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A B S T R A C T   

Machine learning has been developed dramatically and witnessed a lot of applications in various fields over the 
past few years. This boom originated in 2009, when a new model emerged, that is, the deep artificial neural 
network, which began to surpass other established mature models on some important benchmarks. Later, it was 
widely used in academia and industry. Ranging from image analysis to natural language processing, it fully 
exerted its magic and now become the state-of-the-art machine learning models. Deep neural networks have 
great potential in medical imaging technology, medical data analysis, medical diagnosis and other healthcare 
issues, and is promoted in both pre-clinical and even clinical stages. In this review, we performed an overview of 
some new developments and challenges in the application of machine learning to medical image analysis, with a 
special focus on deep learning in photoacoustic imaging. 

The aim of this review is threefold: (i) introducing deep learning with some important basics, (ii) reviewing 
recent works that apply deep learning in the entire ecological chain of photoacoustic imaging, from image 
reconstruction to disease diagnosis, (iii) providing some open source materials and other resources for re-
searchers interested in applying deep learning to photoacoustic imaging.   

1. Introduction 

The advent of the era of big data, the increase in computing power 
following Moore’s Law, and open-source, user-friendly software 
frameworks [1–4] have made remarkable progress in machine learning, 
which has aroused great interest in both industry and academia. 
Data-driven artificial neural networks, also known as deep learning (DL) 
[5,6], are good at discovering complex patterns from massive data to 
determine the optimal solution in the parameter space. The growing 
computing power of GPUs allows neural networks to be flexibly 
expanded from depth [7,8], width [9], and cardinality [10], forming 
numerous cornerstone-like models, which have also become the 
state-of-the-art (SOTA) approaches for a series of problems, exerting its 
magical power in computer vision, natural language processing and 

robotics. 
Among the many image analysis benchmarks, deep learning rapidly 

surpasses the traditional machine learning technology, making it reach 
the most important position in computer vision. At the 2012 ImageNet 
Large-Scale Visual Recognition Challenge (ILSVRC, [11]), a convolu-
tional neural network, AlexNet, easily exceeded the support vector machine 
(SVM) to win the championship with a disparity of more than 10 %. That 
is, since this session, deep learning has replaced SVM, and various 
innovative neural network models have sprung up. The Top-5 error rate 
used to measure performance has also reached new lows under fierce 
competition, gradually surpassing human eye recognition (5~10 %), 
and even close to the Bayes error rate. In addition to shining in computer 
vision, deep learning also shows its advantages in areas such as natural 
language processing [12,13], speech recognition [14,15]2, and even the 
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field of physics [16–18]3 . 
By hybrid combination of high contrast of optical imaging and high 

penetration depth of ultrasound imaging, photoacoustic (PA) imaging, 
one of the non-invasive medical imaging methods [19,20], has un-
doubtedly become an emerging application of deep learning. Therefore, 
we will review recent research of PA imaging (PAI) with deep learning. 

2. Photoacoustic imaging 

2.1. PA fundamental physics 

Many literatures have introduced the fundamentals of PAI [21–25], 
here we only give a brief review of PAI in this section. In PAI, several 
transducers are used to detect the broadband PA signals, which are 
excited by a nanosecond pulsed laser light. The initial PA pressure can be 
expressed as: 

p0 = Γ0ηthμαF, (1)  

Where Γ0 is the Gruneisen parameter of tissue, ηth is the energy con-
version efficiency from light to heat, μα is the optical absorption coef-
ficient, and F is the local optical fluence. 

After the generation of p0, the PA wave propagation in the medium 
can be described by the following PA equation: 
(
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Where p(r,t) is the PA pressure at position r and time t, T is the tem-
perature rise, κ is the isothermal compressibility, β denotes the thermal 
coefficient of volume expansion, and vs is the speed of sound. In PAI, the 
short laser pulse duration should satisfy two confinements: the thermal 
diffusion time (τth) and the stress relaxation time (τs). Namely, the laser 
pulse duration should be much less than τs and τth. The thermal equation 
can be expressed as: 

ρCV
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∂t
= H(r, t), (3)  

if the laser pulse duration satisfies above condition. The H denotes the 
heating function, which is defined by the product of the optical ab-
sorption coefficient and fluence rate (H=μαΦ). Substituting Eq. (3) into 
Eq. (2), we obtain the following formula: 
(

∇2 −
1
v2

s

∂2

∂t2

)

p(r, t) = −
β

CP

∂H(r, t)
∂t

, (4)  

Where CP denotes the specific heat capacity at constant pressure. We can 
solve this equation with Green function [21]: 

p(r, t) =
1

4πv2
s

∂
∂t

[
1

vst

∫

dr’p0(r’)δ(t −
|r − r’|

vs
)

]

, (5)  

Where p0(r’) is the initial pressure at position r’. 

2.2. PAI modalities 

Two fast growing modalities of PAI are photoacoustic microscopy 
(PAM) and photoacoustic computed tomography (PACT). They obtain 
images in different ways: the former is point-by-point scanning formed 

image, and the latter is reconstructed image by acquiring PA signals at 
different positions. 

For PAM, a focused ultrasound transducer is used to scan along the 
tissue surface. In general PAM setup, both the optical illumination and 
acoustic detection are confocal. Two typical PAMs are optical-resolution 
PAM (OR-PAM) and acoustic-resolution PAM (AR-PAM), which depend 
on either the optical focus or the acoustic focus is finer. OR-PAM can 
provide a high lateral resolution from a few hundred nanometers to a 
few micrometers with a high frequency transducer. The PA signal’s 
penetration is limited since the high frequency PA signal suffers severe 
acoustic attenuation. OR-PAM can provide the vascular anatomy and 
label-free imaging for hemoglobin oxygen saturation (sO2) as shown in 
Fig. 1(a) [26]. On the other hand, AR-PAM has a tighter acoustic focus 
than the optical focus. It achieves resolution of tens of micrometers with 
acoustic diffraction-limited. The imaging speed of AR-PAM is limited by 
the scanning speed and the pulse repetition rate of the laser. In Fig. 1(b), 
AR-PAM can achieve a larger-scale vasculature imaging [27]. Moreover, 
low scanning speed and small scanning range also limit the applications 
of PAM. 

