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Abstract
Reducible sugar solution has been produced from waste broken rice by a novel saccharification process using a combination 
of bio-enzyme (bakhar) and commercial enzyme (α-amylase). The reducible sugar solution thus produced is a promising raw 
material for the production of bioethanol using the fermentation process. Response surface methodology (RSM) and Artificial 
neural network-genetic algorithm (ANN-GA) have been used separately to optimize the multivariable process parameters 
for maximum yield of the total reducing sugar (TRS) in saccharification process. The maximum yield (0.704 g/g) of TRS 
is predicted by the ANN-GA model at a temperature of 93 °C, saccharification time of 250 min, 6.5 pH and 1.25 mL/kg of 
enzyme dosages, while the RSM predicts the maximum yield of 0.7025 g/g at a little different process conditions. The fresh 
experimental validation of the said model predictions by ANN-GA and RSM is found to be satisfactory with the relative 
mean error of 2.4% and 3.8% and coefficients of determination of 0.997 and 0.996.
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Introduction

Global energy demand has been increasing steeply due to 
rapid industrialization and alarming growth in the world 
population (Conesa et al. 2016). Most of the energy demand 
is met by utilizing conventional fossil fuels such as coal 
(33%), petroleum (24%) and natural gases (19%), while 
the rest is sourced from the renewables like wind, solar, 
biomass, geothermal, hydropower, etc. (Stöcker 2008). 

Combustion of fossil fuels produces greenhouse gases, like 
 CH4,  CO2, and other harmful gases like NOx, SOx, PAH, 
thereby causing environmental pollution, global warming, 
and ecological imbalance. The use of fossil fuel in the trans-
portation sector contributes to about 19% of  CO2 and 70% 
of CO emission to the environment (Achinas et al. 2016), 
emitting about 8 kg of  CO2 per gallon of gasoline (Balat 
et al. 2009). The CO and  SO2 emission showed a rise of 
5.1% and 6.5% from 2011 to 2012, while a 4.5% increase 
was recorded on both  NO2 and particulate matter emissions. 
The detrimental effect on the environment due to the use of 
fossil fuels may be avoided using biofuels such as biodiesel 
in place of commercial diesel and bioethanol in place of 
gasoline. Biodiesel production and its performance analysis 
are well-proven, but large-scale production of bioethanol 
is still under research (Aditiya et al. 2016). Moreover, the 
reserve of non-renewable energy sources is depleting very 
fast (Devarapalli et al. 2015), while the energy demand 
is expected to increase by 50% in 2030 (U.S. EIA 2019). 
The United Nations (UN) has targeted a 50–80% reduction 
in emissions of greenhouse gas by 2050, and the biofuels 
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directive of the European Union (EU) Commission has sug-
gested using 20% of biofuels by 2020 (Stöcker 2008).

Bio-ethanol is one of the reliable renewable energy 
sources and is considered to be a promising energy genera-
tion route as it has an oxygen content itself, resulting in less 
emission of carbon monoxide and greenhouse gases when 
used in 5–10% as an additive in fuel for automobiles (Betiku 
et al. 2015; Ahmad et al. 2011). Ethanol can be a very good 
replacement for methyl tertiary butyl ether (MTBE), which 
is an additive of gasoline fuel as MTBE is hazardous for 
human health (Betiku et al. 2015). It is used as gasohol 
(blended with gasoline) or pure fuel in motor vehicles (Wang 
et al. 2011). Bioethanol has various advantages over gasoline 
due to its higher octane number of 108, larger heat of vapori-
zation and reduced emission of harmful gases (Azhar et al. 
2017). Waste biomass may be utilized to produce ethanol as 
it is abundantly available, carbon–neutral and free from ‘fuel 
vs. food’ competition (Rosillo-Calle et al. 1987). Moreover, 
the residual biomass from the biofuel production can be con-
verted to value-added products in a well-integrated biore-
finery (Das et al. 2015). An abundant quantity of low-cost 
starchy raw materials like waste/broken rice, waste potatoes, 
sugarcane bagasse, corncob, agricultural waste, vegetable 
waste, etc. is gaining its popularity for the production of 
bioethanol.

One of the promising process routes for bio-ethanol 
production is converting perennial crops like breadfruit 
(Artocarpus altilis), which is abundantly grown in South-
ern Nigeria (Betiku et al. 2015; Bankole et al. 2005). Sug-
arcane is another ethanol source, rich in sucrose, in tropical 
and subtropical countries like Brazil, India, and Colombia. 
However, pretreatment with alkali or acid for the removal of 
lignin from sugarcane juice prior to saccharification burdens 
the process route with additional cost.

Broken rice and other waste grains contain starch, which 
is a polysaccharide of glucose units linked by α (1–4) and 
α (1–6) glycosidic bonds (Pandey et al. 2010). Nearly 110 
million tons of rice was produced in India in 2017–2018, 
out of which about 7.5% is broken during polishing to get 
the fine rice. The huge quantity of waste broken rice is very 
cheap and is mainly used as cattle feed. This may be utilized 
to recover reducible sugar at 75–100 °C temperature as it 
contains 80% starch, which can subsequently act as a sub-
strate for ethanol production (Chu-Ky et al. 2016; Gronchi 
et al. 2019).

Li et al. 2013, extracted the reducible sugar from broken 
rice after treatment with enzyme only α-amylase with the 
final concentration of total reducing sugar (TRS) of 82.7 g/L. 
Schneider et al. (2018) reported that about 70% starch in the 
raw broken rice was extracted as reducible sugar on hydrol-
ysis after treatment with two enzymes alpha-amylase and 
gluco-amylase but the final concentration of reducible sugar 
solution was not reported. Myburgh et al. (2019) utilized 

the industrial amylolytic Saccharomyces cerevisiae deriv-
atives of Ethanol Red™ Version 1 (ER T12) during sac-
charification. Although no external enzyme was utilized, the 
enzyme novel amylase combination secreted by the strains 
was mainly responsible in hydrolysing the starch in broken 
rice, with the maximum degree of saccharification of 30% 
and the concentration of total reducing sugar of 10.5 g/L.

The starch content of broken rice cannot be fermented 
directly by yeast as it gives a low yield of ethanol. Hence, 
the starch in broken rice is first converted to glucose through 
saccharification by treating it with locally available low-cost 
bio-enzyme called Bakhar and subsequently by the commer-
cially available enzyme α-amylase. Bakhar is the combina-
tion of fresh, clean, and dry plant parts (roots, leaves, bark, 
etc.) of six different species; Akanbindi (Cissampelo spa-
reira), Chaulia (Ruellia turberosa), Fern (Lygodium flexuo-
sum), Asan (Terminalia alatabark), Kendu (Diospyros mel-
anoxylon) and Red java tea (Orthosiphon rubicunds). The 
starch in broken rice primarily contains polysaccharides, 
which undergoes de-polymerization under the action of 
commercial bio-enzyme (bakhar) and enzyme (α-amylase) 
through hydrolysis and easily gets converted to reduc-
ing sugar. Finally, the resulting glucose is treated with an 
inoculum of yeast (Saccharomyces cerevisiae) and allowed 
to be fermented under controlled conditions of temperature 
and pH to produce ethanol. The low-cost commercial-grade 
enzyme and locally made bio-enzyme make the entire pro-
cess efficient and cost-effective (Hickert et al. 2012). Yeasts 
are widely used in large-scale industrial production plants 
due to higher ethanol yield (> 90.0%), and the undiluted 
fermentation broth has the resistance to inhibitors, thereby 
reducing the chances of contamination during the growth 
period (Hickert et al. 2012).

