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ABSTRACT cognitive systems; and 4) discovering new ligands for chemosensory

In November 2019, the NIH held the “Sensory Nutrition and
Disease” workshop to challenge multidisciplinary researchers work-
ing at the interface of sensory science, food science, psychol-
ogy, neuroscience, nutrition, and health sciences to explore how
chemosensation influences dietary choice and health. This report
summarizes deliberations of the workshop, as well as follow-up
discussion in the wake of the current pandemic. Three topics were
addressed: A) the need to optimize human chemosensory testing
and assessment, B) the plasticity of chemosensory systems, and
C) the interplay of chemosensory signals, cognitive signals, dietary
intake, and metabolism. Several ways to advance sensory nutrition
research emerged from the workshop: /1) refining methods to measure
chemosensation in large cohort studies and validating measures that
reflect perception of complex chemosensations relevant to dietary
choice; 2) characterizing interindividual differences in chemosensory
function and how they affect ingestive behaviors, health, and disease
risk; 3) defining circuit-level organization and function that link
and interact with gustatory, olfactory, homeostatic, visceral, and

receptors (e.g., those produced by the microbiome) and cataloging
cell types expressing these receptors. Several of these priorities were
made more urgent by the current pandemic because infection with
sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
the ensuing coronavirus disease of 2019 has direct short- and perhaps
long-term effects on flavor perception. There is increasing evidence
of functional interactions between the chemosensory and nutritional
sciences. Better characterization of this interface is expected to yield
insights to promote health, mitigate disease risk, and guide nutrition
policy. Am J Clin Nutr 2021;113:232-245.

Keywords: olfaction, sweet, food preferences, food intake, liking

Introduction

The foods and fluids a person ingests can satiate, nourish,
and promote growth. They can also cause harm—either within
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minutes or hours after swallowing or after longer periods of
intermittent ingestion (1). The chemosensory receptors of the
nose, mouth, and throat provide the brain with information about
the composition of foods and fluids, which in turn influences
the probability of ingestion or rejection (2). For this reason, the
chemical senses of taste and smell, together with chemesthesis—
the chemical sensitivity of the somatosensory system—play a
role in body weight and nutritional state (3).

On 12-13 November, 2019, the NIH held the “Sensory
Nutrition and Disease” Workshop (4) in Bethesda, Maryland, to
engage a diverse group of basic science and clinical researchers
working at the interface of sensory and nutrition sciences to
explore the potential of chemosensory biology to influence
food preferences, intake, and nutrition. Here, the workshop is
summarized, identifying new research and approaches needed
for understanding how the chemical senses ultimately influence
nutrition and health. Such knowledge can be used to mitigate
chronic disease risk and help develop interventions that promote
healthier diets. This workshop summary also includes perspec-
tives on priorities emerging from the coronavirus disease of 2019
(COVID-19) pandemic (5).

Three main topic areas were identified by workshop parti-
cipants: A) the need to optimize human chemosensory testing
and assessment, B) the plasticity of chemosensory systems, and
() the interplay of chemosensory signals, dietary intake, and
metabolism. These topics highlight current overarching questions
at the interface of taste, smell, and food choice. Eleven gaps
and opportunities were identified in our current understanding
of how chemosensory biology influences nutrition and dis-
ease, including those subsequently identified by the effects of
COVID-19.

Organization of the Chemosensory Systems

Each chemosensory system provides unique information to
the brain. The olfactory system responds to thousands of
different types of airborne molecules, whereas the gustatory
system responds to a more limited set of chemicals in food
and beverages, such as salts, sugars, amino acids, alkaloids,
acids, and fats. The oronasal trigeminal system responds to
chemicals in either volatile, liquid, or solid form via chemically
sensitive receptors of the somatosensory system—a sensitivity
referred to as chemesthesis (6). The signals from these different
chemosensory systems interact [e.g., (7)] to form a flavor percept.
This is the term for a composite perceptual integration of taste,
smell, and chemesthesis and oral somatosensation, including
food texture and temperature (8, 9).
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Although many factors influence dietary choice and consump-
tion, flavor is a primary driver of the amount and type of food a
person or other animal chooses to eat. Sensory nutrition is studied
in controlled environments with model organisms, in laboratory
settings with human participants and direct or indirect measures
of intake and health, and eventually translated into community
and population-based studies to test the generalizability of
laboratory-based findings.

