithm, we conducted 10 250 480 times
of trait-cell type associations, reporting a total of 598
(11.68%) GWAS traits with at least one significantly
associated cell type. In summary, CSEA-DB could
serve as a repository of association map for human
complex traits and their underlying cell types, man-
ually curated GWAS, and single-cell transcriptome
resources.

INTRODUCTION

The past decade has witnessed great success in genome-
wide association studies (GWAS) which reported thou-
sands of genetic variants with statistical association with
a few thousands of human complex diseases and traits.
However, where and how these genetic factors manifest
their impacts on the molecular changes remain mostly elu-
sive. Previous studies have discovered that genetic variants
tend to regulate the gene expression or function in spe-
cific tissues and cell types (1,2). The accurate assessment
of disease-associated tissues or cell types becomes a criti-
cal step to understanding the etiology of these human com-
plex diseases and traits (3,4). Recently, we successfully de-
veloped a t-statistics-based method ‘decoding the tissue-
specificity’ (deTS) to measure the tissue-specific enrichment
of 26 human complex diseases utilizing GWAS summary
statistics and tissue gene expression profiling (5). Later, we
expanded this method to assess the tissue-specific enrich-
ment of ∼5000 collected GWAS over ∼70 tissues curated
from the Genotype-Tissue Expression project (GTEx) (2)
and Encyclopedia of DNA Elements project (ENCODE)
(6). All the trait and tissue associations are stored in
our Tissue-Specific Enrichment Analysis DataBase (TSEA-
DB, https://bioinfo.uth.edu/TSEADB/) (7). However, due
to the heterogeneity within the tissue, the bulk RNA-seq
of tissue might not fully reflect the underlying biological
basis.

Human bodies are composed of 11 major organ systems,
∼100 organs/tissues, and more than 100 unique cell types or
thousands of sub-cell types (8). In recent years, large-scale
single-cell transcriptome data have been generated by sev-
eral pioneer studies (9–11) and multiple international con-
sortia (e.g. Human Cell Atlas, Human Lung Cell Atlas, and
Human Cell Landscape) (12–14). These studies aim to char-
acterize the molecular features of the cell types in human
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major tissues, which provides us rich resources to decode the
cell type-specificity of human cell types and harness the ge-
netic implications underlying human complex diseases and
traits.

In this work, we aim to systematically explore the ge-
netic signals of complex traits and diseases underlying hu-
man cell types. We conduct the following approaches. (i) We
updated our GWAS summary statistics collection. (ii) We
curated these large-scale single-cell transcriptome datasets
of human tissues and calculate the t-statistics-based mea-
surements to assess the cell type-specificity of genes within
each tissue. (iii) We constructed a comprehensive associa-
tion map of cell types and the human complex traits and
diseases through conducting the cell type-specific enrich-
ment analysis (CSEA) for thousands of traits we curated
and maintained. (iv) We identified the trait-associated cell
types, which will be good candidates to allocate the ‘causal’
or relevant cell types and shed light on the underlying mech-
anisms. (v) We highlighted those traits associated with the
same cell type, which indicates the potential comorbidity
and shared genetic basis (such as genes and pathways). (vi)
All the curated data and associations have been managed
and displayed in a user-friendly database to serve as the
public repository of an omnibus map for human complex
trait and cell type associations. (vii) Finally, we constructed
a gene expression portal at cellular level to allow users to
query and compare the relative abundance for genes of in-
terest cross human tissues and cell types.

DATA COLLECTION, ANALYSIS AND APPLICATION

GWAS summary statistics collection and update

We adapted the ∼5000 GWAS summary statistics collected
from the previous TSEA-DB (Tissue-Specific Enrichment
Analysis DataBase) frozen by 19 June 2019. We further
curated 260 GWAS traits from GWAS Catalog (15) and
GRASP (grasp.nhlbi.nih.gov/) updated until 18 June 2020.
Briefly, We collected the GWAS summary statistics from
three major collections: the multi-trait collection (MTC)
panel, which is a fixed collection of curations by previous
studies (16–18); the UK Biobank (UKBB) panel, which de-
posited the UKBiobank ‘GWAS round 2’ results prepro-
cessed by Neale’s lab (http://www.nealelab.is/uk-biobank)
on 1 August 2018 as the largest and most comprehensive
resource of UKBB GWAS; the expanded trait collection
(ETC), which is under recurrent curation from the new
GWAS collected from GWAS Catalog and other resources.
Both MTC and ETC panels were defined as the non-UKBB
panel in our database.