The recovery of reducible sugar from broken rice is a very 
complex process with several biochemical reaction path-
ways. The final yield depends on the nature of substrate, pro-
cess conditions, enzyme loading etc.; such a complex non-
linear process includes reaction kinetics and mass transfer 
operation. The exact modeling of such individual processes 
is intricate due to the lack of reliable quantitative estimations 
of various intermediates. Optimizing one single variable at a 
time is not efficient and does not identify the exact optimum 
conditions. Therefore, the process optimization was carried 
out by Response surface methodology (RSM) and Artificial 
neural network (ANN)-Genetic algorithm (GA) for studying 
the relations between different process parameters. RSM tool 
is employed for evaluating the association between response 
and independent process parameters through mathemati-
cal and statistical equations, while ANN uses non-linear 
multivariate modeling techniques to capture the intercon-
nected non-linear process response of inputs on the process 
output at the given experimental conditions (Teslic et al. 
2019). RSM also represents a multivariable process using 
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non-linear quadratic polynomial with all possible combi-
nations of inputs. Hence, the dependency of the yield of 
reducing sugar on the significant process parameters for the 
saccharification process is expected to be modeled with rea-
sonable accuracy.In addition ANN has the property of excel-
lent fitting quality, while RSM provides further insight for 
influence analysis of process parameters (Teslic et al. 2019).

In the present study, broken rice was chosen as the main 
substrate to produce reducible sugar by the saccharification 
process and subsequently fermentation using Saccharomy-
ces cerevisiae. The bio-enzyme (bakhar) and commercial 
enzyme (α-amylase) are used to enhance the yield of reduc-
ible sugar. The pre-treatment of waste broken rice, sacchari-
fication, fermentation and suitable separation of ethanol are 
the four significant steps for the production of bioethanol 
from waste broken rice. The crucial parameters that affect 
the effectiveness of the enzymatic and bio-enzymatic sac-
charification process of broken rice are identified as (a) 
temperature, (b) time, (c) pH and (d) enzyme dosages. The 
objectives of the present study are (i) to optimize the yield 
of reducing sugar by the combination of bio-enzymatic and 
enzymatic saccharification using RSM (ii) to optimize the 
same with the help of an Artificial neural network coupled 
with Genetic algorithm, and (iii) to assess the optimized 
process parameters with experimental results. The enhanced 
yield of reducing sugar will make the process the most cost-
effective by improving the final yield of bioethanol.

Materials and methods

Broken rice as feedstock

Broken rice (Oryza sativa) was procured from Burdwan 
(West Bengal, India) rice mill. Broken rice composition was 
examined by the analytical protocol of the National Renew-
able Energy Laboratory (NREL) (Sluiter et al. 2012). It was 
found to contain (dry wt. basis) 79.89% of starch, 10.38% 
protein, 2.76% fat (lipid), 2.51% crude fibers and 4.46% oth-
ers (non-starch-polysaccharide, minerals, ash content, etc.) 
by the experimental technique proposed by Sluiter et al. 
(2012).

The enzymes and microorganism

The suitable operating condition of the commercial-grade 
α-amylase enzyme was found to be 85–90 °C temperature 
and 6–6.5 pH. Bakhar was added to enhance the hydrolysis 
of starch to glucose with a higher yield for the saccharifica-
tion process. Eventually, the Saccharomyces cerevisiae was 
added; it acts as a fermenting microorganism to convert the 
reducible sugar into alcohol. Bakhar was collected from a 
local market in the district of Bankura (West Bengal, India). 

The dry yeast (Saccharomyces cerevisiae) was procured 
from Kothari fermentation and Biochem Ltd. No. 16, Com-
munity Centre, Saket, New Delhi-110017, India.

Pre‑treatment of broken rice

One kg of broken rice was washed properly to remove the 
dirt and other impurities and boiled in a water bath at 100 °C 
for 2.5 h using the 3 L of water. The boiling process mainly 
breaks down the long polysaccharide chains of starch into 
short-chains of monosaccharides.

Saccharification

The boiled mass was kept at a constant temperature water 
bath (80 °C to 100 °C), and the pH of the solution was varied 
from 5 to 8. The bio-enzyme bakhar (10 g/kg of the sub-
strate) was added to it to enhance the hydrolysis of starch to 
glucose. Subsequently, the commercial enzyme α-amylase 
(1.25 ml/kg of substrate) was added to the mixture, and the 
resulting solution was allowed to hydrolyze for 8.5 h. During 
this period, the combined effect of bakhar and α-amylase 
broke down the starch leading to a higher yield of reducible 
sugar.

Fermentation

The supernatant from the resulting saccharified solution 
was stained out and maintained at 30 °C and pH was set 
at 6.5. The commercial yeast (Saccharomyces cerevisiae) 
was added into the supernatant for converting the glucose 
to ethanol by the process of fermentation. The media was 
supplemented with the nutrients- 0.5 g/L  NH4Cl, 2.1 g/L 
 KH2PO4, 0.45 g/L  MgSO4·7H2O, 0.15 g/L  CaCl2·2H2O, 
2  mg/L  ZnSO4·7H2O, 2.5  mg/L  FeCl3·2H2O and yeast 
extract 2.0 g/L. The mixture was blended well with the 
supernatant for a few minutes until the mixture becomes 
homogeneous (Ahmad et al. 2011). The resulting mixture 
pH was set to 6.5, put into a glass beaker and was sealed 
properly to ensure anaerobic conditions suitable for yeast 
fermentation. Finally, the beaker was kept in an incubator 
maintained at 30 °C for 2–4 days (Ramaraj et al. 2019). 
Eight identical samples for fermentation, as discussed 
above, were made and analyzed for alcohol concentration 
after 6–12 h interval. The maximum yield of alcohol was 
detected for the sample kept for 60 h. The concentration of 
alcohol in the alcohol-water mixture was found to be 70 mg/
mL. The common technique for concentrating it includes 
azeotropic distillation, molecular sieve technology, vacuum 
distillation, etc. (Taheri et al. 2017). In the present work, the 
two stages vacuum distillation process was employed at 10 
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millibar pressure to achieve the final ethanol concentration 
of 70% (v/v).

Enzyme activity

The commercial-grade α-amylase enzyme (derived from 
Bacillus licheniformis) was purchased from Om Biosciences, 
batch no. 962, Ahmedabad, India. Its activity was 30U/L (as 
per specification mentioned by the supplier).

Activity test of reducing sugar

3, 5 di-nitrosalicylic acid (DNSA) was used as the main 
reagent for measuring reducing sugar activity using a spec-
trophotometer  (Spectroquant® Prove 300, Merck KGaA, 
Frankfurter Straße 250, 64293 Darmstadt, Germany) with 
540 nm wavelength using di-nitrosalicylic acid solution. For 
the preparation of 100 mL of DNSA solution, the relative 
proportion of various reagents were as-100 mL distilled 
water, 0.77 mL 3, 5 di-nitro salicylic acid, 1.3 g NaOH, 
21.61 g potassium sodium tartrate, 0.54 mL phenol, 0.59 g 
sodium metasulphate (Alam et al. 2019). The 0.2 mL of the 
sugar solution was added to 0.3 mL of DNSA reagent in a 
test tube. The test tube was placed in a boiling water bath 
for 5 min. The standard solution was prepared by mixing 
0.2 mL of the distilled water with 0.3 mL of DNSA solu-
tion to make the zero reference in the spectrophotometer. 
The reagents used for the preparation of DNSA solutions 
were procured from MERCK Specialities Private Limited, 
Mumbai-400018, India.