Topics in Sensory Nutrition

Although there has been progress in understanding smell, taste,
and chemesthesis, distillation of the presentations and discussion
from the “Sensory Nutrition and Disease” Workshop highlighted
3 interconnected topic areas that warrant additional research
(see Table 1): /) optimizing chemosensory testing with whole
foods to complement research of simpler taste and smell stimuli;
2) plasticity in smell, taste, and chemesthesis systems and effects
on sensory and hedonic behaviors and responses; and 3) the
interplay of chemosensory signals, dietary intake, microbiome,
and metabolism.

Three consistent themes emerged from all 3 topic areas.
One theme was the historic reliance on simple chemosensory
stimuli, such as single odorants or taste compounds dissolved in
water, to study complex behavioral and physiological responses.
These stimuli bear little relation to consumption of real-world
foods, which integrate taste and smell and other sensory inputs
into a compositive flavor experience. Another consistent theme
was how the ability to taste and smell (especially in the
experience of pleasure) changes with life events, including
development and aging; illnesses such as bacterial or viral illness,
including COVID-19 (10); age-related conditions (e.g., chronic
health conditions, neurodegenerative disorders, polypharmacy);
and diet [e.g., (11)]. The third involves interactions between
sensation, hedonic value, and feeding state, for example, how
the hedonic value of a food increases when a person or animal
is hungry. These themes link each of the 3 topic areas discussed
below.

Optimizing chemosensory testing in sensory nutrition
paradigms

With notable exceptions [e.g., (12—14)], most human research
on the contribution of oronasal sensory signals to flavor and
food preferences has largely relied on psychophysical studies
with limited taste stimuli (15, 16) or noncommercial stimuli that
provide investigators with better experimental control but limited
ecological relevance. The dearth of research using real-world
foods and beverages has impeded our understanding of flavor
perception (17) and highlights the need for cross-talk between
sensory psychologists, nutritionists, and food scientists for new
research paradigms. As an example, using orally sampled real-
world foods could capture relevant orthonasal and retronasal
function (18), which could be used to better understand food
pleasure (19) and dietary intake (20). Likewise, the flavor
quality of low-calorie sweeteners differs depending on the
type of food or beverage sweetened (21). New knowledge in
this area may aid efforts to reformulate foods to make them
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TABLE 1 Sensory nutrition and disease: research topics and suggestions!

Category

Description

Research topics

Research opportunities

A) Optimizing human chemosensory testing and assessment

B) Boundaries and mechanisms of chemosensory plasticity

C) Interplay of chemosensory signals, food dietary intake, and metabolism

1) Chemosensory and hedonic biomarkers for food intake and food-related diseases

2) Multimodal evaluation of the response to food

3) Automating and standardizing methods to measure chemosensory behaviors

4) Connecting individual differences in genetics and experience of taste, smell, and ingestive behaviors
5) Clinical research in sensory nutrition

6) Capacity building for the study of big data in the sensory nutrition realm

7) Tracing neural circuits among peripheral chemosensory cells, gut, and brain across model organisms
8) Effects of chemosensory stimuli on visceral taste receptors

9) Microbiome and sensory receptor interactions

10) Deorphanization of chemosensory receptors, especially with nontraditional ligands
11) Single-cell RNAseq to define cell types that express chemosensory receptors
COVID-19 i) Loss of taste and smell as a cardinal feature and future research directions

1COVID-19, coronavirus disease of 2019; RNAseq, RNA sequencing.

healthier (e.g., reduce sugar) and more palatable (e.g., reduce
bitterness).

New research approaches that enable systematic manipulation
and measurement of sensory properties of foods and beverages
are necessary to understand the contributions of flavor to the
mechanisms of dietary choice. The development of defined but
ecologically relevant food stimuli will pose technical challenges
and complicate experimental designs and analyses, including
for translation outside of laboratory settings. To meet these
challenges, interdisciplinary collaborations are needed among
researchers with expertise in food science and technology, the
chemical senses, oral somesthesis, psychology, nutrition, and
public health.

Mechanisms of chemosensory plasticity

One burgeoning theme in chemosensory neurobiology is
that chemosensory systems are highly plastic. For example,
experience-dependent changes can occur at all levels of the
olfactory system, including the olfactory epithelium. These
changes include basic gain-control functions, where the system
adjusts to environments with more or fewer odors (22-25).
They also include strong associative plasticity (26). In animal
models, pairing odors with strong positive (liked) or negative
(disliked) stimuli causes radical changes in the numbers of
neurons responsive to those odors in the olfactory epithelium
(27, 28). In addition, stimulus—odor pairing causes alterations
in the odor-evoked activity of the olfactory nerve (29, 30) and
changes in the firing of neurons in the olfactory bulb (31-33),
olfactory cortices (34, 35), and beyond. Similar experiences
have been confirmed to induce perceptual changes in humans
(36-38).