Quality control of GWAS data

We adapted the same quality control (QC) strategies for
the updated GWAS summary statistics in the ETC panel.
Briefly, we only used GWAS conducted in European ances-
try for this database. No trans-ethnic meta-analysis GWAS
was included since no proper linkage disequilibrium infor-
mation could be applied to them. We further filtered those
GWAS with lambda <0.8 or >1.3 to exclude deflated and
inflated studies.

Table 1. Summary of GWAS panel curation

Panel Summary statistics Number of TAG setsa

MTCa 432 1235
ETCa 316 1169
UKBBa 4372 11 370
Total 5120 13 774

aMTC: multi-trait collection panel, ETC: expanded trait collection panel,
UKBB: UK Biobank collection panel, TAG: traits-associated-gene.
This table describes the distribution of 5120 GWAS summary statistics in
three collection panels. The qualified GWAS traits-associated-gene (TAG)
sets in each panel are listed in the third column.

Calculation of gene-based P-value and traits-associated-gene
set

We updated our pipeline and applied a commonly used tool,
Multi-marker Analysis of GenoMic Annotation (MAGMA
v1.07) (19), to calculate the gene-level P-value. Specifically,
we considered all SNPs in the gene body and 50 kb upstream
and 35 kb downstream regions. We used the mean � 2 statis-
tic for these SNPs to obtain gene-based P-values, consid-
ering the effects of the gene length, SNP density, and lo-
cal linkage disequilibrium (LD) structure. We used the 1000
Genome Project Phase 3 European population as the refer-
ence panel.

We further used a dynamic threshold for trait-associated-
gene (TAG) sets given the different significance from
each GWAS study. The gene-based P-value generated by
MAGMA was stratified to groups by threshold P < 0.05,
P < 0.01, P < 0.001, P < 1 × 10−4 and P < 1 × 10−5.
We further limited the number of genes in each group into
the range from 20 to 3000, aiming to avoid statistical sig-
nificance biased by genes set size in TAG. For each GWAS
study, we required at least one TAG set complying with the
criteria for the number of genes. Overall, we obtained 432 in
the MTC panel, 316 in ETC panel, and 4372 in the UKBB
panel stored in our CSEA-DB (Table 1).

DATA COLLECTION

Human organ system tissue single-cell transcriptome data

We conducted a deep literature-mining for human tissue-
single-cell transcriptome data. We downloaded the datasets
from three major sources, Human Cell Landscape (http:
//bis.zju.edu.cn/HCL/) (14), Single Cell Expression Atlas
(https://www.ebi.ac.uk/gxa/sc/home), and extensive litera-
ture curation (9–13,20–22) (Supplementary file S1). We only
collected the healthy tissue single-cell transcriptome data
with detailed cell type annotation by original works. Firstly,
we collected and curated the transcriptome matrix by tis-
sue. We excluded those genes expressed in <30 cells in each
tissue. Considering the statistical power, we further filtered
those cell types with the number of cells no smaller than
30 in each tissue. Overall, we curated 71 tissue samples (55
unique tissues) and 752 tissue cell types (TCs) in adult and
fetal tissues. The total number of genes in different tissues
range from 3427 in adult ascending colon to 21 758 in pla-
centa decidua.