Estimation of ethanol concentration

Agilent (Agilent Technologies 1200 series), ZORBEX Phe-
nyl high-performance liquid chromatography (HPLC) was 
used for measuring the ethanol concentration at the end of 
saccharification and at various time instances during the pro-
cess of fermentation. The Refractive index detector (RID) 
was used for the measurement of ethanol concentration. 
Operating conditions were: mobile phase 100% pure milli-
Q water, flow rate 1 mL/min, injection volume 5 µL, tem-
perature 250 °C, retention time 2.7 min (Kumar et al. 2017).

Broken rice characterization

Scanning electron microscope (SEM)

The surface morphological study of untreated broken rice 
and that treated with bio-enzyme and commercial enzymes 
were carried out using the scanning electron microscope 
(Sigma, Carl Zeiss, UK) images. The dried sample was 
placed on the aluminum stub and coated with platinum metal 

for 90 s using an ion-sputter coating system. The sample 
images were obtained by scanning at 0.02–10 kV accelera-
tion voltage with a beam current of 89–100 pA. The resolu-
tion of the present model is 1 nm at the acceleration voltage 
of 10 kV.

X‑ray diffraction analysis (XRD)

XRD analysis of both the untreated broken rice (dry pow-
der) and that treated by bio-enzyme and commercial enzyme 
were analyzed by a Rigaku MiniFlex II diffractometer 
(Rigaku, Tokyo, Japan). Cu K-alpha radiation was used with 
35 kV beam voltage, 15 mA beam current with the scanning 
angle (2θ) in the range of 5-40° and the scanning speed of 
1°/min. The sample crystallinity index (CI) was calculated 
after (Das et al. 2014):

where I002 denotes the highest intensity at 002 lattice diffrac-
tion and I14.7◦ is the background scatter at 2θ = 14.7◦.

The broken rice retains its high crystallinity until it is 
treated with enzymes/reagents. On treatment with bio-
enzyme (bakhar) and commercial enzyme (α-amylase), it 
experiences a series of biochemical pathways leading to low-
ering of its crystallinity with the progress of the saccharifi-
cation process. Large void space is formed, which enhances 
the internal surface area providing a better environment for 
easy hydrolysis of starch towards the higher yield of total 
reducing sugar (Yoon et al. 2012).

Fourier‑transform infrared spectroscopy (FTIR)

Fourier-transform infrared spectroscopy is a unique tech-
nology to identify the various functional groups in any 
sample. In the present study, the IR spectroscopy (Perki-
nElmer FT-IR C109292, UK) was used to carry out the 
experiments. Both the untreated broken rice and that 
treated by bio-enzyme and commercial enzyme were ana-
lyzed. The dry powder sample was mixed with dry KBr 
in the proportion of 1:10 ratio for pellet preparation and 
the pellets were placed for the FTIR scan. The FTIR scan 
was also performed at the beginning with the pure KBr 
pellet for background correction. The resolution of 4 cm−1 
and the wavenumber range was 4000 to 400 cm−1 for the 
present study. The range generally covers the fundamen-
tal vibrations by almost every organic compound (Ghaffar 
et al. 2013) in rice.

(1)Crystallinity index, CI (%) =
[

I002 − I14.7◦
]

∕I002
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Experimental designs and optimization strategy

Response surface methodology

The response surface methodology is used in this study 
for optimizing the process parameters of the saccharifi-
cation process, as discussed above. The major process 
parameters are temperature, time, pH and enzyme dos-
ages. In the present study, five levels (one upper limit, 
one lower limit, and three intermediates levels) have been 
considered for each parameter. It is difficult to carry out 
these  54 numbers of experiments to assess the exact effect 
of the parameters on the yield of total reducing sugar. 
RSM is a tool that helps design the experiments consid-
ering both mathematical relationships among the inputs 
and the outputs and the interaction of various inputs 
without sacrificing the effect of local minima or maxima 
(Rao et al. 2000). In the present study, 30 experiments 

proposed by the central composite design (CCD) were 
obtained from RSM to optimize the input parameters, 
like temperature, time, pH and enzyme dosages for maxi-
mum yield of TRS. The input temperature has a lower 
range of 80 °C and the upper range is 100 °C; for the 
time, it is 0 and 500 min, respectively. The pH lies in the 
range 5 to 8, while 0.5 (mL/kg) is the minimum range and 
2 (mL/kg) is the maximum range for enzyme dosages. 
The CCD for experimental design and the experimentally 
obtained yield of reducing sugar and that predicted by 
RSM, are presented in Table 1.

A second-order polynomial equation was used to 
describe the effects of input parameters regarding linear 
and quadratic interactions:

(2)Y = �0 +

k
∑

i=1

�iXi +

k
∑

1

�iiXiXi +

k−1
∑

i=1

k
∑

j=i+1

�ijXiXj,

Table 1  Comparison of 
experimental total reducing 
sugar with the prediction by 
RSM and ANN

Run
no

Tempera-
ture (oC)

Time
(min)

pH Enzyme dos-
age (ml/kg)

Experimental 
yield (g/g)

RSM predicted 
yield (g/g)

ANN pre-
dicted yield 
(g/g)

1 85 125 5.75 1.625 0.217 0.197 0.217
2 90 250 6.50 1.250 0.689 0.682 0.674
3 85 125 7.25 1.625 0.259 0.262 0.259
4 95 375 5.75 0.875 0.283 0.287 0.283
5 90 250 8.00 1.250 0.250 0.248 0.250
6 100 250 6.50 1.250 0.650 0.648 0.649
7 90 250 6.50 1.250 0.677 0.682 0.674
8 95 375 7.25 0.875 0.412 0.427 0.411
9 90 250 6.50 1.250 0.675 0.682 0.674
10 85 125 7.25 0.875 0.390 0.383 0.390
11 90 250 6.50 1.250 0.689 0.682 0.674
12 95 375 7.25 1.625 0.222 0.227 0.222
13 90 250 6.50 1.250 0.657 0.682 0.674
14 95 125 5.75 1.625 0.298 0.297 0.298
15 95 375 5.75 1.625 0.278 0.271 0.278
16 85 375 7.25 1.625 0.268 0.258 0.268
17 85 375 7.25 0.875 0.380 0.386 0.380
18 90 250 6.50 2.000 0.141 0.152 0.127
19 95 125 5.75 0.875 0.310 0.306 0.310
20 95 125 7.25 0.875 0.453 0.452 0.453
21 85 375 5.75 1.625 0.182 0.189 0.189
22 95 125 7.25 1.625 0.273 0.258 0.273
23 90 250 6.50 1.250 0.687 0.682 0.674
24 80 250 6.50 1.250 0.488 0.498 0.487
25 85 125 5.75 0.875 0.123 0.124 0.123
26 85 375 5.75 0.875 0.131 0.132 0.131
27 90 250 6.50 0.500 0.312 0.300 0.312
28 90 000 6.50 1.250 0.156 0.179 0.156
29 90 500 6.50 1.250 0.170 0.156 0.170
30 90 250 5.00 1.250 0.022 0.027 0.032
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where ‘Y’ is the estimated yield, Xi be the input parameters 
(i is a counter for no of input) α0 is a constant, αi is the 
linear coefficient associated with Xi, αii expresses the coef-
ficient of the squared terms, αij implies the cross coefficient 
of the cross-product of input terms for the development of 
generalized quadratic equation. The coefficients of the above 
second-order polynomial was estimated using the software 
Design Expert, Version 10. The corresponding experimental 
design setup is shown in Fig. 1.

