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ABSTRACT

CellMiner Cross-Database (CellMinerCDB, discover.
nci.nih.gov/cellminercdb) allows integration and
analysis of molecular and pharmacological data
within and across cancer cell line datasets from
the National Cancer Institute (NCI), Broad Insti-
tute, Sanger/MGH and MD Anderson Cancer Center
(MDACC). We present CellMinerCDB 1.2 with updates
to datasets from NCI-60, Broad Cancer Cell Line En-
cyclopedia and Sanger/MGH, and the addition of new
datasets, including NCI-ALMANAC drug combina-
tion, MDACC Cell Line Project proteomic, NCI-SCLC
DNA copy number and methylation data, and Broad
methylation, genetic dependency and metabolomic
datasets. CellMinerCDB (v1.2) includes several im-
provements over the previously published version:
(i) new and updated datasets; (ii) support for pattern
comparisons and multivariate analyses across data
sources; (iii) updated annotations with drug mech-
anism of action information and biologically rele-
vant multigene signatures; (iv) analysis speedups
via caching; (v) a new dataset download feature; (vi)
improved visualization of subsets of multiple tissue
types; (vii) breakdown of univariate associations by
tissue type; and (viii) enhanced help information. The
curation and common annotations (e.g. tissues of
origin and identifiers) provided here across pharma-
cogenomic datasets increase the utility of the indi-
vidual datasets to address multiple researcher ques-

tion types, including data reproducibility, biomarker
discovery and multivariate analysis of drug activity.

INTRODUCTION

A critical aim of precision medicine is to match drugs
with genomic determinants of response. Identifying tu-
mor molecular features that affect response to specific
drug treatments is especially challenging because of pa-
tient diversity, incomplete knowledge of the multiple molec-
ular determinants of response and tumor heterogeneity.
The relative homogeneity and ease of experimentation of
patient-derived cell lines are advantageous, making them
widely used model systems for establishing and resolving
intrinsic drug response mechanisms as well as perform-
ing synthetic lethality screens (1). These features moti-
vated the development of cancer cell line pharmacogenomic
databases. Following the omics characterization of a 60-
cell line panel developed by the National Cancer Institute
(NCI), known as the NCI-60 (2–7), several large cancer cell
line sets have been developed with pharmacogenomic data,
including the Sanger/Massachusetts General Hospital Ge-
nomics of Drug Sensitivity in Cancer (GDSC) (8,9), the
Broad/Novartis Cancer Cell Line Encyclopedia (CCLE)
(10) and the Broad Cancer Therapeutics Response Portal
(CTRP) datasets (11); together they provide information
on ∼1400 cancer cell lines. Complementarity and overlap
in the strengths of the cancer cell line datasets (e.g. number
of drugs or total cell lines) provide the potential for valu-
able comparisons and integrative analyses in which the total
value of the data is greater than the sum of the parts. How-
ever, data complexity and sources of inconsistency, such
as differences in entity naming (e.g. cell lines, drugs) and
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Figure 1. Timeline of CellMinerCDB development. Related events are indicated by color: NCI-60 datasets (red), software developments (blue) and external
group developments (green).

data processing, make working across databases challeng-
ing; current, source-specific portals do not provide cross-
database analyses.

CellMiner Cross-Database (CellMinerCDB) combines
the expertise and approaches developed within the Ge-
nomics and Pharmacology Facility (discover.nci.nih.gov),
Developmental Therapeutics Branch, Center for Cancer
Research, National Institutes of Health (NIH). The group
has an established history (Figure 1) in the area of bioin-
formatics and pharmacogenomics, beginning with studies
involving the NCI-60 cell line screen developed by the De-
velopmental Therapeutics Program (12). These studies in-
cluded pioneering efforts to (i) predict drug mechanism of
action (MOA) from activity patterns (13), (ii) introduce
the now ubiquitously used cluster image maps (i.e. clus-
tered heatmaps) for comparison of molecular alterations
and drug activity patterns (14) and (iii) integrate gene ex-
pression and compound activity into a single database
(3,4,15). CellMiner (discover.nci.nih.gov/cellminer) was set
up to allow direct data access and exploration (4,15), and
became the platform for additional profiling technologies:
protein expression (16,17), transcript microarrays (18,19),
microRNA expression (19), DNA methylation (6,20), DNA
whole-exome sequencing (5), DNA copy number (21),
H2AX protein and phosphorylation levels (22) and RNA
sequencing (23). Signatures of each of these data types were
developed for integrative analysis (24). The first use of many
assaying techniques has occurred on the NCI-60 and then
later replicated on other cell line collections such as the
GDSC and CCLE (Figure 1) (25–30).