To accelerate the speed of imaging, PACT uses ultrasonic transducer 
array to receive PA signals at different positions. An expanded laser 
beam evenly excites the entire region of interest (ROI), and the PA waves 
are detected by transducer array simultaneously. After that, recon-
struction algorithms, such as universal back-projection (UBP) and time- 
reversal (TR) [28,29], are used to reconstruct a high resolution image. 
PACT with spatial resolution of hundreds of micrometers is preferred, 
which can be improved by increasing the central frequency and band-
width of the transducer array. PACT can achieve the whole-body small 

Fig. 1. (a) Representative image of OR-PAM imaging a mouse ear, RBC: red 
blood cell, reproduced with permission from [26]. (b) Representative image of 
AR-PAM imaging a palm of a volunteer, figures adapted with permission from 
[27]. (c) Representative image of PACT imaging a mouse head, figures adapted 
with permission from [31]. (d) The different spatial resolutions and penetration 
limits for different PAI modalities, figures adapted with permission from [25] 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.). 

3 Modern deep learning methods have also achieved some applications in the 
field of physics, and these methods are often highly transferable across do-
mains, such as cleaning of interference images in astrophysics [16] and 
denoising in gravity wave analysis [17], which use a combination of mathe-
matical models and machine learning models to learn the relationship of 
physics from raw data. These methods can also be used in medical image 
analysis [18,19]. 
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animals and some organs of human, such as shown in Fig. 1(c) [30,31]. 
Generally speaking, the achievable spatial resolution can be esti-

mated if the imaging depth is determined. We list the different spatial 
resolutions and penetration limits for different PAI modalities in Fig. 1 
(d). 

3. Deep learning 

It is the core of machine learning to develop some algorithms to make 
computers capable of learning experience from data to solve tasks. A 
mathematical model f is created to produce the desired output through 
training when fed with input data. The training set contains rich data 
representation information, which can provide experiences for machine 
learning models. Those models that learned the representation of data 
are then tuned to produce accurate predictions according to the differ-
ence between current predicted output and the expected output by an 
optimization algorithm. The feedback obtained by training the model on 
another separate data set, the validation set, is used for further fine- 
tuning to measure the generalization ability of the model. After iter-
ating through these two steps (tuning and fine-tuning), the model is 
finally evaluated on the test set to evaluate the performance when it 
encounters new, unseen data. Tuning, fine-tuning, and evaluation are 
also the necessary three steps of machine learning to evaluate whether 
your mathematical model f can solve your task perfectly. 

We roughly divide machine learning into three categories here ac-
cording to the training process. First category is the reinforcement 
learning, the interaction between the constructed agent and the envi-
ronment achieves the greatest benefit or solves specific problems 
through learning strategies. One of its most famous applications is 
AlphaGo [32], which is a Go-playing system developed by DeepMind, 
even defeating the world’s top Go players. The second category is un-
supervised learning that is to classify or group based on training samples 
with unknown categories (unlabeled) and discover patterns between 
them. A common unsupervised learning example is cluster analysis. The 
last category is supervised learning, paired data sets make mainstream 
machine learning algorithms focus on it. Train on the labeled data to 
find the rules of patterns, and then produce the correct label on the 
unseen data. For example, many medical imaging including PA image 
reconstruction problems [33,34] are based on supervised learning. 

Regarding machine learning, especially deep learning, many excel-
lent reviews and surveys have also emerged, you can check the relevant 
papers [6] for a short introduction, or read free available book [5]4 for 
an in-depth understanding. See also [35] for a broad understanding of its 
application to medical image analysis. Only some basic essentials of 
deep learning will be introduced in this section, serving as useful 
foundations for its application in PA imaging. 

3.1. Artificial neural networks 

Firstly we will introduce one of the most famous machine learning 
models that appeared in the 1950s, the artificial neural network, which 
is used to briefly explain the deep learning principle. A neural network is 
composed of many layers, which are connected by many computing 
units, also known as neurons. Data enters the neural network through the 
input layer, then flows through one or more hidden layers, and finally 
generates the prediction of the neural network in the output layer, which 
will be compared with the actual labels (ground truth) by an objective 
function (loss/cost function). This difference guides to change the 
weights of the network to optimize the objective function until the 
neural network produces a good prediction. This means that the neural 
network learns experiences from the data and can generalize to new data 
sets for prediction. 

Next, we will briefly explain how the artificial neural networks are 

constructed. Since the neural network can be very complex and deep, we 
only introduce its basic form5 shown in Fig. 2. Map input x to output y 
through parameterized function y = f(x; θ), which consists of a lot of 
nonlinear changes f(x) = (fn∘⋯∘f1)(x). Each component/layer fk can be 
represented as fk = σk

(
θT

k fk− 1
)
, followed by a simple linear trans-

formation and a nonlinear function. θk is the model’s weights, and the 
nonlinear functions are differentiable, typically are sigmoid function 
and ReLUs. The basic idea of training a neural network is simple: 
training data flows into the network in the forward process, and the 
gradient of the loss function with respect to every weight is computed 
using the chain rule, finally gradient descent (GD) is used to change these 
weights to make the loss smaller [36–38]. The reason why such a simple 
but effective idea did not start explosive growth until recent decade is 
because that when faced with the exponential growth of parameters and 
nodes, the calculation will be a huge challenge. Therefore, many tech-
niques6 such as the design and training of neural networks are open and 
interesting problems. 

3.2. Deep learning 

Traditional machine learning models will extract features from the 
data manually or with the help of other simple machine learning models 
before training. However, deep learning will automatically learn rep-
resentations and features from the data during the training process, 
without the need for manual design. The main common feature of 
various deep learning models and their variants is that they all focus on 

Fig. 2. We take the most common artificial neural network, multilayer per-
ceptron or feedforward neural network as an example. The output of the j-th 
unit at layer i-th is zi

j = θiT
j x, where x is the value of the output of the previous 

layer after the nonlinear function transformation called activation function. 
Similarly, the output of each layer is passed to the next layer after the activation 
function, and then the same calculation is performed until the network pro-
duces the final output. The training data is fed to the input layer and then the 
streaming calculation is performed, where the output and derivative of each 
node are recorded. Finally, the difference between the prediction and the label 
at the output layer is measured by the loss function. The choice of loss function 
has a critical impact on the performance of the entire task, so its choice is 
crucial, common ones include mean absolute error, mean squared error. You can 
also manually design the loss function, which is often more attractive. The 
derivative of the loss function will be used as a feedback signal, and then 
propagate backward through the network, and the weight of the network will 
be updated to reduce errors. This is a technique called backward propagation 
[36,37], which follows the chain rule to calculate the gradient of the objective 
function with respect to the weights in each node. Then gradient descent [38] is 
used to update all the weights. 

