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ABSTRACT
Background: Increasing interest in diets excluding meat and other products of animal origin emphasizes the

importance of objective and reliable methods to measure dietary exposure, to evaluate associations and causation

between diet and health, and to quantify nutrient intakes in different diets.

Objectives: This study aimed to investigate if NMR analysis of urine samples can serve as an objective method to

discriminate vegan, vegetarian with or without fish, and omnivore diets. A secondary aim was to assess the influence

of dietary nutrient intake on the metabolomics results.

Methods: Healthy individuals (43 men and 75 women, age 19–57 y) complying with habitual vegan (n = 42), vegetarian

(n = 25), vegetarian + fish (n = 13), or omnivore (n = 38) diets were enrolled. Data were collected on clinical phenotype

and lifestyle including a 4-d weighed food diary. Urine was analyzed for metabolites by NMR spectroscopy and data

normalized using probabilistic quotient normalization and Pareto-scaled before multivariate analysis. Before orthogonal

projections to latent structures with discriminant analysis, participants were assigned as meat consumers or nonmeat

consumers (vegans and vegetarians), vegans or nonvegans (omnivores, vegetarian, and vegetarian + fish).

Results: The main results showed that it was possible to discriminate meat and nonmeat consumers (91% correctly

classified), but discrimination between vegans and nonvegans was less rigorous (75% correctly classified). Secondary

outcomes showed that reported intake of protein was higher in omnivores, and saturated fat lower and fiber higher

in vegans, compared with the other groups. Discriminating metabolites were mainly related to differences in protein

intake.

Conclusions: NMR urine metabolomics appears suitable to objectively identify and predict habitual intake of meat in

healthy individuals, but results should be interpreted with caution because not only food groups but also specific foods

contribute to the patterns. This trial was registered at clinicaltrials.gov as NCT02039609. J Nutr 2021;151:30–39.
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Introduction

Vegetarians tend to be healthier than omnivores, with a lower
incidence and/or mortality from ischemic heart disease and
from total cancer (1). However, this might reflect not only
dietary intake, but also other lifestyle factors. In fact, studies
have yielded inconsistent results as to whether vegetarian diets
compared with omnivorous diets are associated with reduced
incidence of metabolic syndrome and its components (2, 3).
Such an association could be due to the composition of the
vegetarian diets, but this is often unknown and thus could
be diverse. In general though, vegetarian diets have a lower
content of SFAs and higher content of fiber than omnivore diets
(4–6).

Worldwide, meat consumption is increasing and especially
in countries with increasing levels of income (7). However, en-
vironmental and health sustainability concerns have awakened
interest in diets with less or no meat (8). The food industry has
responded by introducing new products to substitute meat and
dairy, and these are increasingly available. Hence, the nutrient
intake in the vegetarian diet could be changing over time.
Animal products such as meat, fish, dairy, and eggs contain
all essential amino acids, but also are the main dietary source
for many vitamins and minerals (9). Thus, when excluding
foods from animal sources, the risk of consuming a nutritionally
inadequate diet increases.

To understand how consumption or nonconsumption of
meat and other animal products influences health, researchers
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need objective methods for capturing true intake. Metabolomics
holds the potential to capture habitual diet (10), but few
metabolomics studies have investigated the metabolome in
relation to meat or intake of foods from animal sources
in human biofluids (11–15). MS-based methods are more
sensitive than 1H-NMR (i.e., can detect low-concentration
metabolites such as hormones and vitamins) and in this respect
represent a preferred choice for biomarker discovery. However,
NMR spectroscopy has several advantages: low cost, minimum
sample preparation, rapid analysis with high reproducibility,
and confident metabolite identification. In this light NMR
spectroscopy is an adequate choice when studying the patterns
of metabolites in relation to habitual diets.

We have previously reported the possibility to separate
different habitual diets using an NMR metabolomics approach
on serum samples from the same set of individuals as in the
present study (16). Nevertheless, urine has some advantages
over serum in metabolomics analysis because urine contains a
wider range of metabolites, and homeostasis does not influence
metabolite content to the same extent as in serum. Only 1
published NMR-based metabolomics study has been conducted
to study the metabolic difference in urine with regard to meat
intake between habitual vegetarians and omnivores (15). This
study reported significantly different patterns of metabolites
between the vegetarians and omnivores, indicating also that
the urinary metabolite pattern could be used for distinguishing
individuals eating products of animal origin or not. However,
the study participants were either military officers and military
spouses (omnivores) or individuals living in self-contained
Buddhist communities (vegetarians) all living in Xiamen, China.
Thus, the differences in metabolic patterns could be due to
lifestyle factors other than diet.