The taste system is also plastic (39-44) and changes over
time (45, 46), for example, with age (47-49), as a result of
illness (50, 51), or with changes in diet (52). These changes
may affect individual eating habits. For example, it is commonly
believed that eating a low-sugar diet makes people more sensitive
to sucrose (53), which may in turn reduce the liking for high-
sugar foods. Testing this idea experimentally is topical because
of the public health pressure to reduce intake of sugar (as well as

salt and fat), with the expectation that people will acclimate over
time, with foods with lower salt, sugar, or fat eventually becoming
more palatable or even preferred. In humans, the best-studied
taste effect based on dietary change is salt reduction: when people
adopt a diet lower in sodium, they gradually adjust and come to
prefer lower levels of saltiness (54). The same has been shown for
fat (55, 56). Similar studies to evaluate the effects of low-sugar
diets are under way.

Similarly, experience-dependent changes in liking and pref-
erence for hot and spicy foods are well known (57) but
not well understood. The lack of understanding no doubt
is due to the involvement of multiple factors (58), ranging
from desensitization of chemesthetic receptors that occurs with
frequent exposure (59) to personality variables (60). In addition,
the possible contribution of postingestive nutrient effects to
increases in liking of hot and spicy foods over time, such as flavor-
nutrient conditioning (61), has not been investigated.

When studying the plasticity of the chemosensory systems,
a few methodological details warrant particular attention. First,
using sodium reduction as an example, all studies carried out to
date have used abrupt reductions in salt consumption, whereas
a gradual reduction of salt consumption is recommended (54).
Thus, dietary change studies need to consider the rate of change
as well as the final magnitude of reduction. Another aspect of
experimental design is choice of outcome measures. In addition
to taste and the habitual aforementioned intake and choice
measures, other outcome measures usually comprise body weight
and/or other measures related to metabolic disease (e.g., fasting or
postprandial plasma glucose concentration). However, building
on animal studies, these measures should be expanded to include
less obvious but equally important outcomes, such as cognitive
performance (62—66). Another consideration is the period of
study. For example, studies of hedonic shifts indicate they require
8—12 wk to manifest and may be reversible in similar time spans.
Similarly, changes in taste preferences after bariatric surgery
are a model system for human taste plasticity, but the period
of measurement has been limited to several months, and it is
unclear whether favorable changes postsurgery persist beyond
that brief window of study (67). In contrast, viral and bacterial
infections, which are among the most common causes of taste and
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smell disorders, may evoke rapid changes (68), requiring methods
sensitive to the detection of short-term shifts. Such infections
may also result in longer-term chemosensory dysfunction, so
longitudinal studies are a needed area of research.

The inability to assess the response of the chemosensory cells
and nerves to stimuli has been an obstacle in understanding the
mechanisms of chemosensory plasticity and its implications for
food choice and intake. However, studies in animal models from
fruit flies to rodents have quantified the responses of the taste buds
and the sensory neurons to stimuli in animals exposed to varying
diet compositions. These studies have shown that exposure to
diets high in sugar and fat decreases or alters the physiological
responses of the taste buds and sensory neurons to stimuli or
changes their number (39-44, 69), and 2 recent studies were
able to uncouple the effects of weight gain from those of diet
composition (42, 44) on the taste system. Further research in
model organisms will capitalize on new methods to study old
questions about chemosensory plasticity and rapidly generate
hypotheses to be tested in human studies.

The interplay of chemosensory signals, dietary intake, and
metabolism

Chemosensory plasticity is intertwined with endocrine re-
sponses because metabolism is in constant flux in response to
meals, as well as longer-term dietary and lifestyle changes. There
is a bidirectional relation between metabolism and chemical
sensing (70): taste, smell, and chemesthesis affect what animals
choose to eat, and what animals eat may influence their
chemosensory sensitivities. The nutritional status of an animal
or human modulates the relevance and valence of sensory stimuli
(71, 72).