4 You can find the free online version: https://www.deeplearningbook.org/. 

5 These are basic but essential concepts and components, compared to 
recurrent neural networks (RNNs), generate adversarial networks (GANs), graph 
convolutional networks (GCNs), etc.  

6 Applying deep learning in photoacoustic imaging, recently reported 
network architecture is significantly more complicated, such as that with 
multiple outputs [108], the input connected with the output [34], multiple 
branches [93], multiple loss functions [92], and much more. How to design a 
novel architecture that can solve specific task is the core. 
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feature learning: automatic learning of data representation, which is 
also the main difference between modern deep learning and classic 
machine learning methods. Learning features and performing tasks are 
improved simultaneously in the model. You can get a comprehensive 
understanding through the reference [5,6], or have a detailed study of 
deep learning with an interactive book [39]7 whose codes use the most 
popular deep learning framework pytorch [3]8 in academia today. 

Deep learning has made rapid progress in medical imaging, mainly 
relying on convolutional neural networks [37]9 (CNNs). This benefits from 
the fact that CNNs can easily learn specific features from images or other 
structured data. Next, we will briefly introduce the essential components 
of CNNs, understand why it is powerful and have an insight to design 
your own architecture. 

3.3. Building CNNs 

Although the introduced artificial neural network can be directly 
applied to the image, the efficiency of connecting each node of all layers 
to all nodes of the next layer is very low. Fortunately, structured data 
such as images can be trimmed and connected based on domain 
knowledge. CNNs are neural networks that can preserve the spatial 
relationship between data with few connections. The training process of 
a CNN is exactly the same as ANNs, except that the structure is often 
convolutional layers accompanied by activation functions, and pooling 
layers (as shown in Fig. 3). 

(i) Convolutional layers. In the convolutional layer, the activations 
from the previous layer performs a convolution operation with a 
parameterized filter10 . Each filter shares weights over the entire scope, 
which not only can greatly reduce the number of network parameters, 
but also has the translational equivariance. The reason why weight 
sharing can work is because features that appear in one part of the image 
may also appear in other parts. For example, this parameterized filter 
can detect the horizontal line above the image after training to deter-
mine the weight, then it can still detect the horizontal line below. After 
the convolution operation of the convolution layers, a tensor of feature 
maps will be generated. 

(ii) Activation layers. Similar to the introduction in ANNs, the 
activation layer is often composed of nonlinear activation functions. 
Typical activation functions are sigmoid function σ(z) = 1/(1 + e− z) and 
rectified linear unit ReLU(z) = max(0, z). There are also many other 
types of activation functions, which can be selected depending on the 
task and architecture. Because of the existence of these nonlinear acti-
vation functions, combined with linear operations such as convolution, 
the neural network can almost approximate any nonlinear function [40, 
41]11 . See [42,43] to learn more about the role of activation function. 
The activation layers also generate new tensors of feature maps. 

(iii) Pooling. In neural networks, feature maps are often pooled in 
the pooling layer. The pooling operation generates a number for each 
small grid of the input feature maps, which is often achieved by max- 
pooling or average pooling. The significance of the pooling layer is to give 
the neural network translational invariance, since a small shift in input 
will result in changes in the activation maps. For example, to determine 

whether there is red in the image, translation/rotation will not affect the 
judgment result. Recent research [44] also proves another alternative to 
pooling: using convolutional layers with larger stride lengths instead, 
which can simplify the network structure without reducing perfor-
mance. Fully convolutional networks (FCNs) [45] are also favored by more 
and more image analysis tasks. 

(iv) Dropout. A very simple idea has greatly improved the perfor-
mance of CNNs. Dropout [46] is an averaging technique based on sto-
chastic sampling of neurons to prevent CNNs from overfitting. By 
randomly removing neurons during the training process, each batch of 
data uses a slightly changing network, and the weights of the network 
will be tuned based on the optimization of multiple variations of the 
network. 

(v) Batch normalization. Batch normalization (BN) [47]12 is an 
effective technique to accelerate deep networks training by reducing 
internal covariate shift. Due to changes in network parameters during 
training, the distribution of network layer output results is different, 
making network training difficult. BN can produce normalized feature 
maps by subtracting the mean and dividing by the standard deviation for 
each training batch. The data will be periodically changed to zero mean 
and unit standard deviation with BN, which will greatly speed up the 
training. 

In the actual design and improvement of the CNN architecture, above 
basic components will be combined in a very complex way, with some 
new and effective operations. When building a CNN for a task, you often 
have to consider a lot of details to get your CNN perform well on this 
task. You need to fully understand the task to be solved and find insights 
to decide how to process the data set before fed to the network. In the 
early days of deep learning, the construction of modules was often 
simple. But then more and more complicated structures emerged, and 
people designed new effective architectures based on previous ideas and 
insights resulting in updates to the SOTA. See [48] for a survey about 
recent architectures of CNNs. These novel architectures are often suit-
able for PA imaging. The structure of most articles we researched can be 
inspired by them. But before the data is fed into the network, the signal 
domain13 or image domain14 will be processed separately to reduce 
noise or increase contrast. 

4. Deep learning for photoacoustic imaging 

Deep learning has been widely used in clinics to help doctors get a 
better diagnosis, and successful examples are growing. Because there are 
too many applications of deep learning in medical imaging of other 
modalities, we cannot give a comprehensive overview here, but only 
focus on deep learning in PA imaging. If you are interested, you can see 
[49–52] for a more thorough review and overview of deep learning in 
medical imaging, because successful examples often involve multiple 
organs, and have different ideas and technical details, which is an 
extremely rich, intersecting, and interesting subject. 