Hence, the primary aim of this work was to investigate if
urine metabolites analyzed by 1H-NMR also can be used as an
objective method to discriminate between individuals habitually
consuming meat, vegetarian, or vegan diets. The secondary aim
was to evaluate the nutrient intake in a habitual omnivore
diet, vegetarian diet adding fish, vegetarian diet, and vegan diet,
and to assess the influence of dietary nutrient intake on the
metabolomics results.

Methods
Subjects
The participant characteristics, recruitment, and study design were
described in detail in our previous publication (16). Briefly, volunteers
were recruited by advertisement for healthy individuals complying
with habitual vegan, vegetarian (lacto-ovo), vegetarian plus fish, or
omnivore diets living in the Gothenburg area, Sweden. Before entering
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the study, volunteers provided written informed consent. Volunteers
were considered suitable if aged 18–65 y, healthy, with no regular
use of medications (contraceptives were permitted), and BMI 18.0–
30.0 kg/m2. Standard clinical measures (hemoglobin, vitamin B-12,
folate, serum electrolytes, creatinine, liver transaminases, bilirubin,
alkaline phosphatase, C-reactive protein, plasma glucose, and thyroid
status) were examined by a physician to exclude participants with
indication of disease, that is, not fulfilling the criterion “healthy.”
Exclusion criteria were pregnancy, lactation, or regular use of nicotine
products. Screening included a short lifestyle questionnaire including
an FFQ and 2 questions on physical activity, and a 4-d weighed food
diary for the days preceding sampling. Study staff instructed participants
how to record their daily intake using a food scale (SECA Culina 852)
and to avoid food supplements the week before sampling and alcohol
the night before sampling. Bioimpedance (Bioimp version 5.3.1.1;
ImpediMed) was used to measure body composition. There is currently
no established method to estimate sample size in metabolomics studies
(17), but a sample size of >90 individuals was estimated to be sufficient
to generate robust multivariate models.

The project was approved by the Regional Ethical Review Board
in Gothenburg (reference number 561–12), adhered to the Helsinki
Declaration, and was registered with clinicaltrials.gov (identifier:
NCT02039609).

Sampling and sample preprocessing
Morning urine was collected at home after overnight fasting, kept cold,
and transported to the study site. Handling followed a strict protocol;
the samples were kept at 4◦C before processing, and subsequently
centrifuged (2600 × g; 4◦C; 10 min). Aliquoted samples were directly
placed at −20◦C and moved to −80◦C within 2 h, where the samples
were kept until analysis. Before 1H-NMR analysis, urine samples were
thawed for 60 min at 4◦C, and mixed with phosphate buffer (9:1)
[1.5 M potassium phosphate monobasic buffer in D2O at pD 6.95 with
0.1% trimethylsilyl propionate-d4 (TSP-d4) and 0.5% NaN3] in a deep
well plate and transferred to 3-mm NMR tubes (Bruker BioSpin, 96
sample racks for SampleJet) using SamplePro (Bruker BioSpin).

NMR spectroscopy and data processing
1H-NMR spectra were measured at 800 MHz using Bruker Avance III
HD. One-dimensional 1H measurements were done with a perfect echo
pulse sequence with excitation sculpting for water suppression. Samples
were kept at 6◦C in the SampleJet sample changer before acquisition.
Thereafter, 64 scans were acquired into 64k data points with a sweep
width of 20 ppm, an acquisition time of 2.04 s, and a relaxation delay
of 3 s. The temperature was kept at 25◦C during acquisition. Data
were processed by including 0.3 Hz exponential line broadening, a
double zero filling, and were referenced to the TSP-d4 standard signal
in TopSpin 3.5pl7 (Bruker BioSpin). The data were further processed
in MATLAB (MathWorks Inc). The 1H-NMR spectra were aligned by
setting the TSP-d4 to 0 ppm using icoshift (11) and the spectra were
bucketed using the function “opt_bucket.m” (18). This function used
initial size of bucket = 0.04 and slackness = 0.5. The bucketed spectra
were normalized using probabilistic quotient normalization (18), based
on in-house MATLAB code, and buckets including the water signal were
removed. This resulted in 493 buckets, from hereon called variables,
representing ∼100 metabolites.

Chenomx NMR suite 8.4 (Chenomx Inc) was used for annotation
of discriminating metabolites with the aid of the Human Metabolome
Database (19) and an in-house implementation of the STOCSY routine
(20).