The influence of feeding state on taste, smell, and eating
may be a key driver of ingestive behavior. As an example,
the olfactory epithelium and olfactory bulb express metabolic
signaling molecules and receptors, including orexins, ghrelins,
neuropeptide Y, insulin, leptin, glucagon-like peptide 1 (GLP-
1), cholecystokinin (CCK), and cannabinoid receptors 1 and
2 (73). Caution in interpretation is needed, however, because
although these molecules play a role in some cells and tissues
as a metabolic signal, here they may only be neuromodulators
involved in synaptic transmission at different brain sites underly-
ing functions that have nothing to do with metabolism. However,
insulin and leptin both increase spontaneous activity and decrease
odor-evoked activity in olfactory sensory neurons in the olfactory
epithelium, which points to a direct role in metabolism (74). The
activity of mitral cells, a type of neuron in the olfactory bulb,
is influenced by insulin, glucose, and GLP-1 (71, 72, 75, 76).
The olfactory bulb receives orexin-expressing projections from
the lateral hypothalamus (77, 78), whereas some mitral cells from
the bulb project to the arcuate nucleus (79). The olfactory bulb
and cortex are also interconnected with affective and motivational
centers that can play a role in eating behavior, including the
amygdala, ventral hippocampus, and orbitofrontal cortex (80—
92). In free-living animals and humans, the neural signals are
not linear or immutable; context may modulate each step. For
example, sweet taste stimuli typically have a positive valence
and trigger a feeding response, yet satiety may dampen or even
eliminate feeding by modulating central pathways (93-95). In
turn, changes in the central processing of sensory stimuli could

affect the early steps of the satiety cascade and result in alterations
in food intake (96, 97).

The interactions between sensory systems and metabolism
may also occur directly in the gut. What we eat may influence
gut metabolism acting through chemoreceptors. For example,
some bitter taste receptors are upregulated in gut mucosal
chemoreceptor cell subtypes of people with obesity and in the
gut mucosa of mice with high-fat diet-induced obesity (98, 99),
suggesting an interaction with diet or diet-induced intraluminal
changes. Also, the chemicals produced by the gut, especially
by the microbiome, may affect the brain (100) and may even
result in changes in food preferences and choice behavior. Finally,
metabolic signaling pathways could act on cells autonomously
to directly modulate the responsiveness of the chemosensory
neurons, as has been shown in invertebrates (42, 101). Overall,
understanding the ability to sense foods via chemosensory
receptors in response to metabolic changes may help inform
disease treatment and suggest directions for public health policy
relating to food and nutrition.

Specific Suggestions to Address Gaps in Sensory
Nutrition Research

This section describes specific suggestions to address current
challenges and gaps in sensory nutrition research. In particular,
we focus on methods or approaches that are expected to improve
the tempo and nature of research in the aforementioned topic
areas. These suggestions, summarized in Table 1, are organized
hierarchically, starting with the study of whole animals (e.g.,
behavioral measures), followed by tissues and circuits, and then
individual cells.

Chemosensory and hedonic biomarkers for food intake and
food-related diseases

People differ in their ability to smell and taste, owing to
such factors as genetics, nutritional state, and age. Effort has
been made to translate time-consuming, classical psychophysical
tests into brief measures to study individual differences in
chemosensation (102, 103), including those designed to measure
taste preferences and taste-related behaviors (104). However,
chemosensory and hedonic measures are needed that are useful,
feasible, and represent complex flavor sensations for population-
based studies, to allow us to generalize findings from experi-
mental and clinical studies to the general population. Summaries
of a number of population-based studies that have measured
smell and taste are provided in Tables 2 and 3, respectively.
In the United States, brief and standardized measures of smell
and taste from the NIH Toolbox were further standardized and
included in the 2011-2014 NHANES for adults >40 y of age
(105). NHANES is a continuous, cross-sectional, multifaceted,
nationally representative assessment of the health and diet of
the US population, collected via in-home visits and mobile
examination centers. The 2011-2014 data provide an opportunity
to examine the strength of taste and smell associations across
a broad array of diseases and conditions (e.g., cardiovascular,
diabetes, kidney disease, obesity, oral health, and respiratory
tract), environmental exposures, and behaviors (e.g., dietary,
physical activity).
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Reference

(118, 119)

(120, 121)
(122)
(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)

Brief description of outcome

with dietary restraint
Tasters correlated with cancer risk

PROP related to food preference

Sweet—BMI association

and overall health
Gender and cognitive effects on function

Taste correlated with body weight changes
Race and PTC effects on smoking

74% gustatory deficit

7%; distortions correlated with poor oral
Nontasters heavier than tasters; interaction
Preferences associated with body weight