The cell numbers of each cell type in each study were
also recorded in the database as the information for cell
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type distribution in each tissue. The total number of cells
in each tissue panel range from 995 in pancreas to 94 257 in
spleen (12,20). We also provided the resource information
and download link for each study for users to download
(Supplementary file S1)

Tissue-Cell type (TC) structure

We used a hierarchical structure to store the cell type in
transcriptome data. Under the assumption that the cell
types work collaboratively within each tissue, their tissue
context should serve as another layer of information. We
generated a unique tissue-cell type (TC) id for each of the
cell types identified from the focal tissue single-cell data.
This structure is displayed on the front page and the Browse
function.

UNIFORM PROCESSING PIPELINE

We constructed a standardized pipeline to preprocess the
single-cell transcriptome datasets from different resources.

Read count normalization

Read count matrix was obtained from each single-cell data
resource. Pre-normalized data were also reversed to the read
count matrix. Then, the matrix was normalized to counts
per millions mapped reads. Gi is gene read count or Unique
Molecular Identifier (UMI); Ni is the total mapped read
count in each cell; 106 is the scale factor. The CPM ma-
trix was further added by 1 and subsequently logistic trans-
formed by 2 to eliminate the effect of extreme values.

CPMi = Gi
Ni

106

TISSUE AND CELL TYPE ONTOLOGY ANNOTATION

Tissue anatomy ontology

We collected 55 unique human tissues from 11 distinct or-
gan systems of the human body according to the anatomy.
We further annotated them with their id in the Uberon sys-
tem (23), which is an integrated cross-species anatomical
ontology system. For each study, we recorded two Uberon
ids (author-inferred tissue id and CSEA-DB annotated tis-
sue id) for each tissue. If the study provides the tissue
Uberon id, we kept the information as the author-inferred
tissue and set as NA for tissue without author annotation.
For CSEA-DB annotated tissue, we annotated its highest
level Uberon system node. This CSEA-DB annotated tis-
sue Uberon id would be used in the later on cell type anno-
tation to determine whether the cell type is tissue-specific.
The Uberon ontology obo file was downloaded from http:
//purl.obolibrary.org/obo/uberon.obo (accessed on 6 July
2020). We used the ‘is a’ relationship to obtain all the de-
scendants for each of the CSEA-DB annotated tissue id as
the ‘tissue Uberon id set’ (Figure 1B).

Cell type ontology

Another important feature of our CSEA-DB is all the cell
type information adapted from the single-cell transcriptome

data were further curated by CSEA-DB according to the
‘inferred cell type name’ from the original study. Specif-
ically, we manually queried the ‘tissue name’ + ‘inferred
cell type name’ in Cell Ontology (https://www.ebi.ac.uk/ols/
ontologies/cl) (24). We recorded the most relevant cell type
name and id returned from the Cell Ontology. Thus, each
unique tissue cell type stored in our database have ‘inferred
cell type name’, ‘Cell Ontology id’, and ‘Cell Ontology full
name’. All the queries at the Cell Ontology website were
conducted by 27 July 2020. We also downloaded the Cell
Ontology obo file from https://github.com/obophenotype/
cell-ontology (accessed on July 6, 2020). This file includes
all the Cell Ontology id information and some annotated
with Uberon id information through ‘part of’ relationship.
Firstly, we obtained all the Cell Ontology ancestors id
through recursive ‘is a’ relationship as a union for one fo-
cal cell type. Next, we searched all the possible ‘part of’ re-
lationships with annotation of the Uberon id (Figure 1B).
Thus, we obtained a ‘cell type Uberon id set’ for all the focal
Cell Ontology id in our database.

Definition of tissue-specific cell types

Due to the wide-spreading connective tissue cell, including
fixed cells (fibrocytes and adipocytes) and ‘wandering cells’
such as leukocytes (25,26), they might not have the cell type-
specificity or directly related to the tissue function. Thus,
we utilized an ontology-based method to check whether
these tissue-cell types (TCs) were annotated as one cell type
belongs to the corresponding tissue ontology. Specifically,
for each of our 752 TCs, we overlap its Uberon id set de-
scribed in the previous ‘Cell type ontology’ session with its
‘tissue Uberon id set’. If there is an overlapping of these two
Uberon id sets, we would annotate this focal TC to tissue-
specific or non-tissue-specific cell type, respectively (Figure
1B).