First released in 2018, CellMinerCDB (discover.nci.nih.
gov/cellminercdb) is a database accessible through a web in-
terface that enables integrative analyses within and across
cancer cell line pharmacogenomic databases (31) (Figure 1).

CellMinerCDB integrates pharmacogenomic datasets both
generated by the NCI (2–7) and downloaded from other
project sites. Those include the CCLE/CTRP (11,32) and
GDSC (both GDSC1 and GDSC2) datasets (8,9). CellMin-
erCDB differs from related cancer genomics aggregation ef-
forts such as cBioPortal (33), a data portal focused on clin-
ical sample cancer genomics. It focuses on cancer patient-
derived human cell line molecular and pharmacological
data, and it differs from the NCI Genomic Data Commons
(34) and the data portals of the CCLE and GDSC in that
the data are standardized to allow cross-database analysis;
no raw data files are available. CellMinerCDB most closely
resembles PharmacoDB (35), which also aggregates phar-
macogenomic datasets. However, CellMinerCDB places an
emphasis on web-based cross-database analyses of the avail-
able datasets. Supplementary Figure S1 showcases the dis-
tinctive value of CellMinerCDB to other pharmacogenomic
tools (28,33,35–44) in terms of datasets available and capa-
bilities.

In CellMinerCDB, named entities (e.g. drugs and genes)
are transparently matched across sources, allowing cell line
molecular features and drug responses to be readily com-
pared using bivariate scatter plots and correlation analyses.
Multivariate models of factors affecting drug responses or
genomic cell line attributes can also be assessed. Analyses
can be restricted to tissues of origin, with cell lines across
all sources mapped to a uniform tissue type hierarchy. Gene
pathway annotations allow assessment and filtering of anal-
ysis results. The analyses that CellMinerCDB makes acces-
sible along with the breadth of available data make CellMin-
erCDB a unique resource for cancer cell line pharmacoge-
nomic data exploration and hypothesis generation. In sev-
eral cancer types (e.g. pancreatic, prostate, small cell lung
cancer, etc.), recent studies have utilized CellMinerCDB to

http://discover.nci.nih.gov
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reveal associations between cancer drug sensitivity and (i)
gene expression (45–48), (ii) genomic alterations (46) and
(iii) cell line subgroups (49).

Here, we present the updates to the data and software
infrastructure available in CellMinerCDB (Supplemen-
tary Figure S2; discover.nci.nih.gov/cellminercdb). This in-
cludes the addition of 12 new datasets and updates to
several others. Within these new datasets, new data types
are included (e.g. two-drug combinations, CRISPR ge-
netic dependencies, mass spectrometry proteomics and
metabolome data) as well as the addition of new gene sig-
natures broadening the scope of CellMinerCDB. Function-
ally, CellMinerCDB has been improved with features to (i)
speed up analysis, (ii) perform a broader range of cross-
database analyses, (iii) make it easier to download corre-
sponding data, (iv) present additional drug annotation in-
formation, (v) simplify the analysis of subsets of multiple
tissue types and (vi) break down univariate associations by
tissue type. We provide the reader with use cases highlight-
ing the research potential and complementarity of the com-
posite data.

CELLMINERCDB DATASETS

Over the last 2 years, CellMinerCDB (discover.nci.nih.gov/
cellminercdb) has been expanded and now includes addi-
tional and updated datasets with a focus on genomic, pro-
teomic and metabolomic data (collected prior to treatment),
integrated with drug responses and CRISPR-based gene
dependency data for these cell lines. Figure 2 summarizes
CellMinerCDB content as well as the number of overlaps
in cell lines and drugs across the different data sources.