Artificial neural network

An artificial neural network is a mathematical tool extensively 
used to predict the linear as well as the non-linear relationship 
between multiple inputs and output for a complicated process. 
ANN and RSM both may be used separately for optimizing the 
process parameters of the non-linear and highly interconnected 
input parameter-dependent bio-processes. ANN is considered 
to be more accurate compared to RSM due to the presence of 
its highly interconnected bundles of elements called neurons. 
The linkage between the neurons is represented by its unique 
parameter bias (b) and weight (w). Three different functions 
like tan-sig, log-sig and purelin (Hagan et al. 2014) are mostly 
used for a complex non-linear relationship. A multi-layer neu-
ral structure is comprised of the input layer, the hidden layers, 
and the output layer. In the present case, the predictive ANN 
model has been developed using temperature (°C), time (min), 
pH and enzyme dosages (mL/kg) as input keys and the total 
reducible sugar (g/g) yield as the output key. The signal gener-
ated from the hidden layer operation acts as the input to the 
output layer. The predicted response from the output layer and 
the actual yield obtained experimentally for the given set of 
the input data are employed to estimate mean-squared error 

considering all the experimental data sets. Back Propagation 
(BP) training algorithm is used to minimize the error function 
by adjusting the weights and biases (Nasab et al. 2019). A 
properly trained network can act like an expert (Ali et al. 2014) 
to predict the output for the new set of process inputs. The 
mean square error (MSE) is lowered to the extent of 0.00047 
so that the average correlation coefficient (CC) is closer to 1. 
The MSE and coefficient of determination, R2 values of the 
ANN model, are calculated as follows (Nasab et al. 2019):

where n is the no. of runs and yie is the experimental data and 
yip is the predicted data getting from the model:

where ym represents the average of the experimentally 
obtained reducing sugar yield. The value of R2 close to 1 
indicates that the degree of fitness of the model is good and 
the model prediction matches well with the experimental 
data.

Genetic algorithm

The genetic algorithm is used after constructing the ANN 
model to optimize all process parameters during saccharifi-
cation. GA uses imaginary exploration to optimize the input 
parameters. It follows Darwin’s theory of ‘survival of the fit-
test’ (Pasandideh et al. 2006). The dependent variable reduc-
ing sugar, was considered as a chromosome. Every chromo-
some consists of 4 independent input parameters genes, i.e., 
temperature, time, pH and enzyme dosages. In this GA tool 

(3)MSE =

(

1

n

n
∑

i=1

(yie − yip)
2

)

,

(4)R2 = 1 −

n
∑

i=1

(

(yie − yip)
2

(yie − ym)
2

)

,

Fig. 1  Schematic diagram for 
the process of ethanol produc-
tion from waste broken rice

Bio-enzyme (Bakhar) 
+Enzyme (α-amylase) Saccharification

Supernatant

Yeast

Fermentation
Distillation

PretreatmentBroken rice

Ethanol 
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(MATLAB V 2014), the inputs are fed and the resulting reduc-
ing sugar is generated for different combinations. The chromo-
some population is derived, and the ANN model is used to 
evaluate its performance. The high performing chromosomes 
are replicated to segregate after the crossover of chromosomes 
and mutation of genes. The performance of each chromosome 
is evaluated using the ANN model. The process is continued 
for several generations to identify the optimum combination 
of all inputs for maximum yield of reducing sugar.

Result and discussion

Scanning electron microscopy analysis of untreated 
and treated broken rice

The SEM image (× 250) of untreated broken rice shows 
(Fig. 2a) the presence of starch granules and fibers. The 
cellulose in the polymerized starch appears in a very sys-
tematic manner with a pyramidal structure with dimen-
sions ranging from 22 ± 2 to 28 ± 2 µm for the lower and 
higher dimension, respectively. On further magnification 
(×2000) the individual granules and the surface layer 
become prominent (Fig. 2b) and it shows that the cel-
lulose in starch is cross-linked with protein and lipid to 
form a continuous gel-like structure with a thick outer 
layer made up of proteins and lipids (Nawaz et al. 2016). 
These granular structures are disrupted after treating it 
with bio-enzyme and enzyme and also shown in the SEM 
images (Fig. 2c). This is due to the de-polymerization 

of cellulose by the enzyme treatment, where the surface 
layer of protein and lipids are removed by the action of 
the enzyme. Consequently, smaller granules with large 
surface areas are available which will be beneficial for 
the extraction of higher yield of reducible sugar during 
the saccharification process. The relatively more irregular 
shapes with higher porosity are evident from the SEM 
images on the higher magnification of the treated broken 
rice (Fig. 2d).

XRD analysis of untreated and treated broken rice

XRD analysis was carried out for both untreated and treated 
(bio-enzyme and enzyme) samples to study the crystallinity 
of the sample and the crystallinity index was determined. 
Figure 3 represents the XRD plots. Due to the presence of 
Van der Waals force and intermolecular hydrogen bonding 
between the cellulose molecules within the starch, the pres-
ence of a strong crystalline structure is detected for untreated 
samples (Chirayil et al. 2014). The presence of a prominent 
peak in the XRD diagram of untreated broken rice supports 
the crystalline structure of starch in the sample. However, 
when the sample is treated with bio-enzyme and enzyme, the 
crystalline structure is demolished, leading to the formation 
of the amorphous structure of cellulose, where more giant 
starch molecules disintegrated into smaller globules. This is 
evident from the XRD graph of the treated broken rice, where 

Fig. 2  Scanning electron 
microscopy image of a 
Untreated broken rice (UBR) 
×250 image b UBR ×2000 
image c Treated broken rice 
(TBR) ×250 image d TBR 
×2000 image

5kv       x250         100µm                (c) 5kv       x2000         10µm                (d)

5kv       x250         100µm                (a) 5kv       x2000         10µm                (b)
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the intensity count hardly shows any peak; rather the entire 
profile becomes flat, indicating the wider amorphous region. 
The observation is in line with that observed by SEM images 
(Fig. 2c) of the treated sample, where small globules of starch 
were clearly visible. This transformation may also be attrib-
uted due to the partial solubilization and expansion of cel-
lulose crystal during de-polymerization under the action of 
enzymes at modest temperatures (Zhang et al. 2014).

The CI is a quantitative parameter to evaluate the degree 
of the crystallinity and amorphousness of cellulose in starch. 
The CI value evaluated (Eq. 1) for untreated broken rice is 
found to be 33.62%, while that of treated rice is 20.07%. The 
crystallinity peaks are prominent at 13° and 18° in 2θ for the 
cellulose of untreated starch, but such prominent peaks are 
not pronounced for treated samples. Hence, it is clear that 
the degree of crystallinity has reduced by 13.55% on enzyme 
treatment due to the disruption of the regular shape of cellu-
lose. A similar observation on the reduction of crystallinity 

was reported by Yoon et al. (2012) when the ionic liquid was 
used to treat the sugarcane bagasse.