Although PA imaging is a new imaging method [22,23] compared 
with other modalities of medical imaging, deep learning still shows great 
application prospects. More specifically, deep learning has been applied 
at every step of the entire PA imaging workflow. How to obtain 
high-quality PA image [34] from the sensor data is relevant to the 
physics of PA. Disease segmentation [53], classification [54], and 
detection [55] with the reconstructed PA images are relevant to the 
image domain. Providing functional imaging capability without exoge-
nous contrast: i.e. quantitative imaging of oxygen saturation [56], is also 
a unique advantage of PA imaging compared to other imaging 

7 Free available link: https://d2l.ai/.  
8 Deep learning frameworks undoubtedly facilitate the process of machine 

learning practitioners turning ideas into code. The well-known ones are: ten-
sorflow [4], pytorch [3], MXNet [2], and caffe [1]. The first two are currently 
the most commonly used frameworks in industry and academia.  

9 CNN has been used for medical image analysis in the early 1990s, but it was 
limited by the data and computing power at that time. 
10 It can be compared to the filter in digital image processing, the “convolu-

tion” operation here is strictly the correlation operation, but called the 
“convolution” neural network is also appropriate.  
11 No matter how deep the linear operation is, it can still only approximate the 

linear function without these nonlinear activation functions. 

12 There is no unified conclusion about whether the position of BN is placed 
after convolution before activation, or after activation. The original paper [47] 
put it before activation.  
13 Filtering, deconvolution, and interpolation (spatially), etc.  
14 Normalization, standardization, and zero-centered, etc. 
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modalities. PA-assisted intervention is also involved for pre-clinical or 
even clinical applications [57]. One of the keywords learning/networ-
k/Net/learned/convolution/GAN/supervise/unsupervise is combined 
with one of the keywords photoacoustic/optoacoustic to be used for 
retrieval, then duplicate or unqualified articles (some of them are ma-
chine learning) are eliminated. Based on our statistical analysis, the 
number of papers versus year is shown in Fig. 4. It can be seen that the 
number on DL used in PA imaging has increased significantly every year. 
The number classified by category15 is given in Table 1. Next, we will 
review in detail from the perspective of each task. 

4.1. PA image reconstruction 

Image reconstruction is one of the fundamental components for 
photoacoustic tomography (PAT), which converts raw signals received 
by ultrasound transducers to the image of initial pressure distribution. It 
is a challenging task for PA image reconstruction because of the ill-posed 
nature and the absence of exact inverse model in practical cases (limited- 
view and sparse sampling). In PAT, image reconstruction aims to 
retrieve the initial PA pressure distribution, which indicates the optical 
absorption of biological tissues. The PA wave propagation at the position 
r and time t has the pressure p(r,t) given by Eq. (2). The transducer array 
receives PA signals excited by a short-pulsed laser light at different lo-
cations, which are used to form the PA pressure when t = 0 by several 
methods, such as universal back-projection (UBP). We can formulate the 
UBP reconstruction based on [29]: 

p0( r→’) =
1

Ω0

∫

S
dΩ0 × 2

[

p( r→, t) − t
∂p( r→, t)

∂t

] ⃒
⃒
⃒
⃒

t=| r→− r→’|
vs

(6)  

Where Ω0 is the solid angle of the entire detection surface S with respect 
to a source point at r. The term of square brackets is the back-projection 
term. These direct reconstructed algorithms can retrieve satisfactory 
image if the transducers cover enough angle with sufficient element 
number to detect the PA signals. However, an ill-posed inverse problem 
is caused by limited-view or sparse view. Meanwhile, the secondary 
generated artifacts confuse final PA image. 

Model-based reconstruction algorithms show flexibility to be appli-
cable in many unfeasible configurations for direct methods. The inverse 
problem can be formulated by solving the non-negative least-squares 
problem: 

p0 ∈ argmin‖Ap0 − y‖2
+ αR(p0) (7)  

Where p0 is initial PA pressure, y is the received PA data from trans-
ducers, A is the PA forward model, R(p0) is regularization term, α de-
cides the properties between data fit and the regularization term. This 
problem can be solved by traditional optimization, such as iterative soft- 
thresholding algorithm (ISTA) [58], GD with repeated iteration. How-
ever, these methods are suffering computational complexity and tedious 
parameters adjustment for different reconstruction tasks. Deep learning 
methods have found applicability for the reconstruction of PA images, 
which are driven by a large number of datasets for training. We will 
review DL-based PA image reconstruction algorithms of two types. 

(i) Non-iterative reconstruction. Fig. 5 show three different 
schemes for non-iterative reconstructions: direct estimation, PA signals 
and PA image enhancements via deep learning. Direct reconstruction 
methods only solve the PA wave equation, which take the PA signals as 
input and capture the mapping from signal to image. 

In [59], Dominik Waibel established a direct estimation from raw 
sensor data for PA imaging. 128-element linear detector’s synthetic data 
were taken into a modified U-net to reconstruct the final initial PA 

Fig. 3. Construction of a typical CNN for medical image analysis, modified according to [49], and input image was taken from [79].  

Fig. 4. Number of papers of DL in PA imaging in recent years. For 2020 year’s 
data, only the quantity before September 15 is calculated. 

Table 1 
Number of papers of DL in PA based on task.  

Task Number 

Image reconstruction 45 
Quantitative imaging 10 
Image detection 7 
Image classification 2 
Image segmentation 6 
PA-assisted intervention 2  

15 When counting according to the task category, two papers are about joint 
task, hence the calculation is repeated twice. 
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pressure. Similarly, Emran Mohammad Abu Anas [60] proposed a dense 
CNN architecture for beamforming PA data, which consists of five dense 
blocks with different dilated convolutions. In this paper, the authors 
investigated the effect of varying speed of sound for proposed method, 
and verified the robustness on the speed of sound variation. In PAI, the 
visibility of deeper object can be affected with the optical scattering, 
which is a non-negligible issue for the precise depth localization appli-
cations. To address this issue, Kerrick Johnstonbaugh [61] designed an 
encoder-decoder network to predict the location of circular target in 
deep tissue. This work considered both acoustic and optical attenuation 
into simulation, and it further closed to the reality. Derek Allman [55] 
used VGG16 to beamform the raw data to detect the point sources, and 
removed reflection artifact. A real experiment was also demonstrated in 
this work. Up to now, all of experiments used synthetic simple (point--
like) phantoms. In [62], Johannes Schwab used deep learning to learn 
the weights in back projection of different channel’s data, and the au-
thors used the Shepp-Logan phantom with random enhancement to 
verify their method. Furthermore, vessel phantom was first used to train 
neural network in direct reconstruction. He also proposed a data-driven 
regularization method [63] by applying truncated singular value 
decomposition (SVD) and then recovering the truncated SVD co-
efficients, which significantly suppressed noise. Hengrong Lan [64] 
proposed DU-net, which took three different frequencies’ sensor data 
(2.25 MHz, 5 MHz and 7.5 MHz) as input. In short, DU-net consisted of 
two U-net, and an additional loss is used to constrain the first U-net. 
Obviously, the lack of vessel texture structure for raw data, compared 
with simple phantom, caused a worse result. In [65], Steven Guan also 
used vessel phantom to compare different reconstruction schemes, and 
proposed a new type of input in Fig. 5 (from c to e). Jinchao Feng [66] 
modified Res-Unet to directly reconstruct the simple phantom, and the 
results are compared with some varietal U-net models. Tong Tong [67] 
used in-vivo data to train the FPnet with a U-net as post-processing. Two 
types of PA signals (time derivative and normalized original data) are 
fed into a number of Resblock, and implemented signal-to-image 
reconstruction by learning below transformation16 : 