Dietary data processing
Dietary habits—that is, vegan (consuming no food of animal origin),
vegetarian (including dairy and egg), vegetarian plus fish, or omnivore
(consuming a mixed diet)—were evaluated by general questions about
diet and the FFQ. Two dietitians registered the 4-d weighed food
diaries in DietistNet version 18.12.16 (Kost och näringsdata AB). The
participants were asked to register 3 weekdays and 1 weekend day.
Supplements were not included in the registration of the food diaries
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with the exception of protein powder, which was regarded as food.
Calculations were done in 2 databases: the Swedish database (National
Food Agency, Sweden, version 17.12.15) and the Finnish database
Fineli (National Institute for Health and Welfare, version 18.02.28).
Individual basal metabolic rate (BMR) was calculated based on a
sex- and age-specific equation, including individual weight and height
(21). Food intake level (FIL) was calculated by dividing total daily
intake (kcal/d) with BMR (kcal/d). Individuals with a FIL value <1.0
were regarded as underreporters and excluded from the data analyses.
Percentages of individuals reaching recommended daily intake, average
requirement, and lowest recommended intake were calculated based on
Nordic Nutrition Recommendations 2012 (21).

We formed 2 new dietary groups for multivariate data analysis:
nonvegan including omnivores, vegetarians, and vegetarians adding fish;
and nonmeat including vegans and vegetarians. Due to well-known sex
differences in urine metabolite concentrations and a skewed distribution
between men and women in the dietary groups, the larger group of
women was also analyzed separately, to confirm that the discriminating
metabolites were due to the diet and not to sex. The number of men was
regarded as too few for a separate multivariate modeling, and instead
men were predicted onto the women’s model.

Multivariate methods
All multivariate analyses were performed using SIMCA software v.15.0
(Sartorius Stedim Biotech) and all data were Pareto-scaled and cross-
validation groups set to 7 (default in SIMCA).

Principal component analysis (PCA) and orthogonal projections
to latent structures (OPLS) were used to explore clustering patterns
of observations, trends in the data in relation to known factors,
and outliers. OPLS models include not only x-values (metabolite
variables) but also y-values, that is, additional known factors that
could influence the data such as BMI, triacylglycerols, nutrient intake,
age, and sex. The presented OPLS models include y-values that had
a cross-validation analysis of variance (CV-ANOVA) P < 0.05 for
the model. Separation of classes and variables related to separation
in the data according to classification of diet (vegan compared with
nonvegan and meat compared with nonmeat) were evaluated using
OPLS with discriminant analysis (OPLS-DA). The validity of OPLS-
DA models was assessed using permutation tests (n = 999). Validated
prediction models for performance are presented using the receiver
operating characteristic (ROC) curve for OPLS-DA models. Also, to
further test the model quality, 3 test sets (∼20% of participants) were
selected by computerized randomization. The remaining participants’
samples for each set were used as a training set and the test set was
projected onto the training set model. Median values for ROC curve
and correct classification are presented. Also, cross-validated predictive
residuals (CV-ANOVA) visual comparison between scores and cross-
validated scores, the cumulative amount of explained variation in
the data summarized by the model (R2X[cum] and R2Y[cum]), and
the predictive ability of the model (Q2[cum]) are presented. Class
discriminating variables of interest from the OPLS-DA models were
selected if variables had −0.1 ≥ w ≥ 0.1 and if they were among the 20
highest variable importance scores, and these were further assessed by
univariate analysis.

Univariate methods
Statistical analyses were performed using IBM SPSS statistics version
25 (IBM Corporation). Comparisons of characteristics and macro- and
micronutrients between the 4 dietary groups were performed with
Kruskal–Wallis ANOVA, or chi-square test for categorical variables,
with Dunn post hoc test (with Bonferroni correction). Data are
presented as median (first quartile, third quartile) with significance set
at α = 0.05. Mann–Whitney U-test and logistic multivariable regression
analysis were used to evaluate metabolites driving the separation
in OPLS-DA models. Nonnormally distributed metabolites were log-
transformed before logistic regressions were performed. The logistic
regression models were adjusted for age, sex, BMI, and body fat mass
(percentage). To adjust for multitesting a Bonferroni correction was
applied; the 493 variables represent ∼100 metabolites and we therefore
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FIGURE 1 Consolidated standard reporting trials diagram. FIL, food
intake level.

adjusted for 100 tests, that is, P values <0.0005 were regarded as
significant.