Application of cell type-specific enrichment analysis

We modified our previously developed ‘tissue-specific en-
richment analysis’ (5) and applied it to explore the cell type-
specificity within each tissue. Briefly, we used the log2 (CPM
+ 1) normalized single-cell transcriptome matrix to calcu-
late the cell type-specific expression within the cell types
(number of cells ≥ 30) in each tissue. The t-statistics (tij)
for the coefficient of lm(yi∼xj) is calculated, where yi is a
vector of the normalized expression of i gene; xj is a de-
sign matrix indicating the cells either in or outside of the j
cell type; lm is the linear model regression. Thus, tij repre-
sents the t-statistics of i gene in j cell type. Then we defined
the top 5% t-statistic score gene in focal cell type as the cell
type-specific genes. Lastly, we conducted a fisher exact test
whether the TAG set from each trait is overrepresented with
the cell type-specific genes, where P-value indicates the sig-
nificance of this CSEA.

DESCRIPTION OF THE WEBSITE AND TOOLS

Overview of CSEA-DB

The front page of CSEA-DB includes an overview of hu-
man 11 organ systems. We used a hierarchical structure to
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Figure 1. Workflow for Cell type-Specific Enrichment Analysis DataBase (CSEA-DB). (A) Workflow for CSEA-DB and statistics; Three figures (Man-
hattan plot, heatmap, and t-SNE plot) illustrate the features of the GWAS summary statistics dataset, Cell Type-Specific Enrichment Analysis Database
(CSEA-DB), and single-cell transcriptome dataset, respectively. We process the datasets and construct the database based on this workflow. (B) Workflow
for annotating tissue-cell types and identifying its tissue-specificity. For each tissue-cell type maintained in our database, we manually curate its ontology
information in Uberon system and Cell Ontology and identify its tissue-specificity through this workflow.

store the tissue single-cell data information. The navigation
bar has four featured functions ‘Browse’, ‘Search’, ‘Multi-
trait’ comparison, and ‘scExpression’, Users can navigate
the whole database through these four featured functions.
The ‘Browse’ function stores all the trait and cell type
maps split by trait panels (MTC, ETC and UKBB) as well
as the trait-associated TCs map and TC-associated trait
map. The search function supports the fuzzy search for
trait name, tissue, and cell type of interest. And the re-
turn page includes all the possible results related to the
keywords.

Trait-associated TCs page

In the current CSEA-DB, we conducted the CSEA for 13
774 TAG sets (size ≥20 and ≤ 3000) from 5120 GWAS data
sets over 752 TCs (Table 1). We found 99.97% of TAG sets
(13 770 /13 774) have at least one cell type associated with
a nominal P-value <0.05. After Bonferroni correction for
13 774 TAG sets and 752 TCs (∼5 × 10−9), we still ob-
served 9.92% of TAG sets (1367/13 774) having at least
one cell type. At the GWAS traits level, we observed 100%
(5120/5120) and 11.68% (598 /5120) of GWAS have at least
one cell type with significant associations before and after
multiple-testing correction. Specifically for the non-UKBB
panel, we observed 100% (748 /748) and 20.86% (156 /748)
of GWAS identified with the significant association before
and after multiple-testing correction (Figure 2A, left). Thus,
we identified that non-UKBB GWAS traits tend to have
a higher proportion of Bonferroni corrected significance
than the UKBB GWAS traits. Figure 2B shows an overview
for one specific GWAS trait and its basic information, in-
cluding trait name, case and control number, reference, and
TAG sets information. The CSEA results for the trait could
be displayed in all TCs or one tissue and its corresponding
TCs.

