Table 4. Quantitative evaluation of the results of the different methods from Figure 10 for 50 K, 500 K, and 5 M counts.
Methods | 50 K | 500 K | 5 M | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | rRMSE | PSNR | SSIM | rRMSE | PSNR | SSIM | rRMSE | |||
MLEM + filter | 18.639 | 0.816 | 0.281 | 22 | 0.923 | 0.22 | 25.137 | 0.977 | 0.153 | ||
MLEM + NLM | 19.99 | 0.811 | 0.277 | 25 | 0.929 | 0.151 | 27.853 | 0.969 | 0.112 | ||
CNN | 17.539 | 0.841 | 0.367 | 27 | 0.956 | 0.12 | 30.034 | 0.982 | 0.087 | ||
GAN | 19.916 | 0.877 | 0.279 | 28 | 0.963 | 0.114 | 30.679 | 0.983 | 0.068 | ||
LCPR-Net | 21.956 | 0.887 | 0.224 | 29 | 0.965 | 0.102 | 32.203 | 0.986 | 0.061 |
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; rRMSE, relative root mean square error; MLEM, maximum-likelihood expectation-maximization; NLM, nonlocal means; CNN, convolutional neural network; GAN, generative adversarial network; LCPR-Net, low-count positron emission tomography image reconstruction network.