Hf = F
(

c2

(

c0p(di, t) + c1
∂p(di, t)

∂t

))

(8) 

In addition, the authors released their code and data in this study. In 
summary, these direct estimation models capture priori knowledge that 
being closely related to conventional procedures or not, as shown in 
Fig. 5 from a to e. On the other hands, PA signal and image enhancement 
can be performed in the data domain as preprocessing (from a to d in 
Fig. 5) or in the image domain as postprocessing (from b to e in Fig. 5) 
instead of solving the PA wave equation. For this scheme, a signal pro-
cessing or image processing problem usually exists, which is also 
important for the imaging result of PAM. 

The blurring image may be caused by bandwidth-limited/noise- 
polluted/spatial-sparse PA signals, even though using a refined recon-
struction algorithm. Therefore, PA signal enhancement could obviously 
improve the PA image quality. Sreedevi Gutta [68] proposed the first 
neural network to enhance the bandwidth of PA data. A five-layers 
neural network took one channel bandwidth-limited PA signal as 
input and predicted full bandwidth signal. Navchetan Awasthi used CNN 
to de-noise and super resolve (from 50 to 100 detectors) the PA sono-
gram (sinogram) data in [69], which solve the sparse and low-SNR 
problem in signal domain. The experiments contain both simulation 
and in-vivo experimental cases. Furthermore, they improve the single 
channel enhanced scheme in [68] and used U-net to de-noise and 
enhance the bandwidth limited sonogram data [70]. It resolved two 
issues, and improved the performance compared with previous works. 
PA signal preprocessing guarantees the quality of reconstruction by 
compensating the low SNR and distortion of signal induced by limited 
bandwidth of transducer in data capture procedure. Spatial-sampling 
caused issue (limited-view) perhaps should be further explored in 
image domain. 

Stephan Antholzer [71] performed sparsely reconstructed image 
with residual connected U-net. In [59], the authors also used a U-net to 
estimate the initial pressure from DAS result images. Likewise, Johannes 
Schwab [72] used a CNN to reconstruct better PA image by feeding 64 
detectors and half-view PA image. Light emitting diode (LED) based PA 
imaging system suffers from low SNR signal due to limited output 
power. Therefore, the result of LED-based imaging usually has a worse 

Fig. 5. Summary of CNN-based deep learning approaches for PAT image reconstruction. Figures adapted with permission from [65].  

16 The end of FPnet has a large FC layer, which may cause numerous pa-
rameters and overfitting. Some regulations should be applied. 
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quality. In [73,74], Emran Mohammad Abu Anas proposed two different 
architectures, recurrent neural network based and CNN (Dense block) 
based approaches, to enhanced the SNR of input low quality PA image. 
The blood mimicking phantoms’ data were collected in these works, and 
generated ground truth by averaging data. After that, Mithun Kuniyil 
Ajith Singh [75] used higher laser energy to obtain the ground truth, 
which are used to train a U-net to enhance the lower SNR image from 
LED-based imaging system. Ali Hariri [76] proposed MWCNN to 
enhance the low-fluence LED-based PA image, which replaced the 
pooling and deconvolution of U-net with discrete wavelet transform and 
inverse wavelet transform respectively. Ref [77]. also used modified 
U-net to reconstruct PA image, which divided the model into three parts: 
feature extraction, artifacts reduction (U-net with residual skipped 
connection), and reconstruction. Ref [78]. extracted features from 
limited-view image and trained a VGG-net to match the features be-
tween limited-view image and full-view image. Neda Davoudi used 
U-net to recover the quality of sparse PA image [79], both of simulation 
and realistic data were trained and tested in this work. Moreover, these 
data and codes are open access. Seungwan Jeon tried to use U-net based 
CNN to correct the speed of sound aberration in PA image in [80]. In 
[81] Steven Guan proposed FD-UNet to remove artifacts caused by 
sparse data. Meanwhile, Tri Vu [82] designed WGAN-GP to decrease the 
artifacts in PACT, with both phantom and in-vivo results validated. 
Parastoo Farnia [83] post-processed a TR reconstructed image as input 
of CNN. Furthermore, deep learning is applied in intravascular PAT, 
which can enhance the cross-sectional images of the vessel by feeding a 
TR reconstructed image as input [84]. Guillaume Godefroy [85] used 
U-Net to resolve the visibility problem due to the limited view and 
limited bandwidth, and transferred the model from simulation to real 
experiment. Specially, the ground-truth of experimental data came from 
the CMOS camera with simple processing. In [86], an in-vivo sheep 
brain imaging experiment is performed by enhancing the low quality 
image with U-net. Huijuan Zhang [87] proposed RADL-net to mitigate 
the artifacts in sparse sampling and limited view problem, which is 
applied for ring-shaped PACT with simulation and experimental data. 

In PAM, deep learning also plays an important role for image quality 
correction. In [88], a simple CNN was used to correct motion artifacts in 
OR-PAM. Israr Ul Haq [89] used a convolutional autoencoder to 
enhance the quality of image, and the ground truth came from Gobor 
filter. In [90], Anthony DiSpirito III released a set of mouse brain data, 
which were used to train a FD U-net to improve the under-sampled PAM 
images. Simultaneously, Jiasheng Zhou also did a similar work using 
Squeeze-and-Excitation (SE) block to extract information and verified its 
effectiveness [91]. 