Updates to existing datasets

In our newest release of the NCI-60 dataset within CellMin-
erCDB, over 1000 compound activities, including 27 FDA-
approved and 412 clinical trial drugs (more than doubled),
have been added, with processing as previously reported (3).
We removed (curated) drug experiments that had a limited
response range or were inconsistent across replicates. We
updated the NCI-60 drug MOA and drug names as well as
the drug clinical status and synonyms for all datasets. We
also reprocessed the existing GDSC methylation data (9).

Newly included datasets

The new release integrates three new cell line sets with
new data: the NCI-ALMANAC data for a recent paired
drug activity for 105 FDA-approved drugs (50), the RPPA-
based protein data from MDACC CLP, which is also known
as MCLP (tcpaportal.org/mclp), and the CRISPR–Cas9
gene dependency map with phenotypic data from Project
Achilles (28).

Additional data from current cell line sets have been in-
cluded: (i) RNA-seq and SWATH proteomic data for the
NCI-60 cell line set (17,23); (ii) microRNA, methylation
and copy number data for the NCI-SCLC cell lines (51,52);
(iii) copy number data for GDSC cell lines (9); and (iv)
RPPA-based protein data, metabolome data and bisulfite
sequencing promoter methylation data for CCLE cell lines
(26,29).

Phenotypic gene signatures

Additionally, we have added phenotypic gene signature
scores for all data sources for several key cancer pheno-
types, including epithelial–mesenchymal transition (EMT)
(53), antigen presentation machinery (APM) (54) and neu-
roendocrine (NE) signatures (55).

SOFTWARE INFRASTRUCTURE

To create CellMinerCDB, cell line datasets are processed
and undergo an additional curation step. This allows us to
provide cross-database web-accessible analyses and down-
load features (Figure 3). The different components of
CellMinerCDB are described in the following sections.

Data curation

For each data source and cell line, we manually curate a
reference table to match cell lines across different sources.
Additionally, we assign common terms for the tissue of
origin (from the data source) based on the OncoTree
(oncotree.mskcc.org; github.com/cBioPortal/oncotree) on-
tology structure and terms. OncoTree is an attempt to stan-
dardize cancer type diagnosis from a clinical perspective.
OncoTree was developed and expertly curated by basic re-
searchers and clinicians as a multi-institutional committee
including the Memorial Sloan Kettering Cancer Center and
Dana-Farber Cancer Institute. We assign OncoTree levels
1–4 (from least to most specific) for each cell line; in cases
of ambiguity, resources such as Cellosaurus are consulted
during the curation step (56). When available, we record ad-
ditional cell line annotations such as patient sample infor-
mation (e.g. gender or age) or curated information such as
EMT status (53), SCLC subtypes (57) and triple negative
breast cancer status.

For the NCI-60 drug curation, drug information (ob-
tained from the NCI/DTP, dtp.cancer.gov) including Na-
tional Service Center identifiers is the starting point for drug
annotations, including preferred names, aliases, MOAs and
FDA approval status. Additional and updated database
identifiers are added from multiple sources, including Pub-
Chem, the NCI Thesaurus and the scientific literature. We
compiled a list of terms that are present in ‘chemical’ names
rather than common or generic names (e.g. ‘methyl’, ‘cy-
clo’, ‘pyrrol’). We scored each drug name on the number of
such terms present in it (the ‘chemical name score’) and on
the number of characters in the name. In cases where the
NCI/DTP provided drug has a chemical name score >3
or the length of the name is >20 characters, we use the
PubChem (58) preferred name (if that name has a chemi-
cal name score ≤3 and length ≤20). MOAs and clinical sta-
tus (i.e. FDA approval status) are manually curated with in-
formation from NCI/DTP, FDA alerts (fda.gov) and jour-
nal articles as new data become available from external
data providers. For other drug datasets (e.g. CCLE), we re-
trieve drug annotation information from our data providers
and external sources (e.g. PubChem) including the iden-
tifiers, names, synonyms and MOA when available. Using
these identifiers, CellMinerCDB matches drugs across data
sources.