TC-associated traits page

Among 752 TC, 100% TCs has at least one nominal sig-
nificant association with one GWAS trait, while 61.17%
TCs (460 /752) have at least one Bonferroni corrected sig-
nificance with at least one GWAS phenotype (Figure 2A,
right). We did not observe the tissue-specific cell types
(60.51%, 118/195) have a different proportion of Bon-
ferroni corrected significance (comparing to nominal sig-
nificance) from the non-tissue-specific cell types (61.40%,
342/557). We aimed to explore the TC-associated traits
both tissue-wisely and TC-wisely. As shown in Figure 2C,
the TCs and traits are connected by edges with P-value of
association smaller than a certain threshold, while TCs are
connected with their corresponding tissue. Users can filter
the P-value threshold if the network is too sparse or too
dense. Below the threshold, we also provide the information
of cell types and their numbers within this tissue. Users can
click the hyperlink to look into the specific TC-associated
traits. Interestingly, we identified some of the cell types from
the same tissue that might share strong associations with
the same trait, indicating that these cell types might work
together to contribute to the corresponding GWAS pheno-
type. As shown in Figure 2D, one specific TC-associated
traits page only contains the association of one TC. This
page is similar to the association page for TCs or traits as
shown in Figure 2C.

Bridging to TSEA-DB

In addition to our CSEA result, we provide a hyperlink
to TSEA-DB for each trait to allow users to browse the
traits-associated tissues (TATs). TSEA-DB provides a com-
prehensive overview of each trait by displaying the Man-
hattan plot for GWAS summary statistics and gene-level
P-values. Moreover, users could compare both results of
TSEA and CSEA in shared tissues, providing deeper bi-
ological insight of genetic signals at cellular resolution as
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Figure 2. Statistics of trait and tissue-cell type association map and vignettes for database functions. (A) Trait and tissue-cell type map statistics; left: number
of trait and tissue-cell type associations with at least one nominal or Bonferroni corrected significant association in at least one of the 752 tissue-cell types
(TCs); y-axis is the number of unique traits; x-axis is the three categories, all GWAS traits, UK Biobank (UKBB) panel traits, and non-UKBB panel traits;
right: number of trait and tissue-cell type associations with at least one nominal or Bonferroni corrected significant association in at least one of 5,120
GWAS traits; y-axis is the number of unique TCs; x-axis is three categories, all TCs, non-tissue-specific TCs, and tissue-specific TCs. (B) Cell type-specific
enrichment analysis (CSEA) result from browsing the GWAS trait page. Top rows show trait information, including trait name, links to related sources,
study summary, and trait-associated-gene (TAG) sets used for CSEA. The heatmap table in the bottom shows the enriched results of the trait in different
cell types. Users can check the results in different tissues. The heatmap table is interactive and allows users to set different P-value thresholds for displaying
the enriched results. The empty row which means there is no enriched result at the selected P-value level can be hidden by checking the option box. If the
user selects the option ‘all’, all the enriched result values will be displayed in the heatmap table, only values that are lower than 0.2 will be marked with
color proportions. (C) Network view of tissue-cell types-associated traits. Green node denotes a tissue, red nodes are cell types in this focal tissue, and blue
nodes are associated traits with the cell types. The edges are labeled with P-values. The network view can be modified by setting different P-value cutoffs or
hide non-specific cell types. A short note shows the description of the network data source. At the bottom, the data table shows a full list of cell type-trait
association pairs for the tissue. Because each trait might have multiple TAG sets defined at different thresholds, multiple rows for each cell type-trait pair
with different ‘TAG Set Threshold’ and ‘CSEA p (chi2)’ (the last two columns). (D) Network view of one specific cell type associated traits. This page is
similar to the page in (C).

well as rescuing those diluted signals in the bulk tissue
expression.

scExpression page

The scExpression page provides normalized gene expres-
sion information at both tissue and cell type level. Users
can submit one gene symbol name of interest and the sc-
Expression page will return an overview (barplot) of the
average CPM normalized gene expression within each of
the 68 tissues with UMI-based data. The three SMART-
seq2 datasets based on the full-length RNA-seq method are
not listed, as their normalized expression profiles are not
comparable with other UMI-based data (27,28). Once the
users further click the tissue bar of interest, it will gener-
ate barplot for the average CPM normalized expression of

each cell type in that tissue. This page is a useful tool for
researchers who aim to check the gene expression across
human tissues and cell types. Overall, we provide a one-
stationary curation for the average normalized gene expres-
sion of tissue and cell type.