In addition, some recent studies open a new scheme neither direct 
estimation nor pre/postprocessing. Hengrong Lan [92,93] combined 
two schemes, and took PA raw data and reconstructed image as input of 
two novel models. This idea showed better results for limited-view and 
sparse data. In [65], the authors used intermediate results (pix-
el-interpolated data) as input of model (from d to e in Fig. 5), where 
pixel-DL method is proposed. MinWoo Kim pre-delayed every channel’s 
data and got 3D transformed data as input [94]. The improvement of 
these results is significant using vessel data. The methods that combine 
the information of different domains and the physical process could be a 
new frontier of image reconstruction. 

(ii) Iterative reconstruction. Iterative reconstruction resolves 
image reconstruction as an inverse problem. In [95], Stephan Antholzer 
trained a regularization to optimize the compressed sensing PAT 
reconstruction procedure, and also compared with L1-minimation in 
[96]. Andreas Hauptmann [34,97] took a well-known optimization (GD) 
and corrected the internal optimization by deep learning. The realistic 
experimental results showed the robustness and superiority of this 
scheme. Furthermore, Yoeri E. Boink [53] proposed learned primal-dual 
(L-PD) realizing multi-task (reconstruction and segmentation) in single 
architecture, which took primal-dual hybrid gradient (PDHG) as a basic 
optimization. In [19], Changchun Yang used the Recurrent Inference 

Machines to learn and accelerate the optimization procedure. In other 
work [98], Hongming Shan simultaneously reconstructed the initial 
pressure and sound speed distribution, where SR-net was proposed by 
fusing the gradients of every iteration with previous pressure and sound 
speed distribution. Navchetan Awasthi proposed PA-Fuse model, which 
combined two images (BP reconstructed image and model-based 
reconstructed image) as a fused image [99]. 

4.2. Quantitative imaging 

PAT plays an increasingly important role in both preclinical research 
and clinical practice. In view of the fact that hemoglobin is one of the 
major absorbers in human tissue at wavelengths below 1000 nm, PAT 
can image vascular structure and oxygen saturation of hemoglobin (sO2) 
by quantifying oxygenated hemoglobin (HbO2) and deoxygenated he-
moglobin (HbR). Oxygen saturation is a very important physiological 
parameter of the human body and can be used to predict the presence of 
tumors, since the concentration of sO2 of normal tissues is often higher 
than that of malignant tissues. See [56,100] for the detailed background 
of blood oxygenation. 

Blood oxygenation, or sO2, is defined as the fraction of HbO2 relative 
to total hemoglobin concentration in blood: 

sO2(x, y) =
CHbO2(x, y)

CHbO2(x, y) + CHbR(x, y)
× 100% (9)  

Where x and y is the 2D coordinate of the tissue. The basic reason why 
we can use PAT for quantitative blood oxygenation imaging is the 
distinct absorption of HbO2 and HbR at different wavelengths: 

P(λi, x, y) = Φ(λi)(εHbR(λi)CHbR(x, y) + εHbO2(λi)CHbO2(x, y) ) (10)  

Where P(λi, x, y) on the left is the reconstructed 2D PA image at a specific 
wavelength λi, Φ(λi) is wavelength-dependent optical fluence, which is 
affected by heterogeneous tissue’s optical properties and light propa-
gation. εHbR(λi) and εHbO2(λi) are the wavelength-dependent molar 
extinction coefficients (cm− 1M− 1) of HbR and HbO2, which can be ob-
tained from [101] or recorded information17 . The concentrations of 
HbR and HbO2 are denoted by CHbR(x, y) and CHbO2(x, y). Some 
traditional methods (e.g. linear unmixing) assumes Φ(λi) as a constant 
when solving sO2. In this case, at least two wavelengths are needed to 
solve the equations, achieving the quantification of sO2. However, Φ(λi)
is wavelength dependent in real scenarios, so it actually confounds the 
spectral unmixing of HbO2 and HbR. This leads to the fact that linear 
unmixing cannot accurately give quantitative results (e.g. shown in 
Fig. 6 (d)). Solving sO2 corresponding to spatial coordinates from 
reconstructed PA images of multiple wavelengths is a typical ill-posed 
inverse problem, for which deep learning is undoubtedly a good 
choice [102,103]18 . 

Chuangjian Cai [104] proposed the first deep learning framework, 
ResU-net, for quantitative PA imaging. Their model takes the initial 
pressure images at different wavelengths as inputs, and the outputs are 
quantitative results of sO2. They use the CNN architecture implemented 
by U-net to achieve the following functions: (1) determining the contour 
of the imaged object, (2) performing optical inversion, (3) denoising, (4) 
determining the type of main absorbing chromophores and estimating 
their absorption spectrum, (5) unmixing the HbO2 and HbR. Therefore, 
the author added a residual learning mechanism [7] to solve the 
gradient explosion problem on the basis of U-net composed of a 
contraction path that captures comprehensive context and an extension 
path that realizes precise localization, so that the network can enrich 

17 See https://omlc.org/software/mc/mcxyz/index.html for a detailed tissue 
properties in the wavelength range of 300~1000 nm. 
18 In fact, deep learning can be used to solve a wide variety of inverse prob-