https://discover.nci.nih.gov/cellminercdb/
https://discover.nci.nih.gov/cellminercdb/
http://tcpaportal.org/mclp
http://oncotree.mskcc.org
http://github.com/cBioPortal/oncotree
http://dtp.cancer.gov
http://fda.gov
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Overlap of cell lines between datasets
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Protein Expression  RPPA 162 214 452
SWATH 3,167

Metabolite Expression LC-MS 225
Gene Knockout CRISPR
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Figure 2. CellMinerCDB dataset overview. (A) Summary of molecular and drug activity data for the cell line sets included in CellMinerCDB. For the
molecular and drug data types, the numbers indicate the number of genes or drugs. Blue numbers indicate a change in the number of features compared
to the previous release, red numbers indicate new features and gray boxes denote entries for which there are no data in CellMinerCDB. (B) Number of cell
line overlaps between data sources. (C) Number of single-drug activity overlaps between data sources. Abbreviations: datasets: National Cancer Institute
(NCI-60), Cancer Cell Line Encyclopedia (CCLE), Cancer Therapeutics Response Portal (CTRP), Genomics of Drug Sensitivity in Cancer (GDSC),
the NCI Small Cell Lung Cancer (SCLC) and the MD Anderson Cancer Center (MDACC) Cell Line Project (CLP); other: z-scores (zs), multiplatform
microarray average log2 intensities (log2) and liquid chromatography–mass spectrometry (LC–MS).

Data representation and processing

CellMinerCDB datasets are created using R data packages
that use two S4 class objects for data representation: mol-
Data and drugData as defined by the rcellminer R analy-
sis package (59). The molData object contains results for
molecular assays (e.g. genomics, proteomics, etc.) and drug-
Data contains results for drug responses. The core of these
objects is a list of ExpressionSet objects. This R data struc-
ture is made available by the Biobase Bioconductor pack-
age. This data representation allows molecular profiling and
drug response data to be conveniently stored with sam-
ple metadata using a well-documented and widely avail-
able format [details are available in the documentation for
the rcellminer and rcellminerData Bioconductor packages
(59)].

Each CellMinerCDB data package contains the data
from the data provider (i.e. Excel spreadsheets, tab-
delimited files, etc.) along with R scripts used to process
the data into the molData and drugData objects. In recent
work, an instructional data package has been made avail-

able at github.com/CBIIT/rcellminerData using a subset of
the NCI-60 rcellminerData Bioconductor package data to
guide data package developers (59).

Software architecture

The CellMinerCDB web interface is built using the Shiny
framework (shiny.rstudio.com) in the R programming lan-
guage. This simplifies development, contribution and ex-
tension by developers with bioinformatic experience (where
R is widely used) (60), in contrast to projects such as
cBioPortal that depend on Java and JavaScript knowl-
edge (61). CellMinerCDB architecture (Figure 4A) is
based on pharmacogenomic data packages and project-
specific R packages, including rcellminer (core data struc-
ture functionality), rcellminerUtilsCDB (gene signature
and cross-database mapping), rcellminerElasticNet (mul-
tivariate analysis) and geneSetPathwayAnalysis (annota-
tion information from GeneCards and Pathway Com-
mons) (62,63). It should be noted that in this update, the
rcellminer Bioconductor package removes previous Java

http://github.com/CBIIT/rcellminerData
http://shiny.rstudio.com
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Overview of CellMinerCDB Data and Features
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Figure 3. CellMinerCDB overview: CellMinerCDB integrates cancer cell line information from multiple sources and provides ready-made, user-friendly
analysis tools as well as data download features for further analyses.

Figure 4. (A) CellMinerCDB software architecture. (B) Summary of recent CellMinerCDB changes. Colors: CellMinerCDB application elements (red),
data packages (green), software packages (purple), configuration files (yellow), annotations/metadata (blue) and pre-processing steps (gray).

code dependencies to simplify installation. Various proper-
ties (e.g. datasets to make available and interface proper-
ties) of CellMinerCDB are configurable using a JavaScript
Object Notation file. CellMinerCDB uses Shiny modules to
support independent analysis modules (e.g. the multivariate
analysis module) to allow developers to customize the web
interface.