Multi-trait comparison function

As we demonstrated in the trait-associated cell type, con-
taining >5120 traits information and their CSEA result
across over 752 TCs tissue-wisely or together. Since there
are multiple studies for the same or similar trait, the com-
parison of these traits could help to identify the consistent
enriched cell types shared by the same trait from different
studies. Moreover, multiple tissues or TCs might be related
to complex traits and diseases. Thus, we provide this multi-
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trait comparison function to explore the shared or unique
cell types across multiple traits and multiple TCs of interest.

To this end, this multi-trait comparison function could
explore the associations between multiple traits and mul-
tiple TCs of interests simultaneously. We used ‘Ashma’ as
an example in Figure 3. Asthma is a condition that leads
to the inflammation in the airways and the bronchial tubes
that carry air into the lung, which makes patients difficult
to breathe (29). We selected two Asthma studies with 10
TAG sets and all TCs in three tissues, including two disease-
relevant tissue trachea and lung, and one disease irrelevant
tissue adipose through the multi-trait comparison function.

We identified the same cell types might act differently
in disease-relevant and irrelevant tissues. For instance, we
found macrophage has most significant association with P
> 0.005 in adipose, P = 6.98 × 10−5 in lung, and P =
2.86 × 10−5 in trachea. We also identified endothelial cell
(APC) has relatively high risk in both lung (P = 2.29 × 10−4)
and trachea (P = 1.37 × 10−5), although T cell in lung has
the most significant association (P = 7.71 × 10−7). Nev-
ertheless, we also find the lung B cell has the association
of P = 1.05 × 10−4, while the plasma B cell has no asso-
ciation with P < 0.05 in any of 10 TAG sets. Overall, this
systematic characterization of the TCs underlying genetic
signals could help to dissect the potential mechanism of
asthma.

TSEA and CSEA comparison

To understand the relationship between TSEA and CSEA,
we compare their results for one autoimmune disease
(Crohn’s Disease) in TSEA-DB and CSEA-DB (Figure 4A
and B) (4). Specifically, we identified five associated tis-
sues (adipose visceral, lung, small intestine, whole blood,
and spleen) that have at least one TAG with P < 0.01 in
the TSEA-DB. (Figure 4A). The top associated tissues are
whole blood (P = 3.08 × 10−10), spleen (P = 5.27 × 10−7),
lung (P = 6.59 × 10−7), small intestine (P = 0.001), and
adipose visceral (P = 0.008). We selected the CSEA result
from the corresponding tissues (AdultAdipose, AdultDuo-
denum, AdultIleum, AdultJeJunum, AdultLung, AdultPe-
ripheralBlood and AdultSpleen) in CSEA-DB (Figure 4B).
Since the cell type-specificity is calculated within each tissue,
their significance is comparable within each focal tissue. We
identified that dendritic cell (7.81 × 10−9), M2 macrophage
(2.01 × 10−8) and M2 macrophage (1.57 × 10−6) are the top
significant cell types in lung. Interestingly, we found den-
dritic cell (3.20 × 10−6), macrophage (5.47 × 10−6), and en-
dothelial cell (APC) (3.18 × 10−6) are the most enriched cell
types in three small intestine tissues (disease-relevant tis-
sues). Moreover, endothelial cells (APC) in non-small intes-
tine tissues all have P > 0.001, suggesting that the endothe-
lial cell (APC) might work differently in small intestine tis-
sues and contribute to the Crohn’s disease along with the
dendritic cell, and macrophage. Besides, the proportions of
‘causal’ cell types within each tissue could also be an impor-
tant indicator to assess their effect. Lastly, the genetic fac-
tors could only explain a small proportion of the disease.
The microenvironment that tissues are exposed to might
have contributions to the disease pathogenesis.