Results
Participant characteristics

Data, blood, and urine samples were collected from 124
individuals. Two individuals with BMI <18.0 and 3 with
FIL values <1.0 were excluded, and in 1 case the NMR
analysis failed. Thus, 118 healthy individuals, 43 men and 75
women, were included in the present analyses (Figure 1). These
participants have been described previously (16); the majority
were young [median age (Q1, Q3) 28 (23, 33) y], of normal
weight, and had a high level of physical activity. The groups did
not differ in age, sex, BMI, BMR, FIL, or physical activity (Table
1). However, the percentage of men was slightly lower in the
vegetarian group (P = 0.273), and the level of intense physical
exercise was slightly higher in the omnivore group than in the
other groups (P = 0.056), although nonsignificantly. Median
time (Q1,Q3) from collection of urine at home to the study site
refrigerator (4◦C) was 1 h 15 min (1 h 00 min, 1 h 50 min), and
samples were centrifuged, aliquoted, and in the freezer (−20◦C)
within 1 h 30 min (1 h 15 min, 1 h 45 min).

Compliance with habitual diets and study instructions.

Four participants registered dietary intake only on weekdays,
that is, they refrained to register a weekend day. All omnivores
reported consuming meat, poultry, fish, and eggs in the FFQ, but
the frequency varied from a few times a month to >3 times a
week. Not all vegetarians and vegetarians adding fish consumed
both dairy and eggs. Three vegans reported eating honey,
which is produced by animals. Eight vegans reported eating
spirulina, nettle powder, or nutritional yeast, and 5 participants
took protein powder supplementation, despite being asked
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TABLE 1 Participants’ characteristics

Omnivore Vegetarians adding fish Vegetarian Vegan P value3

Number1 n = 38 n = 13 n = 25 n = 42
Sex (n male/female)1 15/23 6/7 5/20 17/25 0.273
Age,2 y 27.5 (22.0; 32.0) 28.0 (26.0; 35.0) 30.0 (23.5; 35.0) 28.0 (24.8; 33.3) 0.556
BMI,2 kg/m2 22.1 (20.8; 23.1) 20.0 (18.8; 22.3) 21.3 (20.0; 23.7) 21.3 (19.9; 23.2) 0.113
BMR,2 kcal/d 1380 (1310; 1730) 1450 (1320; 1740) 1360 (1280; 1490) 1480 (1310; 1610) 0.556
Food intake level2 1.50 (1.36; 1.77) 1.30 (1.10; 1.55) 1.39 (1.20; 1.60) 1.45 (1.26; 1.64) 0.055
Moderate physical activity >150 min/wk 68% 69% 56% 60% 0.698
Intense physical exercise >90 min/wk 71% 31% 64% 52% 0.056

1Results are presented as number.
2Median (first quartile; third quartile).
3Calculated with Kruskal–Wallis ANOVA or chi-square test for categorical variables. P < 0.05 is regarded as significant.

to avoid supplementation during the week before sampling.
Although the regular use of supplements was more common
in vegans (93%) than in vegetarians (48%), the former had
significantly lower serum vitamin B-12 concentrations than
omnivores. Also, vegans and vegetarians had lower serum
creatinine concentrations but higher folate concentrations than
omnivores (16).

Macro- and micronutrient intake from 4-d weighed
food diaries

The dietary groups differed in reported macronutrient intake
but not in reported energy intake (Table 2). Omnivores
reported a higher protein intake than the other groups but
∼60% reported fiber intake <25 g/d. Vegans reported both
a higher fiber intake and better fat quality, resulting in a
better macronutrient composition according to present Nordic
recommendations of 2012 (21), within this dietary group.
However, >30% of vegans and vegetarians reported a protein
intake below lowest recommended intake (LI) (21).

In addition, the groups differed significantly in intake of
all micronutrients except vitamin A (Table 3). The omnivore
diet had the highest content of many nutrients (niacin, zinc,
vitamin D, riboflavin, phosphorus, selenium, calcium), whereas
vegans had a higher intake of iron, magnesium, thiamin, vitamin
C, and folate than the other groups. For some nutrients, such
as calcium, an increasing intake of products of animal origin
(i.e., vegan to vegetarian to vegetarian + fish to omnivore)
increased the reported intake. However, vegetarians adding fish
had a reported intake of vitamin D, riboflavin, phosphorus, and
selenium that did not differ from omnivores, unlike vegetarians
and vegans who had a lower intake.

