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ABSTRACT

Proteins are intricate, dynamic structures, and small
changes in their amino acid sequences can lead to
large effects on their folding, stability and dynamics.
To facilitate the further development and evaluation
of methods to predict these changes, we have de-
veloped ThermoMutDB, a manually curated database
containing >14,669 experimental data of thermody-
namic parameters for wild type and mutant proteins.
This represents an increase of 83% in unique mu-
tations over previous databases and includes ther-
modynamic information on 204 new proteins. Dur-
ing manual curation we have also corrected anno-
tation errors in previously curated entries. Associ-
ated with each entry, we have included information
on the unfolding Gibbs free energy and melting tem-
perature change, and have associated entries with
available experimental structural information. Ther-
moMutDB supports users to contribute to new data
points and programmatic access to the database via
a RESTful API. ThermoMutDB is freely available at:
http://biosig.unimelb.edu.au/thermomutdb.

GRAPHICAL ABSTRACT

INTRODUCTION

Protein thermodynamic stability is a fundamental property
of proteins that significantly influences their structure, func-
tion, expression, and solubility. Changes in protein stability
have been shown to be a main driving molecular mecha-
nism of genetic diseases (1–8) and even drug resistance (9–
18). Small changes in the protein sequence can have signifi-
cant consequences on their intricate structures, reflected in
changes in their stability and ability to correctly fold (19).
This is often a significant consideration whenever consider-
ing a new mutation, whether in the context of protein engi-
neering or variant characterisation (20,21).

The accurate prediction of the effects of mutations on
protein stability remains a complex and challenging prob-
lem. The development of computational approaches to
tackle this have required large mutational datasets, however
in turn have been limited by the quantity and quality of data
available.
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One of the first databases to collect information on the
effects of mutations on protein stability, ProTherm (22), led
to the exploration and rapid development of new computa-
tional approaches (23–28). However, this database has not
been updated for 7 years and many errors have been identi-
fied previously (29,30), limiting both previous methods and
future developments.

To overcome this, we have developed a new compre-
hensive and user-friendly resource for thermodynamic data
from protein mutations, ThemoMutDB. Figure 1 depicts
the database development workflow, which is divided into
three main stages: (i) data acquisition and curation, (ii) mu-
tation annotation and (iii) web-server development. By us-
ing a rigorous and careful data curation approach, Themo-
MutDB represents a significant improvement in both the
quantity and quality of data. This will not only enable the
development of a new generation of methods but also an
unbiased assessment of previously proposed ones.

MATERIALS AND METHODS

Data acquisition and curation

Data acquisition for ThermoMutDB was divided into two
steps: manual checking of previously mined data avail-
able in other resources (Figure 1A) and manual litera-
ture curation of new thermodynamic data (Figure 1B).
Within ThermoMutDB we captured thermodynamic infor-
mation, experimental conditions, and literature citations.
We also standardized measurements and calculations across
the data entries, including temperature in Kelvin, energy in
kcal/mol, and Gibbs free energy (��G) as in the formula:

��G = �G (wild-type) − �G (mutant)

where negative ��G values indicate that the mutation has
destabilized the protein and positive ��G values that the
mutant protein is more stable.

On the first data acquisition stage, all 1,902 references
in ProTherm were manually checked and validated. Refer-
ences that did not contain data about missense mutations
were removed, leaving 829 papers. During this process, er-
rors in data fields were corrected, duplicate entries were re-
moved, and 329 new data-points not previously captured,
but present in the original papers, were included.

New data were identified through manual literature cu-
ration. Optimized search terms (Supplementary Figure
S1) were used to identify an initial pool of over 34,000
manuscripts available on PubMed. These were further nar-
rowed down to those that contained experimental thermo-
dynamic results for missense mutations. In total, 393 papers
were analyzed and 5,654 new data points obtained, which
were confirmed by at least two independent curators. Sup-
plementary Figure S2 shows the distribution of unique mu-
tations collected per year.

Mutation annotation

Collected mutations were mapped to protein structures
available at the Protein Data Bank using (31). Different
characteristics of the wild-type residue environment were
calculated, including secondary structure, torsional angles,

relative solvent accessibility (32) and residue depth (33). Ad-
ditional residue-level information used to annotate the mu-
tations included different substitution matrix scores. Mu-
tation annotations were calculated using the Biopython
(34). Mutation effects are also depicted via pharmacophore
modeling (23). Pharmacophore modeling has been intro-
duced in the context of mutation analysis in a previous work
(23) to characterise the effect of mutations based on the dif-
ferences in atom counts per pharmacophore type. Muta-
tions that do not map to any available experimental struc-
tures are still listed but without any structure-based features
calculated.

Database and web interface implementation

The database architecture was developed using
SQLAlchemy, a database toolkit for Python (version 2.7).
All data is stored in an SQLite database and available to
download at http://biosig.unimelb.edu.au/thermomutdb/
downloads. The backend system was developed using the
Flask Python module (version 1.0.2) and the REStful API
uses RestX extension for Flask (version 0.2.0). The web
interface was implemented using the Bootstrap (version
4) framework. It also uses HTML5, CSS, JavaScript, and
JQuery. JINJA2 templating language for Python was used
to dynamically generate HTML templates.

RESULTS

Web interface and usage

ThermoMutDB contains information of the protein, muta-
tional information, experimental methods and conditions,
thermodynamic parameters, derived data, and literature in-
formation (details are available in Supplementary Table S1
and Figure S2). The database provides a user-friendly web
interface that contains five modules: Explore and Browse,
Contribute, Downloads, API and a detailed tutorial.