lems arising in computational imaging [102,103]. 
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features through deep layers stacking and simultaneously, greatly in-
crease the quantitative accuracy. The author conducted a simulation 
experiment to simulate a simple numerical phantom based on 21 
wavelengths (700− 800 nm, step size 5 nm) with random gaussian noise. 
The quantitative comparison results are given in Fig. 6. It can be seen 
that for linear unmixing, the central region of Fig. 6(d) produced a large 
estimation error due to spectral coloring caused by light absorption and 
scattering. In contrast, ResU-net’s relative reconstruction error is much 
smaller (Fig. 6(c)), which implied that deep learning has learned this 
inverse mapping and can compensate for spectral coloring well. Later, 
there are some recent works [105–110] that are also based on U-net to 
quantify sO2. In order to investigate whether it is theoretically possible 
to give accurate quantitative results using only two wavelengths, Ref 
[105]. conducted some simulation experiment verifications. They think 
that the feature maps obtained by deep layer of ResU-net can recursively 
convolve each row of vectors to obtain sequence information, which is 
beneficial for blood oxygen saturation of each coordinate in space with 
contextual information. Clinically-obtained numerical breast phantom 
is used for optical and acoustic simulations in Ref [107]. avoiding the 
use of simple layers of tissues. Further, in order to take full advantage of 
multi-wavelength as inputs, aggregator was added with encoder and 
decoder. They believe that shallow features are propagated through 
different stages of aggregation and will be refined [111]. The authors 
also simply verified the impact on the quantitative results corresponding 
to the number of wavelengths. When the number of input wavelengths 
increases, the neural network can produce more accurate results, but the 
improvement is finally limited. Because the concentration of sO2 in 
blood vessels is more concerned than other tissues (such as fat), blood 
vessel segmentation and quantification were performed simultaneously 
in Ref. [108,110]. Two symmetric U-nets were used for segmentation 
and quantification, then focused the analysis result of the entire domain 
to the segmented blood vessels. Ref [109]. expanded quantitative blood 
oxygenation from 2D to 3D PA images since the spatial information 
provided by the 3D images improves the neural network’s ability to 
learn an optical fluence correction and the voxel-wise approach can use 
the full information. Different from the above work that considers the 
global spatial information of each wavelength separately, Janek Grohl 
[112] computed sO2 from pixel-wise initial pressure spectra, which are 
vectors comprised of the initial pressure at the same spatial location over 
all recorded wavelengths. Ref. [113] learned the inverse mapping by 
directly regressing from a set of input spectra to the desired fluence 
based on eigenspectra multispectral optoacoustic tomography [114]. 

Both spectral and spatial features were used for inference, which was 
verified in simulations and experimental dataset obtained from blood 
phantoms and mice in vivo. This is also the first in vivo experiment to 
prove PA sO2 imaging with deep learning. 

The above reviewed methods are all supervised learning for quan-
titative blood oxygen imaging. However, since the ground truth of sO2 is 
difficult to obtain for in vivo imaging experiments, it seems that unsu-
pervised learning may be a better choice to solve this problem. Almost 
all the studies are currently in the stage of feasibility study, Ref. [115] 
firstly tried to use unsupervised learning to identify regions containing 
HbO2 and HbR. Although these existing works are still at very pre-
liminary stage, we can still see the dawn of quantitative PA imaging 
using deep learning. With more investigations in clinical use, more 
realistic data will be obtained and methods will be verified. 

4.3. PA image detection 

Image detection algorithm is to process the image and detect objects 
in it. As a promising imaging method, PA imaging, even in the early 
development stage, also has some published work with deep learning for 
cancer detection [116–122]. Arjun et al. explored deep neural networks 
to diagnose prostate cancer based on multispectral PA image database 
[118]. In this work, a combination of an adaptive greedy forward with 
backward removal features’ selector was used to select features as a key 
strategy, and then an optimal detection result was given along with a 
CNN detection/classification model. This is the first time deep learning 
has been used to detect prostate cancer on ex-vivo cancer bearing human 
prostate tissue with PA imaging. Based on this work, the detection of 
prostate cancer has expanded to 3D [116], and the experiment was 
verified based on transfer learning to the prostate using the thyroid 
database [117]. Ref [121]. used the combined data collected by three 
wavelengths to learn the discriminative features, and the classifiers are 
used to judge the benign and malignant prostate cancer, which showed 
that higher accuracy and sensitivity are higher than the classifier based 
on the original photoacoustic data. With the help of the 
multi-wavelength data set, Ref [122]. established and examined a fully 
automated deep learning framework that learns to detect and locate 
cancer areas in a given specimen entirely. In order to solve the problem 
of body hair signal that hampers the visibility of blood vessels in PA 
imaging, a novel semi-supervised learning (SSL) method was proposed 
in [119], since the actual training data and test data are very limited. 
Due to the directional similarity between adjacent body hairs, the author 
introduced this fact as a priori knowledge into SSL, which enabled the 
effective learning of the discrimination model for detecting body hair 
from a small training data set. Finally, the effectiveness of their method 
was quantitatively verified based on experimental data and successfully 
applied to virtual hair removal to improve the visibility of blood vessels 
in PA imaging. Xiang Ma [120] firstly presented the principle of using 
deep learning to evaluate the average adipocyte size. A deep neural 
network with fully connected layers was used to fit the relationship 
between PA spectrum and average adipocyte size. Since the size of 
adipocyte in obese people is directly related to the risk of metabolic 
diseases, deep learning has the potential for noninvasive assessment of 
adipose dysfunction. 

4.4. PA image classification 

Image classification is to label objects in the image, firstly detecting 
the different objects and then classifying them, which can be regarded as 
an advanced version of image detection. There are only a few pre-
liminary works [54,123] about classification in PA imaging. Yongping 
Lin [123] achieved automatic classification of early endometrial cancer 
based on co-registered PA and ultrasonic (CRPU) signals. The CRPU 
images were obtained based on Monte Carlo simulations in case stan-
dardized CRPU images were hardly got with most PAI systems still in 
prototype phase. Jiayao Zhang [54] explored the deep learning 

Fig. 6. sO2 reconstruction results of deep learning and linear unmixing and the 
corresponding relative error. Figures adapted with permission from [104]. 
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algorithms for breast cancer diagnostics, where transfer learning was 
used to achieve better classification performance. Facing the problem of 
limited data sets, the author used a pre-processing algorithm to enhance 
the quality and uniformity of input breast cancer images for the 
experiments. 

4.5. PA image segmentation 

Image segmentation is the holy grail of quantitative image analysis, 
the goal of which is outputting a pixel-wise mask of images. The image is 
divided into several regions or parts based on the characteristics of the 
pixels. Some recent works have been reported about segmentation of the 
PA image domain using deep learning [53,54,124–127], which is often 
performed jointly [128–130]19 with other tasks. A partially-learned al-
gorithm is proposed in Ref. [53] for joint PA reconstruction and seg-
mentation. Different from other reconstruction works, the authors 
assumed that segmentation of the vascular geometry is of high impor-
tance since the visualization of blood vessels is the main task in PAI. The 
unique advantages of PA imaging make it possible to unmix HbO2 and 
Hb in multispectral optoacoustic tomography (MSOT), which is bene-
ficial to the precise segmentation. A deep learning approach with a 
sparse UNET (S-UNET) for automatic vascular segmentation in MSOT 
images was used in Ref. [124] to avoid the rigorous and time-consuming 
manual segmentation. The wavelength selection module helped to select 
the optimal wavelengths for the current segmentation task. It also hel-
ped to reduce the longitudinal scanning time and data volume in 
multi-wavelength experiments. Facing the errors in the co-registration 
of compounded images of optoacoustic and ultrasound (OPUS) imag-
ing, proper segmentation of different regions turns essential. An auto-
matic segmentation method based on deep learning was proposed in Ref 
[125]. for segmenting the mouse boundary in a pre-clinal OPUS system. 
The experimental results were shown to be superior than another SOTA 
method in a series of experimental OPUS images of the mouse brain, 
liver and kidney regions. The same authors [126] later proposed an 
automatic surface segmentation method using deep CNN for whole-body 
mouse OPUS imaging. This method can achieve accurate segmentation 
of animal boundaries in both photoacoustic and pulse-echo ultrasound 
images with good robustness. Yaxin Ma [127] proposed a deep learning 
framework for automatically generating digital breast phantom. The 
tissue types are segmented from x-ray and combined with mathematical 
set operations. Finally, human-like optical and acoustic parameters are 
assigned to generate the digital phantom for PA breast imaging. 