Documentation page

We built a documentation page to briefly describe the data
collection, preprocessing, and analysis (https://bioinfo.uth.
edu/CSEADB/document.php). We also provide vignettes
for website functions, including Browse, Search, Multi-trait
comparison and scExpression functions.

DATABASE DESIGN AND UPDATES

The CSEA-DB web interfaces were constructed with stan-
dard HTML and Bootstrap 4 libraries (http://getbootstrap.
com/). The data were processed using R and python scripts.
The processed and annotated data and summary statis-
tics were stored in MySQL. PHP was the main language
used for implementing the functions of CSEA-DB, such
as, browsing, searching and data exporting. The interac-
tive and dynamic web pages were implemented through
several JavaScript libraries (CytoscapJS, zTReeJS, High-
chartJS) and Ajax strategies. Our database could be eas-
ily expanded with the newly updated data through highly
efficient scripts. In the previous work TSEA-DB (7), we
have built a standardized workflow to select, preprocess,
and conduct quality control on the GWAS summary statis-
tics. In this work, we used that pipeline and updated 171
qualified GWAS summary statistics since the last update
on 19 June 2019. We will update GWAS summary statis-
tics annually. In this work, we built a pipeline to process the
single-cell tissue transcriptome data, including data quality
control, ontology annotation and cell type-specific expres-
sion panel construction. Due to rapid advances in single-cell
genomics technology, we will seasonally update our single-
cell dataset collection to include the newly available human
tissues and related cell types. The CSEA could be imple-
mented using modified scripts based on our deTS package
(5). All the results in this work are based on the release on
13 August 2020.

CONCLUDING REMARKS AND FUTURE DEVELOP-
MENT

In previous TSEA-DB (https://bioinfo.uth.edu/TSEADB/),
we have successfully decoded the diseases relevant tissues,
most of which aligned with the current knowledge. In this
Cell type-Specific Enrichment Analysis DataBase (CSEA-
DB, https://bioinfo.uth.edu/CSEADB/), we mine the vari-
ous data deeper into the trait-associated tissue cell types.
We updated and reprocessed the long-termly maintained
GWAS summary statistics with the new pipeline. We col-
lected, annotated, and processed 71 single-cell transcrip-
tome studies covering 55 unique adult and fetal tissues in
11 human organ systems.

Interestingly, we observed a broad expression of immune
cells among human tissues. As shown in Figure 4C, we
found human macrophage, T cell, dendritic cell existed in
74.1%, 63.8%, 63.8% out of 58 tissue from HCL, respec-
tively. This discovery supports the widespread connective
tissue cells such as macrophage, T cell, and dendritic cell
in human tissues. Moreover, we summed up the cellular
proportion of top five lymphatic cell types within each hu-
man tissues and identified that ascending colon (85.3%),
adipose (82.3%), spleen (81.0%), peripheral blood (70.9%),

https://bioinfo.uth.edu/CSEADB/document.php
http://getbootstrap.com/
https://bioinfo.uth.edu/TSEADB/
https://bioinfo.uth.edu/CSEADB/
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Figure 3. Multi-trait multi-cell types comparison using two asthma studies in three human tissues (Adult Adipose, Adult Lung and Adult Trachea). An
example of our Multi-trait function by comparing the asthma GWAS from two datasets in three tissues (33 tissue-cell types). Our ‘Multi-trait’ function
allows users to compare at most 10 data sets in all the tissue-types in our database at one time. The top two rows demonstrate the study information about
these traits and the heatmap below is the cell type-specific enrichment analysis (CSEA) for the GWAS with multiple trait-associated-gene (TAG) sets. The
color is proportional to the –log(P) value of the associations. The cells with P < 0.05 are filled with the corresponding P-values and the tables with P ≥
0.05 are left blank.