FTIR analysis of untreated and treated broken rice

Untreated and treated broken rice were characterized by 
FTIR for observation of the presence of functional groups 
in Fig. 4. The intensity peak is detected at 3650-3200 cm−1 
for untreated broken rice due to the presence of (-OH) group 
and the broader band is present in the untreated sample but 
it decreases when it is treated with bio-enzyme and enzyme. 
The absorption peak at 2885, 2930 to 2998 cm−1 corre-
sponds to the presence of symmetric and asymmetric C–H 
bond of  CH3,  CH2, and CH, respectively. The absorption 
peak detected at 2934 indicates the presence of alkaen (C–H) 
groups in untreated broken rice (Das et al. 2015). The values 
are enhanced for treated broken rice due to the treatment of 
bio-enzyme and enzyme.

Fig. 3  XRD plots of untreated 
and treated broken rice
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In the sample untreated broken rice, an absorption peak 
at 1637 cm−1 is detected and it corresponds to the adsorbed 
water in the broken rice. The asymmetric bending of –CH3 
is detected at 1468 cm−1. Another peak at 1398 cm−1 is the 
characteristic stretching of C=C linkages of starch due to 
the dehydration of cellulose. But the peak intensity almost 
disappears after treatment with bio-enzyme and enzyme, 
leading to the hydrolysis of the sample and formation of 
amorphous cellulose upon de-polymerization. The pres-
ence of C–O bonds in carbohydrate show the absorption 
peak at 1050 cm−1 the similar observation is also reported 
by Saha et al. (2018) for sugarcane bagasse (Saha et al. 
2018). Another important information is also observed at 
893-897 cm−1 for the enzyme-treated sample and indicates 
the presence of CO–C stretching of the β-(1, 4)-glycosidic 
linkage in cellulose; this is mainly the characteristic shown 
by glucose present in cellulose (Chirayil et al. 2014). It is 
significantly amorphous in nature and its presence increased 
after the treatment with bio-enzyme and enzyme.

Compositional study and yield of reducing sugar

In broken rice, cellulose content was estimated to be 79.89% 
(w/w). The total reducing sugar (fermentable sugar) theoreti-
cally obtainable from the cellulose is

(

C6H10O5

)

n + nH2O → nC6H12O6;
[

79.89% ×
180

162
= 88.77%

]

Hence, 0.89 g of reducing sugar may be 
obtained theoretically from 1 g of broken rice 
during the saccharification process

ANN‑GA modeling and optimization

The performance of ANN solely depends on the experimen-
tal data for various process conditions of saccharification 
and corresponding yields of reducing sugar. The experi-
mental data set presented in Table 1 has been utilized for 
training, while the newly performed experimental data set 
presented in Tables 2, 3 are used for testing and validation 
of the neural network. The neural network is constructed and 
trained to utilize 30 datasets (Table 1). MathWorksV14.0 is 
employed to develop the artificial neural network model.

The feed-forward neural network consists of three lay-
ers– the input layer, the hidden layers and the output layer. 
The weights and biases of the hidden layer are denoted by 
input weight matrix IW and input bias  b(1). The weight 
matrix and bias of the output layer are denoted by OW and 
 b(2), respectively. Levenberg–Marquardt backpropagation 
algorithm is used to train the neural network, and the result-
ing weights and biases have been reported. The stopping 
criteria for training are set to a very low MSE of 0.0005, and 
after  6th iterations, the ANN model reached the error level 
and stopped. Figure 5 shows the variation of mean square 
error vs. iteration. It shows a very low MSE of 0.00047 
after 6th iterations. The model predicted yield data for vali-
dation and test set are in good agreement with that from 

Table 2  Experimental data of 
total reducing sugar for test data 
set of ANN

Run no. Temperature
(oC)

Time
(min)

pH Enzyme dos-
ages
(ml/kg)

Experimental 
yield
(g/g)

Predicted yield
(g/g)

1 85 100 6.00 1.00 0.548 0.568
2 80 150 6.50 1.75 0.395 0.374
3 90 200 6.75 1.50 0.456 0.475
4 95 125 7.00 1.00 0.498 0.481
5 80 200 7.25 1.5 0.422 0.403
6 95 175 6.25 1.75 0.379 0.351

Table 3  Experimental data 
of total reducing sugar for 
validation data set of ANN

Run no. Temperature
(oC)

Time
(min)

pH Enzyme dos-
ages
(ml/kg)

Experimental 
yield
(g/g)

Predicted yield
(g/g)

1 90 150 5.25 1.25 0.379 0.352
2 85 175 6.90 1.75 0.499 0.478
3 95 210 6.50 1.00 0.512 0.532
4 100 145 7.00 1.85 0.479 0.491
5 92 290 7.25 1.25 0.524 0.537
6 95 300 6.10 1.50 0.421 0.402
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experiments (Table 2, 3). The mean square error for valida-
tion and test set shows almost similar behavior with respect 
to an error, which indicates training is very successful and 
the final network can predict the experimental findings with 
a higher level of confidence.

The analysis of variance (ANOVA) is performed for the 
statistical analysis of the model developed and is presented 
in Table 4. The estimated F value of 271.14 and the p 
value of < 0.0001, implying that the model is significantly 
acceptable for practical uses. Figure 6 compares the prox-
imity between the ANN predicted data and that experimen-
tally obtained reducing sugar yield for all the datasets used 
for training the ANN. The accuracy of the ANN model 
is further tested against the calculated other two statisti-
cal parameters, coefficient of determination (R2 = 0.999) 

Fig. 5  Variation of mean 
squared error, MSE during the 
training phase of the ANN

Table 4  The ANOVA analysis 
for ANN model

Source Sum of squares Deg.of 
freedom

Mean square F value p value R2 Adj.  R2

Model 1.18 28 0.0035 271.14 <0.0001 0.999 0.995
Residual 0.00028 6 0.00012
Total 1.18028 34

Fig. 6  Comparison of experimental and ANN predicted total reduc-
ible sugar yield for the training data set

Table 5  Weights and biases values for the trained ANN model

IW = 0.0878 −0.3592 −1.7345 0.5913
1.4517 1.2742 0.9847 −0.7007
0.3065 −1.9558 1.7608 0.9083
−1.0596 0.2301 0.8004 −1.4836
−0.4278 2.0697 −0.3536 1.0518
−1.2613 1.7161 1.2944 −0.4605
−0.4948 2.2196 2.0984 −0.6884
0.1095 1.7171 −0.9093 2.5512
0.4688 − 0.8484 2.1022 3.3096
0.9921 1.6734 2.0044 −0.3831

b(1) = −3.5220
−2.7168
−1.1642
1.0978
−0.6914
−0.3112
1.5095
−1.5605
1.3733
2.0446

OW = 1.4988 −0.7060 −0.7995 0.2093 −0.2809 −0.3347 
0.2356 −0.4894 0.6577 0.6475

b(2) = −1.2563
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and adjusted co-efficient (adj. R2 = 0.995) which are also 
very near to unity, indicating a high confidence level of 
the ANN. The optimized weights and biases values are 
presented in Table 5. The root mean square error (RMSE) 
is also estimated by taking the square root of MSE. The 
same for training, validation, and test data set are 0.010, 
0.013, 0.011, respectively, and the corresponding R2-values 
are 0.997 for training, 0.993 for validation and 0.995 for 
the test data set.

The Error histogram plot is prepared for the estimation 
of the accuracy level of the ANN model. It is found that the 
errors for the training set lie in the range of − 0.002 to 0.002. 
The maximum error for the validation set is found to be 0.03. 
It may be noted that the validation set is totally different than 
that of the training set. To eliminate the effect of the pos-
sible experimental error on neural network quality, repeated 
experiments were carried out for same process inputs.