All participants had a reported intake that met the average
requirement for vitamin E, niacin, phosphorus, potassium, and
zinc (21). In contrast, none of the groups exhibited an adequate
intake of iron. Among the vegans and vegetarians only 4–5%
had an adequate intake of vitamin D. Even so, diets including
meat and fish (omnivores and vegetarians adding fish) only
provided 15–24% of average requirement for vitamin D. Most
vegans had an inadequate dietary intake of vitamin B-12. In
addition, <65% of the participants not consuming meat had
an adequate intake of riboflavin and selenium compared with
90% among the meat consumers. Figure 2 shows the percentage
of participants meeting the average requirements and those
with reported intakes below the lowest recommended intake for
selected micronutrients.

Urine metabolite patterns

In a PCA model including all dietary groups (n = 118), the
largest variation in the data [23.9% of the explained variation
(R2X)] was related to habitual diet (Figure 3, Table 4), but
also to the overall concentration of metabolites, likely mirroring
the effect of protein intake on urea concentration. The fourth
largest variation [8.6% of the explained variation (R2X)] was
related to sex. In an OPLS model (data not shown), with
known nondietary factors included, sex and the sex-related
factors percentage fat-free mass and creatinine were the only
factors influencing the data. In the OPLS diet model (Table 4)
total intake of energy, protein, fiber, niacin, vitamin B-12,
phosphorus, zinc, and the PUFAs EPA (20:5n–3), DHA (22:6n–
3), and arachidonic acid (20:4n–6) were included as y-values,
all with a CV-ANOVA P < 0.05. Most of these dietary intakes

TABLE 2 Macronutrient intake calculated from 4-d dietary records from all participants1

Omnivore (n = 38) Vegetarian adding fish (n = 13) Vegetarian (n = 25) Vegan (n = 42)

Median (Q1, Q3) Range Median (Q1, Q3) Range Median (Q1, Q3) Range Median (Q1, Q3) Range P value2

Energy, kcal/d 2180 (1890, 2720) 1570–4320 2080 (1720, 2240) 1450–2670 1910 (1590, 2400) 1440–3000 2150 (1770, 2500) 1260–3650 0.082
Protein, E% 15.6a (14.1, 18.6) 11.9–32.4 13.0b (12.2, 14.7) 11.7–20.2 12.0b (10.9, 13.2) 8.6–19.2 11.2b (9.5, 12.2) 8.2–16.0 <0.001
Fat, E% 36.7 (32.0, 41.6) 26.1–61.4 35.8 (29.1, 38.9) 19.3–41.6 34.3 (31.5, 44.1) 28.1–59.2 34.0 (24.3, 37.9) 9.0–49.0 0.031
Saturated fat, E% 13.6a (10.8, 16.8) 7.8–26.3 12.8a (9.0, 17.2) 4.3–20.6 12.7a (9.9, 12.7) 7.7–20.2 7.0b (4.9, 10.5) 1.3–18.5 <0.001
MUFA, E% 13.8a (12.4, 16.9) 9.1–22.4 10.8b (9.6, 12.2) 7.4–19.6 14.2ab (11.9, 17.7) 9.0–22.1 12.1ab (8.9, 16.9) 3.5–23.4 0.014
PUFA, E% 5.7b (4.8, 6.6) 3.3–10.0 5.6ab (4.1, 7.8) 3.7–12.2 6.4b (5.3, 10.3) 4.0–16.8 8.6a (7.2, 10.2) 2.8–17.5 <0.001
Carbohydrates, E% 42.7ab (37.3, 46.8) 15.3–55.4 47.0ab (44.5, 52.5) 40–58.5 46.1b (38.6, 49.7) 19.6–55.2 51.2a (45.0, 58.9) 29.7–76.3 <0.001
Fiber, g/d 23.4b (20.1, 31.2) 10.8–60.9 30.2b (25.3, 40.4) 15.9–60.7 29.2b (23.3, 38.4) 17.4–50.0 45.5a (36.4, 54.7) 25.1–79.6 <0.001
Alcohol, E% 0.5a (0.0, 3.1) 0.0–13.9 0.0ab (0.0, 1.9) 0.0–8.0 0.0ab (0.0, 3.1) 0.0–15.8 0.0b (0.0, 0.2) 0.0–9.6 0.012

1E%, energy percentage; Q1, first quartile of IQR; Q3, third quartile of IQR.
2Kruskal–Wallis ANOVA. Dunn post hoc test (with Bonferroni correction) was performed for all pairs of groups. Labeled medians in a row without a common letter
differ, P < 0.05.
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FIGURE 2 (A) Percentage of participants reporting intake higher
than average requirement. (B) Percentage of participants reporting
intake lower than lowest recommended intake. Fiber intake limit was
set to 25 g/d and protein intake to 0.83 g protein/kg body weight/d
according to Nordic Nutritional Requirements 2012 (21).

can be related to food sources with a high protein content, that
is, fish or meat.