Few PROP-diet/food associations;

Measure

Taste strip identification
Reported taste distortion
Recognition threshold
Taste/papilla/ preference
PROP taste

PTC taste
Sweet intensity

Taste/papillae

PROP taste
PTC taste
PROP taste

Sample

adults

6346 adults
1576 adolescents

1981 adults

Nationally representative older
1861 children

5585 children

>10,000
496 adults across 6 countries

540 healthy inhabitants

621 older adults
5500 adult women

Design
Long
Long

20-y cohort
Long
CS
Long
CS
Long
PCS
Birth cohort

Country
USA
USA

Sweden
Japan
USA
Italy

United Kingdom
Asia
Australia
Europe
Netherlands

Aging Project
Swedish 1942 birth cohort

Carlantino
UK Women’s Cohort Study

Silk Road

Biobank
Genetically isolated village of

Study
IDEFICS cohort

TABLE 3 Sampling of population-based studies with taste data'

Beaver Dam Offspring Study
National Social Life, Health and
Dallas Heart Study/Dallas
Brisbane Longitudinal Twin

Generation R Study

Study
SONIC
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The majority of smell tests measure odorant identification
(e.g., amyl acetate smells like a banana), which often relates
to cognitive function and may not be a sensitive method to
understand how smell function affects food intake. In contrast,
many taste tests measure intensity responses to a single com-
pound or quality, such as bitterness evoked by propylthiouracil or
phenylthiocarbamide. These compounds are often used because
of the wide range of responses they evoke (131, 132), but
broadening taste testing to other compounds representing other
taste qualities and mixtures of compounds to reflect the flavor
percept would enrich knowledge of sensory nutrition as it relates
to short-term (e.g., viral infection) and chronic (e.g., diabetes)
disease. Of particular importance is work on hedonic responses to
tastants, because this facet of chemosensory function is probably
the strongest determinant of food choice (133).

There are several benefits to developing validated chemosen-
sory measurement tools that are faster and more reliable than
current methods as well as standardizing current methods so
that results of large-scale studies can be compared directly. In
addition, methods are needed to facilitate collection and analysis
of large amounts of data [e.g., the All of Us precision medicine
initiative and related efforts (105, 134)] to enrich hypothesis
generation.

Overall, there is a critical need to optimize chemosensory
testing that is feasible for population-based studies and that has
relevance to dietary behaviors. Such olfactory and taste methods
could produce measures that become biomarkers of long-term
dietary behaviors, which, in turn, would enhance understanding
of the connections between diet and chronic disease (135).

(49, 105)

PROP-body weight associations

5.24% dysgeusia

Bitter/salt intensity—whole
mouth and regional

Multimodal evaluation of the response to food

Taste and smell have most often been studied in isolation,
but their interaction is essential to understand how flavor affects
consumption (136), especially hyperpalatability (137) or the idea
that some foods [e.g., combinations of fat and sugar (138)] are
so hedonically rewarding that overconsumption is inevitable.
Moreover, chemesthesis and somatosensory (texture) qualities
of flavor also play a role in palatability, food selection, and
consumption.

Thus, sensory testing needs to integrate the myriad sensory
qualities of foods and beverages. Filling this gap in the field
will require interdisciplinary research that considers taste, smell,
chemesthesis, vision, audition, and somatosensation not as
separate contributors but as essential components of the flavor
gestalt that guides food selection and intake.

y old

>40

Nationally representative adults

USA

Automating and standardizing methods to measure
chemosensory behaviors

Animals and humans alike have characteristic behaviors that
are objective signs of food and drink enjoyment or rejection
(139), but more effort is needed to connect common methods
of measuring these behaviors in animals (licking rate, facial
expressions, sniffing) with corresponding human behaviors.
Facial expressions are an example of how to forge these
connections [e.g., (139)], but most human studies rely on food
intake and verbal reports of liking, preference, or intensity.
Thus, validated and reliable behavioral measures that have direct

1CS, cross-sectional; IDEFICS, Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants; Long, longitudinal; PCS, prospective cohort study; PROP, propylthiouracil; PTC,

phenylthiocarbamide; SONIC, Septuagenarians, Octogenarians, Nonagenarians Investigation with Centenarians.

US NHANES
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correlates between humans and animals would enhance research
in this area.