DATA AVAILABILITY

New functionality allows users to download data from any
of the available -omic data via the CellMinerCDB (discover.
nci.nih.gov/cellminercdb) Metadata tab as compressed (zip)
files. Additionally, users can download drug synonym in-
formation or cell line annotation information from this tab.

https://discover.nci.nih.gov/cellminercdb/
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The NCI-60 dataset has an additional method for down-
load via the rcellminerData Bioconductor package.

UPDATES TO CELLMINERCDB FUNCTIONALITY
AND USE CASES

In addition to recent dataset updates, CellMinerCDB func-
tionality includes (i) updated drug annotations, (ii) ex-
panded help information, (iii) improved pattern compari-
son speed, (iv) added functionality that provides correlation
results by tissue type, (v) facilitated pattern comparison and
(vi) improved multivariate and gene signature-based analy-
ses across data sources (Figure 4B; complete release history:
Supplementary Figure S2).

Training materials

CellMinerCDB provides several training materials, in-
cluding detailed documentation on the CellMinerCDB
website (discover.nci.nih.gov/cellminercdb) from the Help
tab, as well as a video tutorial (youtube.com/watch?v=
XljXazRGkQ8).

Use cases

This section presents several CellMinerCDB use cases,
workflow and analysis examples. Figure 5 and Supplemen-
tary Figures S4–S6 provide visualizations across multiple
use case examples. Each figure presents the input values (in
the left-side gray boxes) to allow the exact reproduction of
the result shown. Additional use case workflows are in the
Help section of the CellMinerCDB website, and we provide
a summary of available workflows in Supplementary Figure
S3.

Quality control across database example. Figure 5A pro-
vides an example of data reproducibility across datasets.
There has been recent discussion regarding the reliability
and reproducibility of cell line data, especially when pro-
duced at different institutions (32,64,65). Reproducibility
issues can arise from multiple factors including variability
in what are erroneously perceived to be identical cell lines
(66), and from the individuals doing the work and platforms
used. CellMinerCDB allows direct comparison of omics
profiles or drug activities. The example given shows that
ATM expression values as measured by both the CCLE and
GDSC are significantly correlated (r = 0.77, P = 5.3e−128).
It illustrates an example where users are able to assess the
reproducibility of the genomic and pharmacological data
across cell lines processed independently with different plat-
forms at different institutions (31). Additional data repro-
ducibility examples are shown for DNA mutation, drug ac-
tivity, DNA copy number and DNA methylation in Supple-
mentary Figure S4A–E.

Identification of candidate drug biomarkers. Cancer cell
lines are the logical starting place for identifying molecu-
lar features of relevance as part of precision medicine re-
search. Figure 5B provides an example visualizing the rela-
tionship between MAP2K1 (using the name MEK1) phos-
phorylation status and the MAP2K1 inhibitor selumetinib.

MAP2K1 is not presently a qualified biomarker for this
FDA-approved drug. Here, we show a significant correla-
tion between the selumetinib drug response in the NCI-60
and phosphorylation status in the MDACC RPPA dataset
(r = 0.63, P = 3e−07), suggesting further investigation
into patient response predictability. It should be noted that
when searching for selumetinib, the drug synonyms (aliases)
‘AZD6244’ and ‘741078’ can alternatively be used; available
drug synonyms are downloadable as a table from the Meta-
data tab of the website. Supplementary Figure S5C and D
provides additional examples of the types of analyses to
connect drug activity to -omic features with examples using
HSP90 and CDK inhibitors, respectively. Correlations for
such analyses may not always be extremely high (>0.7) but
may nonetheless be informative for further investigations.