Each experiments has been repeated three times and the 
average of the these has been reported both for training, test, 
validation and confirmation data set. The maximum value of 
standard deviation was found to be 0.0098 from the experi-
mental runs.

The overall performance and potentiality of the neural 
network model have further been enhanced by incorporat-
ing the following techniques -(i) normalization of input and 
output data, (ii) an optimal number of neurons in the hid-
den layer (10 neurons) and (iii) dividing the experimental 

data sets into training, validation and test sets. In the present 
study, 30 training sets (Table 1), six validation sets (Table 2) 
and six test sets (Table 3) experimental data have been 
employed for the development of the ANN model.

To optimize the combination of process parameters (tem-
perature, time, pH and enzyme dosages) which would maxi-
mize the production of reducing sugar from the saccharifica-
tion process using the ANN model, the Genetic algorithm 
has been used. To search the optimum condition by GA, few 
generation searches have been carried out. It has been found 
that after 61 generations, the GA reached the optimal point, 
beyond which no further improvement of the fitness function 
was observed. The optimal condition of the saccharification 
of bio-enzyme and enzyme-treated waste broken rice were: 
93 °C (temperature), 250 min (time), 6.5 pH and 1.25 (mL/
kg) enzyme dosages. The corresponding maximum total 
reducing sugar predicted at the optimal condition was found 
to be 0.704 g/g. The prediction accuracy of the maximized 
condition was verified by carrying out fresh experiments and 
a average value of 0.71 g/g was obtained. Hence, the optimal 
condition predicted by the combined ANN-GA model was 
found to be fairly acceptable with a deviation of (0.84%) 
less than 1%.

Table 6  ANOVA analysis for 
RSM model

Source Sum of squares Deg.of 
free-
dom

Mean square Coef.
sensitivity

F value p value

Model 1.21 14 0.086 285.13 <0.0001 significant
A-temp 0.034 1 0.034 0.020 112.37 <0.0001
B-time 0.0008 1 0.0008 0.034 52.62 <0.012
C-pH 0.069 1 0.069 0.054 229.20 <0.0001
D-Enzyme dosages 0.028 1 0.028 0.030 93.73 <0.0001
AB 0.0008 1 0.0008 0.0006 2.72 0.1198
AC 0.013 1 0.013 0.0011 44.49 <0.0001
AD 0.0052 1 0.0052 0.0007 18.07 0.0007
BC 0.00003 1 0.00003 0.0016 0.098 0.7583
BD 0.00004 1 0.00004 0.001 0.15 0.7021
CD 0.034 1 0.034 0.0018 118.08 <0.0001
A2 0.020 1 0.020 0.0004 69.17 <0.0001
B2 0.45 1 0.45 0.0009 1565.43 <0.0001
C2 0.50 1 0.50 0.0029 1736.01 <0.0001
D2 0.35 1 0.35 0.0008 1202.42 <0.0001
Lack of fit 0.0032 10 0.0003 1.5 0.356 non significant
Std. Dev. 0.017 R2 0.9964
Mean 0.36 Adjusted  R2 0.9931
CV (%) 3.74 Predicted  R2 0.9833
PRESS 0.021
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Response surface methodology modeling 
and optimization

The central composite design has been utilized for the deter-
mination of factors that have an impact on the bio-enzymatic 
and enzymatic saccharification of broken rice. Table 6 repre-
sents the summary of the results obtained from the study of 
ANOVA. The acceptability of the model was determined by 
calculating the statistical parameters like F value and p value 
from ANOVA. The p value of less than 0.05 implies that the 
corresponding variable has a significant effect on model devel-
opment (Ramaraj et al. 2019). In the present study, the model 
has a high F value (285.13) and very low p value (< 0.0001) 
which are in the acceptable range for the higher confidence 
level of correlation (Pasandideh et al. 2006). It is evident that 
the independent inputs like temperature, time, pH and enzyme 
dosages have a significant influence on the bio-enzymatic and 
enzymatic saccharification process for the production of total 
reducing sugar. Hence, the quadratic model developed using 
RSM is quite appropriate to predict the experimental data. 
The model has a coefficient of determination (R2) of 0.996, 
indicating the accuracy of the model is quite higher. Both 
the values of the predicted R2 (0.983) and the adjusted R2 
(0.993) which are in the acceptable range and are in reason-
able agreement with that reported by others (Panichikkal et al. 
2018). The lack of fit for the RSM model is found to be 0.356 
which is non-significant; hence the quadratic model relating 
the inputs and output is reasonably acceptable with a higher 
degree of confidence level. The coefficient of variance (CV) is 
also used to identify the deviation of residual variation relative 
to the size of the mean. A lower value of CV indicates more 
precision and reliability on the experimental result. The stand-
ard deviation and mean values were estimated to be 0.017 and 
0.36. Another statistical parameter, predicted residual sum of 
squares (PRESS), also describes the fitness and acceptability 
of the model. The lower the PRESS, the better is the fitness 
of data and higher acceptability of the model. For the second-
order model developed in the present study, the value of the 
PRESS was estimated to be 0.021.

Final equation in terms of actual factors

T RS yield = − 28.202 + 0.267 ∗ a + 5.213 × 10−3 ∗ b + 4.089 ∗ c + 3.854 ∗ d−

1.121 × 10−5 ∗ a ∗ b − 7.555 × 10−3 ∗ a ∗ c − 9.630 × 10−3 ∗ a ∗ d−

1.420 × 10−5 ∗ b ∗ c − 3.533 × 10−5 ∗ b ∗ d − 0.164 ∗ c ∗ d−

1.086 × 10−3 ∗ a2 − 8.228 × 10−6 ∗ b2 − 0.241 ∗ c2 − 0.801 ∗ d2

Fig. 7  Effect of various process parameters on the yield total reduc-
ing sugar (TRS) predicted by RSM a Effect of time and temperature, 
b Effect of temperature and pH, c Effect of enzyme dosages and tem-
perature, d Effect of pH and time, e Effect of enzyme dosages and 
time, f Effect of enzyme dosages and pH

◂ a = temperature, b = time, c = pH, d = enzyme dosages.
The performance of the RSM model has been tested by 

comparing the RSM predicted reducing sugar yield and that 
obtained from the experiment. A considerable agreement 
with good fitness of the RSM model is observed. On plotting 
the predicted vs. the experimental sugar yield shows that the 
maximum number of the experimental data is located on or 
proximity of  45o diagonal (not shown here, but similar to 
Fig. 6) indicating that the predicted results obtained from 
RSM model are in excellent agreement with the experiment. 
Three-dimensional plots are better representation for the 
effect of various process parameters like temperature, time, 
pH and enzyme dosages on the total yield of reducing sugar.

The central composite design is an inbuilt module in RSM 
to provide the design of experiments depending on the no of 
input parameters. In the present study, the CCD suggested 
thirty numbers of experimental runs of different combinations 
of four input parameters, where six trials combinations are 
the same (Table 1). The non-linear model of RSM is mainly 
based on these experimental data sets. The six trials represent 
the replication of the central points and is the measure of the 
confidence level of the experimental data. The number thirty 
follows relationship:  2n + 2n + p, where n is the no of independ-
ent process parameters and p is the replication of the central 
points. For our present study n and p are 4 and 6, respectively. 
So the experimental data set consists of six numbers of repli-
cated center point information regarding experiments and uses 
the same for evaluating the pure sum of the square error. The 
information is used during the development of a quadratic rela-
tionship by the software RSM (Ghelich et al. 2019).