Ideal methods for monitoring and automatically classifying
behavior, such as oral movements (licking and swallowing)
and feeding behavioral assays, will be practical and compatible
with other types of measurement, such as brain function using
functional MRI and optical neurophysiological methods (140-
142). In humans, neuroimaging methods, particularly functional
and structural MRI, have the potential to reveal nutritional
effects on the neural substrates of taste, smell, and ingestion.
Application of neuroimaging methods to understanding brain
mechanisms underlying eating behavior in populations at risk of
earlier morbidity and mortality, such as those people who have
obesity or diabetes, will be of particular interest (143, 144). The
development of these methods should serve as a translational
bridge, logically linking findings between animal models and
humans.

Connecting individual differences in genetics and experience
to taste, smell, and ingestive behaviors

People differ in how they perceive and respond to the sight,
smell, and taste of food. For example, there are well-studied
person-to-person differences in bitter perception (145), salivary
composition (146), and cephalic-phase insulin responses to
the sensory properties of food (147). Studies are needed to
determine whether this variability reflects heritable differences
across subjects, experience-induced plasticity, or their interaction
and whether these effects are larger for certain flavors and tastes
such as sweetness and bitterness.

Historically, the extent of genetic compared with other
influences was determined by comparing biological relatives—
often twins, in the case of humans (148), and inbred, selectively
bred, and hybrid strains in animal models (149, 150). More
recently, genome-wide association studies, which use large
numbers of unrelated people, have inferred heritability by the
association of a trait (e.g., the consumption of particular foods or
foods with a specific taste quality) with a genetic variant (151,
152). As our knowledge of associations between food-related
behaviors expands (153), genotype becomes a standard variable
to consider (similarly to age or sex) when assessing taste, smell,
chemesthesis, and somatosensation and their relations to food
intake.

Clinical research in sensory nutrition

More than 200,000 people visit a doctor each year for problems
with their chemical senses (154). Furthermore, just over 1 in 5
adults in the United States with a smell or taste disorder sought
medical care for this disorder according to data from the 2014—
2016 NHANES and the baseline for one of the HealthyPeople
2030 goals (155). Clinical studies of the chemesthetic senses
are needed because impairments in these senses have important
implications for health and quality of life. Few clinical studies
have assessed chemosensory measures or clinical guidelines for
treatments, and, as aforementioned, we need to optimize rapid,
standardized measures for the clinical setting that could extend
to nonclinical settings. In addition, existing treatment strategies
for taste and smell disorders are limited and often ineffective

(156). More studies are also needed to connect chemosensory
alterations to other clinical disorders such as diabetes, obesity,
and cancer, and we need increased support for chemosensory
clinician-scientists to foster interdisciplinary collaborations.

Building capacity to facilitate the use of big data in the
sensory nutrition realm

Very large data sets are being generated that could expand our
understanding of sensory—nutrition interactions. Some examples
are the UK Biobank (157), the Million Veteran Program (158),
and All of Us (159), which are large-scale efforts to study
hundreds of thousands to millions of people through health
records, surveys, biological samples, and other physiological
indexes, as well as genetic data. Studies based on these data
sources could further inform us about how flavor affects food
choice and how variation in taste and smell receptor genes affects
human health.

Thus, new large-scale collaborative initiatives and training
programs in artificial intelligence and data science are needed
for chemosensory scientists in the biomedical workforce. It will
also be important to offer retraining programs for established
scientists hoping to gain skills in these new computational
areas. Finally, support for interdisciplinary teams is needed
to fully mine the chemosensory data and direct analyses of
chemosensory-related genes.

Tracing neural circuits among peripheral chemosensory
cells, gut, and brain across model organisms

The interplay of taste, smell, chemesthesis, somatosensation,
and digestion arises from neural connections between the nose,
oral cavity, gut, and brain. One example of this interplay is
the cephalic-phase response, which arises when food-related
sensory inputs stimulate centers in the brainstem (e.g., the dorsal
motor vagal nucleus), which in turn initiate parasympathetic
and/or sympathetic response pathways. Another example of this
interplay is between nutrient-sensing responses in the gut and
the brain—gut axis connections. However, the nature of the
effective stimuli, afferent pathways to the brainstem, integrating
centers in the brainstem, and efferent pathways to the periphery
remain largely unknown. Thus, knowledge about the interaction
between the cephalic chemosensory systems, the viscera, and the
gustatory system would close this knowledge gap concerning
neural circuits. A better understanding of this neural circuitry
in different model organisms would inform the interplay of
chemosensation, food intake, and metabolism.