Exploration of proteomic complexes. The addition of pro-
teomic data allows users to explore the stoichiometric rela-
tionship of protein complex subunits. Supplementary Fig-
ure S5A shows the high correlation between protein lev-
els of both subunits of the chromatin remodeling complex
FACT (facilitates chromatin transcription): SSRP1 versus
SUP16H (r = 0.87, P = 1.6e−19) in the NCI-60 SWATH
mass spectrometry data (17,67). Supplementary Figure S5B
also shows the correlation between the two components of
the catenin complex involved in cell adhesion CTNNA1 and
CTNNB1 (�- and �-catenin, respectively) (68).

Multivariate analysis example. In the majority of cases,
multiple factors determine drug response in cell lines as
well as in patients. Multivariate analysis allows investiga-
tion of drug response with respect to multiple -omic fea-
tures simultaneously. CellMinerCDB allows users to either
(i) manually input a multivariate model of their own design
or (ii) have the system automatically generate a multivari-
ate model for a molecular entity (i.e. an -omic or a drug
response profile); here we have chosen to show the latter.

Figure 5C presents the CellMinerCDB ‘Multivariate
Analysis’ functionality using the NCI-60 data. In the ex-
ample, topotecan activity (a response variable) is analyzed
as a function of gene transcript levels (potential response
predictors, i.e. features). Using the LASSO (least abso-
lute shrinkage and selection operator) feature selection
algorithm (69), which is integrated into CellMinerCDB,
three genes are identified automatically: SLFN11, STK17B
and SMARCD1. The example puts forward a well-known
predictor of topotecan response (SLFN11) (7,70) along
with two predictors unknown in the topotecan literature
(STK17B and SMARCD1) that may be the genesis of new
hypotheses.

The relationship of the drug and selected features (i.e.
predictors) of the LASSO-derived regression model is dis-
played as a heatmap (Figure 5C). The observed experi-
mental topotecan response values and predicted response
values (after 10-fold cross-validation) are highly correlated
(r = 0.83, P = 9.5e−16; Figure 5D). Predicted response
values are obtained (over 10 iterations) by successively
holding out 10% of the cell lines and predicting their re-
sponse using a linear regression model fit to the remain-
ing 90% of the data. After all 10 iterations have been done,
each sample has one cross-validated prediction. Details for

https://discover.nci.nih.gov/cellminercdb/
http://youtube.com/watch?v=XljXazRGkQ8
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Figure 5. CellMinerCDB analysis examples. (A) Univariate analysis scatter plot of ATM transcript expression levels as measured by CCLE (Broad) versus
GDSC (Sanger/MGH). (B) Univariate analysis scatter plot of MAP2K1 (MEK1) phosphoprotein levels versus the MAP2K1 inhibitor selumetinib activity
levels. (C) Multivariate analysis and heatmap to identify and visualize molecular predictors for topotecan activity. (D) Multivariate analysis cross-validation
scatter plot to visualize the observed versus predicted activities. (E) Univariate analysis ‘Compare Patterns’ output to identify drugs whose activities are most
significantly correlated to SLFN11 expression. (F) Univariate analysis scatter plot of the NE transcript expression signature versus the two-drug activity
NCI-ALMANAC ComboScore of sorafenib–vorinostat. All examples are captured images from CellMinerCDB (discover.nci.nih.gov/cellminercdb) using
the selections detailed in the input box (on the left). Each dot in the scatter plots is a cell line, with tissues of origin indicated in the legend (on right). For
the scatter plots, the regression trend line is in red. The x- and y-axes, correlations (Pearson’s r) and P-values are as defined within each panel.
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the LASSO algorithm and the multivariate analysis are
in the CellMinerCDB Help section. Biologically, SLFN11
is known to affect topotecan response (7,70). STK17B is
a serine/threonine kinase associated with apoptosis, and
SMARCD1 is a SWI/SNF subunit of chromatin remod-
eling factors that could enhance the topoisomerase DNA
accessibility necessary for topotecan activity (71,72). While
the biological functions of STK17B and SMARCD1 plau-
sibly affect topotecan response, neither has been previously
reported in the scientific literature.