The OPLS-DA model discriminating between meat and
nonmeat consumers had a high quality based on R2Y and
Q2 values >0.5 (Table 4), which was confirmed both by
permutation tests (Supplemental Figure 1C) and ROC curve
(Supplemental Figure 2A). In addition, 91% of the partici-
pants were correctly classified according to intervention diet
(Table 5). However, only 76% were correctly classified when
using test and training sets (Supplemental Table 1, Supplemental
Figure 3A) indicating some overfitting of the model.

In contrast, the OPLS-DA model discriminating between
vegans and nonvegans displayed R2Y and Q2 values <0.3

FIGURE 3 Principal component analysis model (n = 118) for
component 1 t[1] and component 2 t[2], showing the impact of
habitual diet in the model.

that together with the permutation tests (Supplemental Figure
1D), ROC curve (Supplemental Figure 2B), and the fraction
of correctly classified samples (Table 5) indicated a less robust
model. The correct classification of samples was only 75% in the
vegan compared with nonvegan model (Figure 4A, B, Table 5),
and only 41% in the test and training sets. The vegan model
improved slightly when built on women’s data only (Table 4,
Figure 4D). The prediction for female vegans to be correctly
classified was 92% (2 misclassifications) and for nonvegans
96% (2 misclassifications) (data not shown), but the model
quality (permutation test and ROC curve) was not improved
(Supplemental Figure 1F, Supplemental Figure 2D).

Most of the selected discriminant metabolites in the 2 main
models (meat compared with nonmeat and vegan compared
with nonvegan) were identical (Table 6). In addition, variables
including dimethylamine, citrate, and creatinine discriminated
also in the OPLS-DA model separating sex. Meat consumers
had higher urine concentrations of creatinine, glycine, man-
nitol, urea, and o-phosphocholine/sn-glycero-3-phosphocholine
(from hereon called phosphocholine) than nonmeat consumers,
and these differences remained significant also after adjustment
for age, sex, and BMI. However, the significance remained only
for creatinine, urea, and phosphocholine after adjustment for
protein intake (modeled as energy percentage, E%), indicating
that the protein intake had an important influence on citrate,
dimethylamine, glycine, and mannitol. In contrast, all metabo-
lites except mannitol remained significant after adjustment for
fiber intake. Figure 5 shows individual relative concentrations

TABLE 4 Multivariate model statistics for PCA-X, OPLS including dietary variables, and OPLS-DA models discriminating between
different dietary groups1

Model2 No. of Lv3 n R2X [cum]4 R2Y [cum]5 Q2 [cum]6 CV-ANOVA7 (p-value) AUC Permutation test (Q2)8

PCA-X 4 118 0.572 0.337
OPLS diet 3 + 0 + 0 118 0.434 0.307 0.223 <0.05 − 0.123
Men vs. women 1 + 1 + 0 118 0.329 0.384 0.252 1.1e-6 0.87/0.87 − 0.203
Meat vs. nonmeat all 1 + 2 + 0 105 0.452 0.691 0.591 4.5e-17 0.98/0.98 − 0.358
Meat vs. nonmeat women 1 + 1 + 0 68 0.336 0.714 0.580 2.6e-11 0.97/0.97 − 0.329
Vegan vs. nonvegan all 1 + 0 + 0 118 0.235 0.258 0.205 1.9e-6 0.81/0.81 − 0.108
Vegan vs. nonvegan women 1 + 1 + 0 75 0.246 0.291 0.232 7.6e-5 0.80/0.80 − 0.151

1AUC, area under curve; OPLS, orthogonal projections to latent structures; OPLS-DA, orthogonal projections to latent structures with discriminant analysis; PCA, principal
component analysis.
2“Meat” = omnivores; “Nonvegan” includes omnivores, vegetarians, and vegetarians adding fish; “Nonmeat” includes vegans and vegetarians.
3Number of latent variables.
4Cumulative fraction of the sum of squares of X explained by the selected latent variables.
5Cumulative fraction of the sum of squares of Y explained by the selected latent variables.
6Cumulative fraction of the sum of squares of Y predicted by the selected latent variables, estimated by cross-validation.
7ANOVA testing of cross-validated predictive residuals.
8The intercept between real and random models, degree of overfit.
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TABLE 5 Classification of samples in OPLS-DA models1