One challenge to the study of chemosensory brain circuitry
in mammals is its unfavorable anatomy. For instance, gustatory
areas pose unique challenges to their study in rodent models.
Subcortical and cortical regions are small, cytoarchitecturally
heterogeneous, and located in inaccessible anatomical positions
(95). Thus, the anatomy of the taste system makes it hard to
measure the responses of specific types of taste cells to stimuli
in awake, behaving animals. Development of multisite neural
recording methods and stimulation approaches suitable for the
taste-related brain areas is critical to delineate the complex
interconnectivity of the gustatory system with central circuits.
Further, it will be important to continue leveraging the advances
in knowledge brought by studies in invertebrate model organisms,
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with research informed by hypotheses relevant to and formulated
from human and preclinical models.

Effects of chemosensory stimuli on visceral taste receptors

Many chemosensory receptors are expressed in the gut and
viscera, and their function has been only partially characterized.
Current data suggest that these sensory pathways contribute to
nutrient digestion and metabolism, and ultimately to obesity,
diabetes, and other diet-related diseases. For example, hyper-
glycemia downregulates sweet taste receptor expression in -
cells, leading to compensatory alterations in insulin secretion in
obese and diabetic mouse models (160). Likewise, in patients
with type 2 diabetes, intestinal sweet taste receptor mRNA
levels are inversely correlated with fasting glycemia (161).
These sweet taste receptors are dysregulated in response to
high luminal glucose (162) and by acute high-sucrose feeding
(163). These observations suggest that taste receptors may be,
in part, responsible for adaptive responses to imbalances in
nutrient availability (e.g., diabetes and refined carbohydrate
intake, coronary artery disease, and high saturated fat intake) and
signal the need for additional research to explore the function of
chemosensory receptors in the viscera.

Microbiome and sensory receptor interactions

The role of the microbiota in health and disease is ever-
expanding, with its application to sensory nutrition inevitable
at least in part because the microbiota in the upper airway and
gastrointestinal tract, starting with the tongue, are a rich source
of chemical signals. One new research avenue is the study of
sometimes subtle changes in the diet and how they affect the
gut microbiome [e.g., (164, 165)], perhaps reshaping it over
generations. For example, rats selectively bred for high sweet
preference reliably differ in the pattern of their gut microbiota
compared with rats bred for low sweet preference (150). Another
avenue of research is to study microbes that can produce
chemicals that influence behavior (166-169) and to determine
whether chemosensory bitter taste receptors detect these signals
in the gut (as they do in the nose) (170). These chemical signals
could be similar to or the same as neurochemicals produced by the
host and affect host behavior (100, 171), for example, by getting
the host to eat more of the type of food that members of the gut
microbiota can easily metabolize (172). The nose and tongue also
contain a diverse microbiome (173, 174), which may affect taste
and smell directly. Currently, most studies of the microbiome are
correlative, but the challenge ahead is to test these microbiome—
host interactions experimentally. Another challenge is to have
hypotheses in advance of the analysis of the very large data
sets generated by most microbiome sequencing studies and to
rapidly incorporate new knowledge about how to translate raw
DNA sequencing data into more accurate descriptions of the
microbiome [e.g., (175)].

Deorphanization of chemosensory receptors, especially with
nontraditional ligands

Taste and smell receptors are part of a large family of G-
protein-coupled receptors that sense extracellular chemicals and
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initiate responses that result in conscious perception. However,
many of these receptor proteins selectively respond to ligands that
are not traditional taste or smell stimuli, including those produced
in the host’s own body, such as metabolites, bacterial metabolites,
hormones, and neurotransmitters. Likewise, proteins identified
in other tissues because of their role in metabolite sensing (e.g.,
sugar transporters) can act as noncanonical taste sensors (176).

Ecnomotopic taste and olfactory receptors continue to be iden-
tified, but their significance often remains unknown. For example,
a mouse bitter receptor has been reported to abide in gastric
parietal and chief cells (177), and a human bitter taste receptor has
been described in subtypes of enteroendocrine cells of the colon,
including GLP-1, peptide Y'Y, and CCK cells (98). Another bitter
taste receptor has been observed in epithelial cells of the rodent
small intestine (178), and yet another bitter receptor has been
described in mouse Paneth cells and goblet cells (179, 180). Their
functional roles in these locations have yet to be characterized.