It should be noted for users that functionality to fix a
model trained on one dataset and apply this to another
dataset is not currently available and is better suited for
more formal predictive analyses outside of CellMinerCDB
to test model generalizability. Also, the interpretation of
multivariate models (especially those that are algorithmi-
cally generated) requires scrutiny by individual researchers
and should be guided by a well-formed understanding of
the biological activities of the identified predictors and the
MOA of the input drug to guide any follow-up effort. Be-
sides manual and automated model creation, CellMiner-
CDB can be used to supplement a base model with addi-
tional features using partial correlation analysis.

Pattern comparison for the identification of biomarkers and
drug targets. Figure 5E shows an example of broad-
spectrum biomarker identification; here, a broad-spectrum
biomarker is defined as a gene with a molecular pro-
file having predictive strength across cancer types. Us-
ing the CellMinerCDB ‘Compare Patterns’ functionality,
the transcript expression of SLFN11 from GDSC is com-
pared to the activity profiles of all drugs and compounds
in the NCI-60. High correlations are found for multiple
DNA-damaging drugs, with TOP1 inhibitors and alkylat-
ing agents at the top, as well as TOP2, PARP1 and DNA
synthesis inhibitors (not shown in the figure). These re-
sults provide unbiased evidence for SLFN11 as a potential
biomarker for whole classes of commonly used standard of
care chemotherapies (73). This example demonstrates the
ability of CellMinerCDB to compare a pattern of interest
via a correlation analysis to patterns of other types (tran-
script expression versus activity in this case). Furthermore,
it demonstrates the cross-database capabilities of CellMin-
erCDB. The values presented here are not corrected for mul-
tiple testing though false discovery rate adjusted values are
available via the website. Additionally, the pattern compar-
ison feature provides a way to identify co-regulation be-
tween genes as previously shown to be involved in EMT (31)
and lineage transcription factor pathways in small cell lung
cancers (49). Furthermore, the ‘Compare Patterns’ panel
includes gene location annotations to help reveal possible
gene regulation due to proximity to neighbors and gene
copy number alterations. Supplementary Figure S6A pro-
vides a visualization of a pattern comparison result (to that
in Figure 5E) not employing the cross-cell line sets func-
tionality update, that is GDSC SLFN11 transcription as
compared to GDSC FDA-approved drug activities. In both
cases, DNA-damaging drugs are recognized.

Exploring drug combinations and gene signatures. Figure
5F provides an example showing the availability of (i) phe-

notypic gene signatures and (ii) drug combination response
data in CellMinerCDB. Correlation of a 50-gene NE status
signature (55) with the response of cell lines to a combina-
tion of sorafenib and vorinostat shows that NE-like cells
(higher NE score) potentially respond less well to the drug
combination.

Exploring other data types: genetic dependencies and
metabolomic data. The inclusion and integration of the
CRISPR–Cas9 knockout data from Project Achilles allow
users to search for co-dependent genes across cell lines. For
instance, BRCA2 and PALB2 (Partner And Localizer of
BRCA2) show high correlation (r = 0.56, P = 7.1e−64;
Supplementary Figure S6B). This observation is consistent
with the abrogation of homologous recombination (HR)
activity that occurs when BRCA1–PALB2 binding is dis-
rupted (74). A second CRISPR–Cas9 example is the cor-
relation between silencing BRAF (on cell survival) and se-
lective activity of vemurafenib (P < 2.9e−15), primarily in
the melanoma cell lines, as expected due to their large pres-
ence of the V600E mutations (75,76). An example from the
CCLE metabolite data, providing a comparison of inosine
and guanosine levels (r = 0.55, P = 2.3e−73), is given in
Supplementary Figure S6C. Inosine monophosphate (IMP)
is converted to xanthosine monophosphate (XMP) by IMP
dehydrogenase. XMP is converted to guanosine monophos-
phate (GMP) by GMP synthase (77).

Exploring drug structures. Currently, CellMinerCDB does
not provide access to drug chemical structures. However,
structures can be accessed as SMILES representations of
NCI-60 compounds via the rcellminer R package on Bio-
conductor.