Classification

True intake
Meat

(n = 38)
Nonmeat
(n = 67)

Vegan
(n = 42)

Nonvegan
(n = 76)

Meat 32 (84%) 6 (16%)
Nonmeat 3 (5%) 64 (95%)
Vegan 25 (58%) 18 (42%)
Nonvegan 12 (16%) 63 (84%)

1OPLS-DA, orthogonal projections to latent structures with discriminant analysis.

of variables including urea, phosphocholine, and mannitol.
The purpose of the figure is to illustrate the distribution
of these metabolite concentrations within the dietary groups.
All participants with a mannitol concentration larger than
the second SD (Figure 5C) had reported consumption of
mushrooms or celeriac during the last 4 d. Figure 5C shows that
some omnivores had high mannitol concentrations, indicating
that this is not a general marker for vegetarian diets.

Discussion

Our results demonstrate that 1H-NMR metabolomics of urine
could differentiate patterns of metabolites in meat and nonmeat
consumers, but not necessarily between vegans and nonvegans.

FIGURE 4 (A) Meat compared with nonmeat consumers in orthog-
onal projections to latent structures with discriminant analysis (OPLS-
DA) models, n = 105 (38/67). (B) Vegan compared with nonvegan
(omnivores, vegetarians, vegetarians adding fish) consumers in OPLS-
DA models, n = 118 (42/76). The horizontal component of the OPLS-
DA score scatter plot captures variation between the groups and the
vertical dimension captures variation within the groups.

Large differences existed between the habitual dietary groups
in reported intake of both macro- and micronutrients. Our
findings suggest that protein intake influences several of the
metabolites in urine samples that discriminate between meat
and nonmeat consumers.

Using OPLS-DA models to discriminate between diets, meat
or nonmeat consumers were correctly classified by 91% and
the cumulative explained variation (R2X) was 45.2%, using
patterns of metabolites in urine, and this is similar to our
previous results in serum (97%) and where the cumulative
explained variation (R2X) was 41.1% in this study population
(16). However, the model discriminating between vegans and
nonvegans showed low predictive ability and classified merely
75% correctly and the explained variation (R2X) was 23.5%,
in contrast to 92% for the corresponding model on serum
metabolites and where the cumulative explained variation
(R2X) was 36.5%. Our results thus demonstrate that the
ability to correctly classify habitual consumption of meat and
other foods of animal origin is weaker for urine than for
serum (16). We suggest that the separation in serum, more
than urine, reflects the overall metabolic effect from the diet
rather than specific dietary markers. Furthermore, sex had less
influence on urine metabolites compared with serum, indicating
that urine and serum metabolomics can complement each
other.

The joint combination of urine metabolites from the
different diets (i.e., the metabolic fingerprint in OPLS-DA
models) constitutes the main results. However, to verify the
models’ biological plausibility the metabolites with the strongest
influence on the models will be discussed in the following
section. Meat consumers had a higher creatinine concentration
in urine than nonmeat consumers. The same divergence in
concentration of creatinine was also found in serum in the same
study population (16). In urine, creatinine reflects both muscle
mass and dietary sources, which primarily include meat and fish
(22, 23).

In addition, meat consumers had the highest urea concen-
tration and vegans the lowest, which was expected because
urea is the degradation product of amino acids, thus reflecting
protein intake. For both meat compared with nonmeat and
vegan compared with nonvegan models, urea constituted the
highest contribution and this was true also after adjustment
for protein intake. However, it is unknown whether different
protein sources influence urea concentrations. It should be noted
that because urea is present in high concentrations in urine,
differences in concentrations of urea between groups will have
a large impact on the models, when using Pareto scaling.

Further, meat consumers had a higher phosphocholine
concentration than nonmeat consumers, and this is consistent
with foods from animal sources having higher content than
foods from vegetable origin, with the highest content being in
liver, eggs, beef, fish, pork, and chicken (24).

Nonmeat consumers had a higher concentration of citrate
and a variable including both citrate and dimethylamine.
Citrate concentration in urine is interesting, because reduced
concentrations are related to the formation of uric acid stones
(25). A high animal protein intake is related to reduced
concentrations, which is consistent with our results (25).