The careful observation of experimental data relives that 
the maximum yield of reducible sugar is 0.689 g/g and the 
same is obtained at 90 °C temperature, 250 min time, 6.5 
pH and 1.25 mL/kg enzyme dosages. The RSM predicted 
sugar yield at this input combination is 0.682 g/g. How-
ever, the RSM predicted the optimum process conditions 
for maximum sugar yield of 0.7025 at 93.5 °C temperature, 
244.8 min time, 6.63 pH and 1.16 mL/kg enzyme dosages.

Figure 7 represents the variation of any two process 
parameters independently, keeping the other two at the 
optimum values as predicted by the RSM. The 3D surface 
plots (Fig. 7) provide better insight regarding the location 
of maximum sugar yield (0.7025) at the optimum process 
inputs. Figure 7a shows the variation of the total yield of 
reducing sugar as a function of temperature and time in 
the form of the 3D surface plot, while the pH and enzyme 
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dosages remain constant at 6.5 and 1.25 mL/kg, respectively. 
It is observed that the percentage yield is very low when 
the residence time and operating temperature of the sac-
charification process are maintained at very low values. The 
percentage yield slowly rises as both the temperature and 
time are increased and eventually, the yield shows maxima at 
0.682 g/g for the combination of temperature and time to be 
90 °C and 250 min, respectively. However, a further increase 
the factors like temperature and time, the yield starts falling 
due to the feedback inhibition of the system. The similar 
surface plots for variation of a pair of factors keeping the 
other two factors constant are presented in Fig. 7b–f.

Figure 7b represents the effect of the temperature and 
pH on the yield of reducing sugar for the constant time and 
enzyme dosages of 250 min and 1.25 mL/kg, respectively. 
At low temperature and low pH, the biochemical reaction 
rate becomes very slow due to the lower value of the rate 
constant at low temperature and negative catalytic effect at 
high acidic medium (pH 5-6.5). As the temperature and pH 
are increased, the biochemical reaction rate starts to rise, 
and the yield of reducing sugar gradually rises to show a 
maximum. A further rise in the factors, the recessive feed-
back effect may be predominant, and the yield starts to fall 
(Helle et al. 1993).

The effect of temperature and enzyme are assessed from 
the response surface equation and is depicted in Fig. 7c in 
the form of 3D surface plot. When the values of enzyme 
dosages and the temperature are very low, the yield is also 
meager due to slower reaction rate and a lower concentra-
tion of enzyme dosage, which cannot significantly modify 
the surface property of the substrate suitable for biochemi-
cal reaction. Gradually the yield increases with the increase 
of temperature and enzyme. The yield shows a maximum 
for enzyme dosages of 1.25 mL/kg; on the further rise of 
enzyme dosages, negative surface inhibition occurs and 
yield starts falling.

The action of pH and time are the other two important 
factors, and the effect is described in Fig. 7d. The other 
factors enzyme dosages and temperature (1.25 mL/kg and 
90 °C) are kept constant. At lower pH and very low resi-
dence time, the yield is very low due to incomplete sacchari-
fication reaction. At higher residence time the progress of 
the biochemical reaction proceeds in the forward direction 
resulting in the higher yield; it is maximum at a residence 
time of 250 min. A further rise of residence time may lead 
to the simultaneous other parallel reactions using reducing 
sugar as a substrate and thereby, the yield eventually starts 
to fall.

The variation of sugar yield due to pH and enzyme dos-
ages is depicted in Fig. 7e. The yield value is near about 
0.022 (g/g) when the enzyme dosages 0.875 (mL/kg) and pH 
5.75. As the pH and enzyme dosages values are increased 
the yield starts to rise, and at 6.5 pH and 1.25 mL/kg enzyme 

dosages, the yield becomes maximum. Beyond that both pH 
and enzyme dosing adversely affects the biochemical reac-
tion leading to lower yield.

Figure 7f illustrates the effect of time and enzyme dos-
ages on the yield of reducing sugar. The yield is low at 
the lower level of both the factors. The maximum yield is 
detected at the residence time of 250 min and 1.25 mL/kg 
enzyme dosages.The enzyme loading is one of the important 
factors for surface inhibition of the substrate, and maximum 
activity is found to be at 1.25 mL/kg. However, at higher 
levels of residence time, the yield starts to decrease due to 
the consumption of the reducing sugar by other side reac-
tions (Helle et al. 1993).

Optimization using RSM technique

Using the RSM technique, all the individual system param-
eters are varied independently within the bound of each 
parameter. The optimum values are found to be- tempera-
ture 93.5 °C, time 244.8 min, pH 6.63 and enzyme dosages 
1.16 (mL/kg), respectively. At these optimum inputs condi-
tions, the maximum yield of total reducing sugar is found 
to be 0.7025 (g/g). To validate the RSM prediction, a fresh 
experiment is carried out with the above-mentioned process 
inputs. The same is repeated thrice, and the average of the 
three is found to be 0.715(g/g) for total sugar yield. The 
percentage deviation is calculated to be 1.8%. Hence, the 
above optimum condition predicted by RSM is reasonably 
acceptable.

Comparative performance of hybrid ANN‑GA 
and RSM

Predictive performance

The predictive performance of the RSM and ANN model 
developed above is further tested against the fresh, experi-
mental results. Five additional experimental runs (the con-
firmation dataset) were carried out which were the different 
combinations of inputs and had not been used in previous 
experimentations, as discussed in subsection “ANN-GA 
modeling and optimization” (Tables 1, 2, 3). The confir-
mation dataset and the model (RSM and ANN) predicted 
total reducing sugar yield is presented in Table 7. The coef-
ficient of determination for this new data set is estimated 
to be 0.987 and 0.993 for RSM and ANN models, respec-
tively. The RMSE is also calculated both for RSM and ANN 
models; the values are found to be 0.102 and 0.078. The 
corresponding RMSE and CC values are also presented in 
Table 8.

The relative mean error (RME) is also estimated for the 
design set separately for ANN and RSM and is observed 
to be 2.4% and 3.8%, respectively. It is evident from the 
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analysis that ANN has better potential to replicate the sac-
charification process than that by RSM (Nasab et al. 2019). 
The better adaption by ANN is because it uses a non-linear 
Tansig function, which is sigmoidal and can approximate 
any non-linear relationship rather than the quadratic poly-
nomial adapted by RSM.

Sensitivity analysis

The sensitivity analysis is one of the important techniques 
to detect the most sensitive input parameter for a given 
system. In the present saccharification study, four inputs 
have been identified as regulating parameters of the pro-
cess. The ANOVA analysis provides the coefficient of sen-
sitivity (coef. sensitivity column) for each parameter and 
is reported in Table 6. From the table, it can be observed 
that the pH (0.054) parameter has the highest impact on 
the present process. Then time (0.034), which is the second 
important parameter. After that, enzyme dosages are also 
important, which affects the process considering. The sen-
sitivity analysis carried out from the ANN-GA hybrid model 
is presented in Fig. 8. The order of sensitivity is found to be 
pH > time > enzyme dosages > temperature.

