Table 2. Quantitative evaluation of the results of the different methods from Figure 8 for 50 K, 500 K, and 5 M counts.
Methods | 50 K | 500 K | 5 M | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | rRMSE | PSNR | SSIM | rRMSE | PSNR | SSIM | rRMSE | |||
EM + Gaussian filter | 27.81 | 0.686 | 0.515 | 31 | 0.896 | 0.349 | 37.726 | 0.967 | 0.232 | ||
EM + NLM | 27.756 | 0.727 | 0.518 | 35 | 0.926 | 0.228 | 36.112 | 0.97 | 0.198 | ||
CNN | 28.506 | 0.852 | 0.475 | 36 | 0.937 | 0.204 | 38.462 | 0.961 | 0.151 | ||
GAN | 28.409 | 0.843 | 0.481 | 36 | 0.939 | 0.196 | 39.163 | 0.968 | 0.124 | ||
LCPR-Net | 28.778 | 0.847 | 0.461 | 37 | 0.947 | 0.181 | 39.905 | 0.974 | 0.118 |
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; rRMSE, relative root mean square error; EM, expectation-maximization; NLM, nonlocal means; CNN, convolutional neural network; GAN, generative adversarial network; LCPR-Net, low-count positron emission tomography image reconstruction network.