CONCLUSION

The past two decades have seen a surge of molecular
and pharmacological data for overlapping sets of patient-
derived cancer cell lines by multiple institutions (e.g.
NCI, Broad Institute and Sanger/MGH). CellMinerCDB
(discover.nci.nih.gov/cellminercdb) allows researchers to
explore data across institutions using their expertise with-
out bioinformatic support while benefiting from curated ge-
nomic and pharmacological annotations. The use case ex-
amples presented here are meant to provide a representative
selection of explorations and analyses. They include a di-
verse group of analysis type databases: (i) data reproducibil-
ity: the uniquely compiled datasets here allow users to con-
tinue the discussion on the reproducibility of pharmacoge-
nomic data (65,78) including the possibility of conducting
further systematic analyses; (ii) candidate biomarker dis-
covery; (iii) multivariate analysis of molecular features for
drug activity; (iv) exploration of the relationship of compos-
ite features (multigene signatures versus response to drug
combinations); (v) exploration of protein complexes, ge-
netic dependencies and metabolomic pathways; and (vi)
complementary analyses where data from one dataset sup-
plement another (e.g. use of Broad CCLE gene expression
data for matching Broad CTRP drug tested cell lines to cal-
culate drug–gene expression correlations). Hence, a wide
range of univariate and multivariate explorations can be

https://discover.nci.nih.gov/cellminercdb/
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undertaken. CellMinerCDB seamlessly allows this form of
data assessment and integration. It opens the door to hy-
pothesis generation and validation in non-isogenic cancer
cell lines across multiple tissues of origin as well as the dis-
covery of potential novel genomic regulatory networks and
drug response determinants.

CellMinerCDB supports the analysis of many pro-
filing platforms, including molecular parameters
(e.g. gene/protein expression, alteration, metabolomic
and genetic dependency), drug compound activity and
phenotypic signatures (such as NE status, EMT and subsets
of molecularly defined cancer subtypes as in the case of
the small cell lung cancer cell lines). Yet, CellMinerCDB
does not include drug perturbation analyses, which are
provided by other platforms (e.g. the Connectivity Map).
CellMinerCDB focuses on the molecular and genomic
analyses of cancer cells at their steady-state levels prior to
drug response. The goal of CellMinerCDB is to provide
accessibility and analytical methods across previously dis-
connected datasets in a manner that allows its utilization by
bench scientists, clinicians and others with domain knowl-
edge, as well as traditional informaticists by combining the
strengths and unique features of each dataset.

Going forward, CellMinerCDB will continue to (i) ex-
pand datasets [e.g. the PRISM drug repurposing collection
(79)] and annotations, (ii) improve analysis speed and (iii)
simplify installation for local reuse by other groups. Future
software developments are being planned to (i) further ad-
vance the accuracy and coverage of annotations, for exam-
ple through the use of algorithmic prediction [e.g. use of
similarity analyses (4) to assess the possible MOA based
on the similarity of drug response to known MOA com-
pounds], (ii) use network biology tools and approaches to
create models of drug response, (iii) extend analysis features
to include comparisons between cell lines and patient co-
horts starting with datasets from The Cancer Genome At-
las (TCGA) (80) and (iv) provide future customization by
users of available signatures. We anticipate that the modu-
lar architecture design of CellMinerCDB will enable these
additional analytical features.

CellMinerCDB complements pharmacogenomic data
portals through the additional layer of curation and spe-
cialized analyses we provide across datasets. This enhances
the value of individual pharmacogenomic datasets by its
availability for comparison across projects to further our
understanding of the combinatorial influences that affect
pharmacological outcomes as we move toward personalized
medicine.

SOFTWARE AVAILABILITY

All software developed as part of CellMinerCDB is
freely available, open source and hosted GitHub in the
following repositories: github.com/CBIIT/cellminercdb,
github.com/CBIIT/rcellminerUtilsCDB, github.com/
CBIIT/geneSetPathwayAnalysis, github.com/CBIIT/
rcellminerElasticNet and github.com/CBIIT/rcellminer.
Users of CellMinerCDB can provide feedback and
ask questions of the development team using we-
badmin@discover.nci.nih.gov or users can submit
developer feedback, file bug reports and request

new features using project-specific issue trackers (e.g.
github.com/CBIIT/cellminercdb/issues).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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