Table 1. Quantitative evaluation of the different methods for the different slices in Figure 7.
Methods | Slice one | Slice two | Slice three | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | rRMSE | PSNR | SSIM | rRMSE | PSNR | SSIM | rRMSE | |||
EM + Gaussian filter | 31.185 | 0.896 | 0.349 | 29 | 0.899 | 0.552 | 35.561 | 0.95 | 0.477 | ||
EM + NLM | 34.883 | 0.926 | 0.228 | 36 | 0.929 | 0.268 | 39.737 | 0.96 | 0.295 | ||
CNN | 35.86 | 0.937 | 0.204 | 36 | 0.949 | 0.231 | 38.085 | 0.952 | 0.357 | ||
GAN | 36.048 | 0.939 | 0.196 | 34 | 0.934 | 0.324 | 37.074 | 0.928 | 0.401 | ||
LCPR-Net | 36.864 | 0.947 | 0.181 | 36 | 0.958 | 0.223 | 41.823 | 0.966 | 0.232 |
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; rRMSE, relative root mean square error; EM, expectation-maximization; NLM, nonlocal means; CNN, convolutional neural network; GAN, generative adversarial network; LCPR-Net, low-count positron emission tomography image reconstruction network.