Explore and browse. In order to access the data, a search
can be performed. This can be done either by selecting the
‘Browse’ page from the navigation bar or by writing the de-
sired words on search input available on the ‘Home’ page. In
both cases, users can use different filter combinations (Fig-
ure 2A), include or exclude columns, and download selected
results in several formats (JSON, XML, CSV, TXT, SQL,
MS-Excel and PDF).

The search results are shown in an interactive table,
with columns providing experimental information recov-
ered from literature and also derived properties (Figure 2B).
Aiming to improve user experience, it is possible to visual-
ize a summary for each entry by clicking on the ‘+’ icon.
This option can lead to a ‘Details’ page that shows all in-
formation about the mutation and provides related files to
download (Supplementary Figure S3).

User contributions. To facilitate a continuous database up-
date, we have implemented a user’s contribution section
(Supplementary Figure S4), which allows the scientific com-
munity to share new data or identify potential errors that
will be manually checked by our team. To submit contribu-
tions it is just required to fill the form with mutation and
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Figure 1. ThermoMutDB workflow for data acquisition and processing. The development workflow is divided into three steps: (A) verification of previously
available mutation thermodynamics information (B) collection and manual curation of new data and (C) data aggregation and mutation annotation.

thermodynamics data, to inform a contact email and a ref-
erence (paper published, accepted, or pre-print). Although
significant effort has been devoted to ensure high quality
data curation, users have the option to report any issues
with the data to our team. These are important efforts to
further expand and improve the database.

Downloads. All data in the database can be downloaded
from the ‘Download’ page in CSV or JSON formats. It is
also possible to download the protein structure files related
to data available.

Programmatic access via an API. ThermoMutDB sup-
ports programmatic access via a RESTful API to allow
other services to harness our data easily. The ‘API’ page pro-
vides documentation of all endpoints available and allows
users to execute queries using provided fields. Other queries
can be performed by passing parameters through the URL
(Supplementary Figure S5).

Data statistics

Examining the distribution of mutations in the Thermo-
MutDB reveals a number of natural biases that need to be
taken into consideration when developing, or evaluating,
new predictive tools. ThermoMutDB contains thermody-
namic information on 14,669 mutations across 588 proteins.

This represents a significant increase over ProTherm, with
a 83% increase in unique mutations and over 300 new pro-
teins. Supplementary Figure S6 shows the distribution of
unique mutations collected per year. The majority of these
are single-point mutations (82.8%), with mutations to ala-
nine being over-represented (Figure 3D). This becomes evi-
dent when we look at the distribution of wild-type and mu-
tant amino acid residues within the database (Supplemen-
tary Figure S7). The most frequent mutations were from
Leucine and Valine to Alanine, while 10 mutations were
not present in the dataset, including W→G, W→P and
C→K among others, which seem to denote large changes
in residue physicochemical properties.

As would be expected by chance, two thirds of muta-
tions within the database are destabilising (Supplementary
Figure S8). This natural bias creates an extra challenge for
computational methods built using this information, in par-
ticular those based on machine learning approaches, re-
garding the prediction of stabilising mutations, which are
less well represented. It is important to note, however, that
the data on ThermoMutDB represents an increase of over
100% in stabilising mutations in comparison with previous
resources. No apparent correlation was identified between
the mutation effects and their location within protein struc-
tures, with mutations leading to increased and decreased
stability similarly distributed across protein structures when
looking at residue depth (Supplementary Figure S9). Muta-
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Figure 2. ThermoMutDB web interface search and results pages. (A) Ther-
moMutDB offers 12 query modes, with detailed information available
about each query type through the ‘Help’ page at the top navigation bar
and through on-page help in the form of question mark tooltips. (B) The
general layout of the result page, showing a summary of information for
each entry as well as detailed view.

tions in ThermoMutDB are spread across different protein
classes (Supplementary Figure S10) and diverse in terms of
secondary structure (Supplementary Figure S11).

Within ThermoMutDB, we identified mutations that had
been experimentally measured at least twice and, by com-
paring the variance between these replicate results (Figure
3C), we identified a Pearson’s correlation of 0.9. This pro-
vides a measure of the intrinsic noise in the data, and sug-
gests a theoretical maximum performance that should be
expected for predictive stability tools built using this data.

DISCUSSION

ThermoMutDB represents a significant increase in avail-
ability, reliability and diversity of thermodynamics data
linking effects of mutations to protein stability. We believe
this resource will have a significant impact on understand-
ing the effects of mutations on protein structure and sta-
bility. It will enable experimental scientists to identify pre-
viously characterised mutations in proteins of interest, and
provide computational scientists with a comprehensive and
refined set of experimental data to query the relationship
between changes in protein sequence and stability, facilitat-

Figure 3. Composition of ThermoMutDB entries. (A) depicts the distribu-
tion of phylogenetic kingdoms of proteins in the database. (B) highlights
the distribution of thermodynamic effects of mutation in the database,
given as the variation in Gibbs Free Energy (��G). (C) Experimental vari-
ability of mutation assessed under different conditions and groups. (D)
Distribution of mutations in ThermoMutDB based on type (mutation to
alanine/non-alanine), their location and residue environment.

ing the development of new computational tools to analyse
these relationships and develop prediction algorithms.

New mutation thermodynamics data collected and com-
piled in ThermoMutDB will also allow for more robust,
comprehensive and independent validation of currently
available computational predictors. The database will be
continuously maintained and updated, enabling submis-
sion of user contributions and data access through an in-
tuitive web-based interface (http://biosig.unimelb.edu.au/
thermomutdb) as well as programmatic access through an
API.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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