and epityphlon (appendix) (60.6%) are the top five human
tissues that contain the largest proportion of these five lym-
phatic cells (macrophage, T cell, dendritic cell, B cell (plas-
mocyte) and monocyte) (Figure 4D). Considering the wide-
spreading lymphatic cells in human tissues, we did a sys-
tematic curation for cell types identified in the transcrip-
tome data with those connective cells in each tissue. How-
ever, the ‘tissue-specific’ and ‘non-tissue-specific’ cell types
are not a rigorous biological definition. We provided this
cell type filtration option to eliminate the potential ‘noise’

from the non-tissue-specific connective cells such as fibro-
cytes, adipocytes, and leukocytes cells, highlighting the as-
sociations of ‘tissue-specific’ cell types. Overall, CSEA-DB
could provide systematic potential insights into the biolog-
ical mechanisms of human complex diseases at cellular res-
olution.

In the future, CSEA-DB aims to update the database
in the following three directions. (i) Current CSEA-DB
only curates the GWAS with samples of European An-
cestry. With the recent advent of GWAS in other popu-
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Figure 4. Comparison between TSEA-DB and CSEA-DB for Crohn’s disease, and cell type distribution among tissues in CSEA-DB. (A) Tissue-specific
enrichment analysis (TSEA) results for one Crohn’s disease GWAS across 47 tissues in Genotype-Tissue Expression (GTEx). Top rows are the basic
information about the Crohn’s disease GWAS, the heatmap below demonstrates the TSEA results of this Crohn’s disease GWAS with multiple trait-
associated-gene (TAG) sets from the Tissue-Specific Enrichment Analysis DataBase (TSEA-DB). (B) Cell type-specific enrichment analysis (CSEA) results
of Crohn’s disease GWAS in tissue-cell type level with multiple TAG sets from CSEA-DB. (C) Barplot for top 10 frequently identified cell types in CSEA-
DB curated tissue transcriptome datasets.). (D) Barplot for top 10 tissues with the largest summed proportions of the five lymphatic cells (macrophage, T
cell, dendritic cell, B cell (plasmocyte), and monocyte).

lations (e.g. African and East Asian population), we will
integrate the more population panel into our GWAS cu-
ration as well as the annual update referring to GWAS-
catalog. Moreover, the chromatin interaction information
for chromosome 3D data has also been integrated to better
interpret the effect of variants in long-term chromosomal
interactions (30,31). We will actively update our pipeline
to better assess the gene-level P-value from GWAS sum-
mary statistics. (ii) We will continuously collect and cu-
rate the emerging single-cell transcriptome data quarterly.
We will have a more comprehensive collection of human
single-cell transcriptome data along with the advance of
ongoing projects like Human cell atlas and single-cell ex-
pression atlas with more data and more accurate annota-
tion. Since more single-cell platforms adapted the UMI-
based method (32), we expect to integrate more single-cell
transcriptome datasets (e.g. developmental and temporal-
spatial data) into our database. (iii) In this study, we ob-
served that some specific complex human disease is signifi-
cantly associated with multiple cell types in one specific tis-
sue, suggesting these cell types from this tissue might all
contribute to the etiology of diseases. As shown in Fig-
ure 3, we found that both immune cells and epithelial cells
(AT2) are all extremely enriched in human adult lung, indi-
cating their co-occurrence might be associated with the un-
derlying mechanism. Nevertheless, different cells within cer-
tain microenvironments will communicate with each other
and coordinate to transduce signals (such as immune re-
sponse in immune cells) (33). Deciphering the genetic risks

underlying such intercellular interactions will further help
us to understand the etiology of human complex traits and
diseases (34).

In summary, we constructed an omnibus map for over
5120 human GWAS phenotypes and 752 human tissue cell
types. We identified many tissue-specific cell types that play
crucial roles; and such results align with previous discov-
eries in TSEA-DB. Meanwhile, some widespread cell types
might play different roles in different tissues and contribute
to the disease pathogenesis contextually. Moreover, tissue
cell type could be related to multiple GWAS phenotypes
and multiple cell types carrying genetic risks within one
tissue might communicate and work collaboratively. These
discoveries could provide new insights into understanding
the mechanism of human complex traits and diseases.
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