Nonmeat consumers also had a higher mannitol concentra-
tion in urine. Mannitol is not an endogenous molecule and
dietary sources for mannitol are few; only celery, cauliflower,
and mushrooms have a mannitol content ≥1.5 g/100 g (26).
Pumpkin, snow peas, sweet potato, horseradish (wasabi),
asparagus, lima beans, and peach have also been found to
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FIGURE 5 Individual variables for (A) urea, (B) phosphocholine
(variable including both o-phosphocholine and sn-glycero-3-
phosphocholine), and (C) mannitol. The x-axis shows all individuals
(1–118) organized from left to right in the order omnivore, vegan,
vegetarian (veg), and vegetarian + fish (veg + f). The y-axis shows the
relative variable size that reflects the concentration of the metabolite.

contain mannitol, but in the lower range of 0.1–1.2 g/100 g
(26). In addition, the absorption of dietary mannitol is only 17–
25%, and it is excreted in urine because it is hardly metabolized
in tissues (27, 28). Although vegetarians and vegans generally
consume more plant-based foods, some of which are rich in
mannitol, mannitol alone is not a good marker for vegetable
intake in general, which is shown in Figure 5C. However, several
metabolites corresponding to our results, such as mannitol,
glycine, dimethylamine, and citrate (a derivate of citric acid),
have been shown to reflect low protein intake regardless of
source (29).

Hippurate and citrate were found to be higher in women
than men, although not significantly so after adjustment for
protein (E%) intake, whereas creatinine showed the opposite
pattern. These findings are consistent with previous research
(30–32).

The differences in reported macro- and micronutrient intake
between the dietary groups were remarkable, although in
line with previous findings where vegans reported a better
macronutrient composition, but low micronutrient intake (4,
33, 34). Although the overall macronutrient composition
according to the Nordic recommendations of 2012 (21) was
better among vegans as a group, it should be pointed out that
∼30% of vegans and vegetarians reported an intake of protein
less than LI, that is, an inadequate intake. Unfortunately this
might not receive attention when reporting data on a group
level. Also, the intake of some nutrients was far from the average
requirement in all or several groups. However, 95% of the
vegans and many of the other participants took supplements
regularly; this was confirmed for vitamin B-12 status, which
was deemed adequate for most participants (16). In addition,
hemoglobin status did not differ between the groups. Folate
intake was higher among vegans (16), which confirms a higher
intake of vegetarian foods, thus resulting in a higher fiber intake.

In addition, 4-d dietary records do not always capture nutrients
like vitamin D because its food sources, such as fish, are not
consumed daily. It is possible to consume a vegetarian diet with
sufficient intake of all nutrients, but our results show that many
vegetarians and vegans do not eat such a diet. The addition of
fish to a vegetarian diet seems to improve the intake of vitamin
D, riboflavin, phosphorus, and selenium.

Several weaknesses of our study should be noted. First,
men and women were not evenly distributed between the
groups, which is of concern because concentrations of many
metabolites differ by sex. To test for this, we analyzed data from
women (the larger group) separately. In addition, P values for
metabolites driving the separation in the OPLS-DA models were
adjusted for age, sex, and BMI in a logistic regression analysis
(Table 6). Second, omnivores reported a higher level of physical
activity (although not significantly) than the other groups and
physical activity also influences the metabolome (35, 36). Third,
the study population consisted mainly of young and healthy
individuals with a high level of physical activity, which might
limit the generalizability.

Even so, our study has several important strengths. Study
staff handled fasting urine samples strictly according to the
protocol, resulting in high-quality 1H-NMR measurements.
It has been shown that spot and cumulative urine samples
can replace 24-h urine collections for measuring metabolites
that reflect dietary exposure (37). Our subjective dietary data
included both an FFQ and a 4-d weighed food diary, that is,
the gold standard in nutritional assessment. This aided us in
interpreting the urine data.

To conclude, 1H-NMR urine metabolomics can be an
objective tool to identify and predict habitual intake among
meat consumers or nonmeat consumers, in healthy individuals.
Metabolite patterns that reflected intake of meat and other
products of animal origin were identified. Most of the
discriminating metabolites were associated with differences
in protein intake, indicating that 1H-NMR metabolomics
might be better at capturing intake of foods rich in animal
proteins than in different plant foods. However, a difference in
protein intake between meat and nonmeat consumers might be
unavoidable and could be regarded as a concomitant outcome
rather than a confounder. Metabolic patterns described here
should be confirmed in dose–response studies and intervention
studies, controlling for individual factors, macronutrient intake,
especially proteins, and protein source that potentially influence
metabolite concentrations.
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