Comparison of optimum process parameters

The optimum process conditions are examined by hybrid 
ANN-GA and RSM model separately. Table 9 compares the 
optimum process condition at which the maximum reduc-
ible sugar is obtained during the saccharification process 
treated with bio-enzyme and enzyme. The maximum yield 
of reducing sugar, as predicted by the ANN-GA hybrid 
model is 0.704 (g/g), while under similar process conditions, 
the experimentally obtained value is 0.71 (g/g). Similarly, 
the RSM predicted maximum value is found to be 0.7025 
(g/g) against the experimental value of 0.715 (g/g). The per-
centage deviation was calculated to be 0.84% and 1.8% for 
ANN-GA hybrid and RSM, respectively. In both cases, the 
percentage error is very small and acceptable. However, the 
hybrid ANN-GA model adopts the experimental results bet-
ter than the RSM model.

Table 7  Experimental data of 
total reducing sugar used as 
confirmation data set to test the 
ANN and RSM models

Run no Tempera-
ture (°C)

Time (min) pH Enzyme dos-
age (ml/kg)

Total reducing sugar(g/g)

Experimen-
tal yield

RSM pre-
dicted yield

ANN pre-
dicted yield

1 70 15 6.0 1.0 0.092 0.090 0.094
2 70 90 6.0 1.0 0.112 0.119 0.116
3 85 200 7.5 1.5 0.279 0.268 0.291
4 85 300 7.5 2.0 0.189 0.182 0.187
5 75 300 7.0 1.0 0.449 0.459 0.442

Table 8  Comparison of root mean square error, relative mean error 
and correlation coefficient, R2 for ANN and RSM

Parameters Design data Confirmation 
data

ANN RSM ANN RSM

RMSE 0.010 0.012 0.078 0.102
RME (%) 2.4 3.8 2.6 3.7
Coefficient of determination,  R2 0.997 0.996 0.993 0.987
Correlation coefficient (CC) 0.999 0.998 0.982 0.975
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Fig. 8  Sensitivity analysis by perturbation method by ANN model. 
A-pH, B- time, C-enzyme dosages, D-temperature

Table 9  Optimized process 
parameters for maximum TRS 
yield from ANN-GA and RSM 
models

Optimum by Tem-
perature 
(°C)

Time (min) pH Enzyme dos-
ages (ml/kg)

Predicted 
yield (g/g)

Experi-
mental 
yield
(g/g)

Deviation (%)

ANN-GA hybrid 93 250 6.5 1.25 0.704 0.71 0.84
RSM 93.5 244.8 6.63 1.16 0.7025 0.715 1.8
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End‑uses of total reducible sugar (TRS)

1 kg of broken rice contains about 79.89% of cellulose 
(experimentally determined) (Sluiter et al. 2012). After 
saccharification of broken rice with a bio-enzyme (bakhar) 
and enzyme (α-amylase), the maximum yield of TRS was 
observed to be 160  mg/mL (from spectroscopic analy-
sis) for a total volume of 3500 mL saccharified solution. 
Hence, the solution contains (160 × 3500/1000 =) 560 g 
of TRS which corresponds to the conversion of TRS from 
starch is (560 × 100/798.9 =) 70.0% on fermentation of 
stained saccharified solution at 30 °C and pH of 6.5 using 
the commercial yeast (Saccharomyces cerevisiae) for 60 h 
the final solution found to contain 70 mg/mL of ethanol 
(3000 mL of solution). The two stages vacuum distillation 
process was employed at 10 millibar pressure to obtain 
350 mL ethanol of concentration 558 mg/mL (detected in 
HPLC analysis). The yield of final ethanol is found to be 
(558 × 350/1000 =) 195 g. Hence the ethanol yield is found 
to be (195 × 100/560 =) 34.8%.

The experimental findings by Kumar et al. (2017) reveal 
that the maximum conversion of TRS (glucose) to etha-
nol via the fermentation route is about 47%. The recovery 
of reducible sugar from starchy biomass like rice and its 
derivatives solely depends on the nature of starch and the 
use of different enzymes/hydrolyzing agents like alpha-
amylase, gluco-amylase, sulphuric acid etc. (Suryawanshi 
et al. 2018). Schneider et al. (2018) achieved 70% of reduc-
ible sugar from broken rice as raw substrate (80.1%) when 
enzymes alpha-amylase and gluco-amylase both were used. 
While the researchers Omar et al. (2016) reported the release 
of 23.34% of total reducing sugar from rice (91.43%) after 
using  H2SO4 as a hydrolyzing agent.

The details on the fermentation process using the TRS 
from saccharification as discussed above and the eco-
nomic analysis of the combined process of saccharifi-
cation followed by fermentation, is aimed in our future 
communication.

Economical and cost analysis

For 1 kg of raw, broken rice used 70 mg/mL of ethanol 
was obtained immediately after fermentation. On two-
stage vacuum distillation the finally 350 mL of ethanol 
557 mg/mL, which is equivalent to 70% (v/v) alcohol solu-
tion (assuming density of ethanol 0.789 mg/mL at 30 °C). 
The production cost is found to be Rs.82/L, the details on 
cost data are presented in Table 10. Whereas, according 
to Kang et al. 2019, production cost was estimated to be 
US$1.31/L, which is equivalent to Rs. 93.5/L (1 US$ = 71.4 
INR). Hence, the process proposed in the present article 
is economical.

Conclusion

The results for the production of bioethanol using waste bro-
ken rice in a laboratory-scale set up is proved to be one of 
the promising process routes due to the abundant availability 
of low-cost feedstock. The study is carried out using another 
low-cost bio-enzyme bakhar as a hydrolyzing agent for the 
hydrolysis of starch in broken rice. The use of bio-enzyme 
bakhar considerably reduces the use of alpha-amylase using 
the starch hydrolysis process. The four process parameters 
for the saccharification process are optimized using the 
RSM and ANN-GA hybrid model separately. The statisti-
cal parameters like the coefficient of determination, relative 
mean error, the p value for ANOVA analysis and RMSE are 
estimated for both the RSM and ANN-GA hybrid model. 
Both the models are found to be effective as an optimiz-
ing tool; however, the ANN-GA hybrid model better rep-
licates the experimental findings of the bio-enzymatic and 
enzymatic saccharification process. The TRS so obtained 
subsequently will be utilized in the fermentation process 
using Saccharomyces cerevisiae to produce bio-ethanol. 
The economic analysis shows the method is cost-effective 
with a yield of reducible sugar 70.4% and the final etha-
nol yield of 195 g (195 × 100/560 =) 34.8%. Even though 

Table 10  Economic and cost 
analysis

Profit: (790–290.25)/10 = Rs.50.00/- per kg of broken rice processed

Basis: 10 kg of broken rice Final product: 3500 mL of (70% 
(v/v) ethanol)

Input cost Final product price

Reject broken rice Rs. 10 × 10 = 100.00/– Rs.220/L (70% (v/v) ethanol)
Enzyme 1.25 mL Rs. 10 × 1.25 = 10.25/– Selling price- Rs.220 × 3.5 = 770
Yeast & bakhar Rs. = 100.00/– The selling price of fish feed = 20
Purification & other cost Rs. = 80.00/–
Total cost Rs. = 290.25/–
Production cost Rs./L 290.25/3.5 = 82.00/– Product price = 790/–
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the concentration of ethanol immediately after fermenta-
tion is lower (70 mg/mL), the concentration can further be 
enhanced by upgrading the industrial-grade Saccharomy-
ces cerevisiae and optimizing the other process parameters 
during the fermentation process, and the same is aimed to 
elaborate in our future communication.
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