4.6. PA-assisted intervention 

PA imaging has been developed to guide surgery in some research 
works [57,131] benefiting from its real-time imaging capability. Ref 
[57]. used SOTA deep learning methods to improve image quality by 
learning from the physics of sound propagation. Those deep learning 
methods were used in PA-assisted intervention to hold promise for 
visualization and visual servo of surgical tool tips, and evaluated the 
distance between critical human structures near the tools used for sur-
gery (for example, serious complications, paralysis or death of the pa-
tient will occur when major blood vessels and nerves are injured). 
Neurosurgery, spinal fusion surgery, hysterectomies, and biopsies, these 
surgeries and procedures will be beneficially affected clinically. Cath-
eter guidance is often used in cardiac interventions, and PA signal can be 
generated at catheter tips. It is important to accurately identify the po-
sition of the catheter tip because the projection will lack depth infor-
mation during fluoroscopy. Novel deep learning PA point source 

detection technique was used [131] to identify catheter tips in the 
presence of artifacts in raw data, prior to implementing the beam-
forming steps required to form PA images. 

5. Open source for deep learning in PA imaging 

Most researchers tend to upload their preliminary manuscript to the 
arXiv20 preprint server as soon as possible and share their corresponding 
code on github21 . You can also find most public data sets through 
various repositories, which is also the starting point for many compe-
titions or challenges. Many competitions every year often attract many 
new participants, who put forward their own methods on the same issue 
to fight for the best results, which always push the SOTA to a new level. 
With such a rich variety of open access resources, if finding a problem of 
interest, everyone can easily start their own research based on the public 
data set, the method described in the preprint, and the project imple-
mented on github. 

There have been many excellent articles summarizing the imple-
mentation, data sets and challenges. For example, you can find relevant 
summaries about a short list of publicly available codes for DL in med-
ical imaging, medical imaging data sets and repositories in [49]. Since 
we can design or improve our own methods and models inspired by 
excellent, open-accessed deep learning implementation, we mainly 
briefly summarize the available data sets in PA imaging for deep 
learning research and give several examples codes about DL in PA. 
Although limited by the status quo that PA imaging equipment has not 
been clinically available, and the number of open data sets is small, we 
believe that these can still help peers to conduct high-quality research 
based on these data sets. Existing data sets can be divided into two 
categories: one is physiologically digital phantom, and the other is 
experimental PA imaging data. Yang Lou in Ref [132]. proposed a 
computational methodology using clinical contrast-enhanced magnetic 
resonance imaging data to generate anatomically 3D realistic numerical 
breast phantoms, and finally provide three different BIRADS breast 
density levels’ digital breast models named Optical and Acoustic Breast 
Phantom Database (OA-Breast). In [65], the authors released two real 
experimental datasets (MSOT-Brain and MSOT-Abdomen) and some 
numerical simulation data. In [79], the realistic mouse cross-sectional 
data includes sampling data of different probe numbers can be down-
loadable. In [89], a set of mouse brain data acquired from OR-PAM are 
shared [118]. introduces a large sample size of prostate cancer patients 
gathered using multispectral PA imaging. We take all the papers we 
reviewed into Fig. 7 for summary, and the index of papers with data and 
some typical code links is given in Table 2. Through Fig. 7, we can 
clearly see different network architectures are used for different pho-
toacoustic imaging tasks, and quickly find useful data and codes for your 
own research through Table 2. 

6. Challenges and future perspectives 

Deep learning shows its potential for medical imaging in various 
modalities including PA imaging, and achieve SOTA results when tasked 
with producing precise decisions based on complicated data sets. But 
there are still many challenges and limitations that need to be overcome. 
In addition to its data-driven black box-nature, the methods often used 
for comparison are based on traditional manual design when 

19 Joint task refers to the execution of multiple categories of tasks together, 
producing information complementarity, or one task may have a supervisory 
effect on another task. There are many examples [128–130] in medical image 
analysis. 

20 Deep learning is moving at a breakneck speed, too fast for the standard 
peer-review process to keep up. In the past few years, many of the most famous 
and influential papers in machine learning can only be available as preprints 
before they were published in conference proceedings. Hence you can see the 
latest research through the preprint website arXiv: https://arxiv.org/.  
21 Most researchers are often willing to share code and data on github 

(https://github.com/), which to a certain extent also promotes the rapid 
development of this community. 
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introducing deep learning into PA imaging. Nevertheless, neural 
network-based methods can easily outperform these baselines, which 
makes this comparison meaningless. Largely due to the inability to 
obtain open data sets, researchers always verify on their own closed data 
sets with most of the PA imaging systems still in prototype phase. 
Therefore, although the research on using deep learning to solve some 
problems in PAI has improved greatly, there is still a lack of fair com-
parison on training and testing results using large-scale standardized 
real data sets. We believe when scientists and clinicians gradually 
develop the current clinical application standardization for PAI, a large 
amount of real patient data will be available. These problems will be 
conquered and the entire PA imaging community will develop more 

harmoniously. As machine learning researchers and clinicians gain more 
experience, it will be easier to solve current clinical problems using 
reasonable solutions. Once there are enough mature solution systems 
based on mathematics, computer science, physics and engineering 
entering the daily workflow in the clinic, computational medicine will 
become mainstream. Machine learning and other computational 
medicine-based technology ecosystem will eventually be established in 
most biomedical, and PA imaging will finally find its unique position. 
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