This broad distribution of receptors in various cell types
across the gut supports the concept that these chemosensory
receptors serve as modulators of several functions, such as
glucose homeostasis, gut motility and secretion, nutrient sensing,
and secretion of hormones with purported appetitive properties
(181, 182). Identifying the ligands of these receptors and sensors
may uncover novel therapeutic opportunities. For instance,
treatment with selective bitter agonists might target intestinal
receptors and constitute a nonsurgical approach with the same
benefits as bariatric surgery. However, these types of therapeutic
opportunities will be easier to accomplish if the entire receptive
range of these receptors is known, rather than focusing on
classic taste and smell ligands (183, 184). Studies to identify this
broad range of ligands also need to include those for receptors
of model organisms, especially rodents, because there is often
limited conservation of receptors between humans and model
organisms (185). For preclinical animal studies to predict effects
in humans, a functional human counterpart—in both its response
to the specific compound of interest and its pattern of tissue
expression—needs to be identified.

Thus, research programs to match both canonical and non-
canonical chemosensory receptors to ligands should expand to
include ligands beyond classic taste and smell stimuli (e.g.,
metabolites, hormones) and to include model organisms (e.g.,
fly, worm, mouse) in addition to human receptors. This new
knowledge would pave the way for potent and selective pharma-
cological tools to study these receptors and their potentially broad
role in human health and disease.

Single-cell RNA sequencing to define cell types that express
chemosensory receptors

Chemosensory receptors were originally identified and char-
acterized in taste and olfactory receptor cells, but how many
additional cell types contain these receptors and their function in
these different cell types are unknown. As is often the case with
receptor proteins, the low expression of chemosensory receptors
or their expression in a few rare cell types within a tissue
hinders their detection, and they are seldom found in global RNA
sequencing (RNAseq) analyses (186) or in proteomic studies
(187).

Single-cell RNAseq methods provide a more sensitive ap-
proach to identify the cell-specific expression of taste and
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olfactory receptors throughout the body. Analysis of even a single
tissue using these methods reveals many more cell types than
previously identified [e.g., (188)] and allows investigators to
construct more informed hypotheses to test their function. Large-
scale efforts to examine the cellular composition of common
tissues are under way (189), but taste, smell, and chemesthetic
tissues are often ignored by large-scale projects [for an exception,
see (190)]. These single-cell studies would be most useful
with a complementary effort to get validated antibodies to
confirm the presence of certain markers in particular sensory
cell types. Olfactory receptor proteins are hard to measure
(187) and validated antibodies for chemosensory cells are often
lacking (191). The goal of defining the cell types that express
chemosensory receptors is made more urgent by an emerging
appreciation that receptor functions can differ based on the
number and type of chemosensory receptors expressed in a given
cell type (192). Therefore, methods that define and validate taste
and olfactory receptor cell types are a current priority.

COVID-19 and Sensory Nutrition: Gaps and
Opportunities

Several months after the NIH conference was held, the US
CDC declared an outbreak of SARS-CoV-2 (i.e., sudden acute
respiratory syndrome coronavirus 2), which leads to COVID-
19, a pandemic (5). Abrupt loss of taste and smell is among
the most reliable predictors of COVID-19 (193, 194), which
highlights the urgent need for practical tests of chemosensory
loss that are standardized, valid, and reliable (195). Taste and
smell loss with COVID-19 is fully or partially regained, but it
is currently unclear what the long-term consequences will be
on flavor perception, food preferences, food intake, and broader
disease risks. Especially relevant are the high rates of parosmia
(distortions of smell) or phantosmia (smelling something that is
not present) in those with COVID-19 (10), which may have long-
term consequences for nutritional health.

Summary

Understanding the determinants and consequences of an
unhealthy diet is critical because it is the root of many chronic
diseases, including obesity, diabetes, and heart disease. Similarly,
disorders affecting chemosensory functions may compromise
diet quality, predisposing individuals to health complications.
To understand these complex relations, the study of sensory
influences on nutrition will require the collective efforts of teams
comprising diverse expertise in a wide range of fields, such
as food scientists, nutritionists, psychologists, neuroscientists,
geneticists, molecular biologists, microbiologists, statisticians,
and computer scientists, working on multiple model organisms.
Such multidisciplinary research teams will move the field forward
by expanding markers, inputs, and methods to use in chemosen-
sory and metabolism research. Establishing connections in big
data, neural circuitry, and individual genetics and behaviors
to identify the chemosensory stimuli, receptors, and cell types
that contribute to food choice and metabolism will jumpstart
this effort. Collecting robust, reproducible data will facilitate
better prediction and mitigation of disease risk and guide sound
nutrition policy.
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