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Abstract

The gene expression program underlying the specification of human cell types is of fundamental 

interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal 
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tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples 

representing 15 organs, profiling ~4 million single cells. We leveraged the literature and other 

atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. 

Our analyses focus on organ-specific specializations of broadly distributed cell types (e.g. blood, 

endothelial, epithelial), sites of fetal erythropoiesis (which surprisingly included the adrenal gland) 

and integration with mouse developmental atlases (e.g. conserved specification of blood cells). 

These data comprise a rich resource for the exploration of in vivo human gene expression in 

diverse tissues and cell types.

One Sentence Summary:

We report a human cell atlas of fetal gene expression spanning 15 organs.

To date, most investigations of human development have been anatomical or histological (1–

3). However, it is clear that variation in the genetic and molecular programs unfolding within 

cells during development can cause disease. For example, the vast majority of Mendelian 

disorders have a major developmental component (4). More common and often devastating 

developmental conditions to which genetic factors substantially contribute include 

congenital heart defects, other birth defects, intellectual disability, and autism (5).

Several challenges have historically limited the study of developing human tissues at the 

molecular level. First, access to human embryonic and fetal tissues is limited. Second, even 

when available, the tissues are usually fixed and nucleic acids degraded. Third, until 

recently, most molecular studies of complex tissues have been confounded by cell type 

heterogeneity. For these reasons, contemporary knowledge of the molecular basis of in vivo 
human development mostly derives from a combination of human genetics (in particular, of 

Mendelian disorders), in vivo investigations of model organisms (in particular, of the 

mouse), and in vitro studies of differentiating human cell lines (in particular, of embryonic 

or induced pluripotent stem cells), rather than direct investigations of developing human 

tissues.

A reference human cell atlas based on developing tissues could serve as the foundation for a 

systematic effort to better understand the molecular and cellular events that give rise to all 

rare and common disorders of development, which collectively account for a major 

proportion of pediatric morbidity and mortality (6, 7). Furthermore, although pioneering cell 

atlases have already been reported for many adult human organs (8, 9), developing tissues 

may provide better opportunities to study the in vivo emergence and differentiation of 

human cell types. Relative to embryonic and fetal tissues, adult tissues are dominated by 

differentiated cells, and many cell states are not represented. By better resolving cell types 

and their trajectories, single cell atlases generated from developing tissues could broadly 

inform our basic understanding of human biology, as well as strategies for cell 

reprogramming and cell therapy.

As one step towards a comprehensive cell atlas of human development (10), we set out to 

generate single cell atlases of both gene expression and chromatin accessibility using diverse 

human tissues obtained during midgestation (DESCARTES = DEvelopmental Single Cell 
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Atlas of gene RegulaTion and ExpreSion; descartes.brotmanbaty.org). For gene expression, 

we applied three-level single cell combinatorial indexing (sci-RNA-seq3) (11) to 121 fetal 

tissues representing 15 organs, altogether profiling gene expression in 5 million cells (Fig. 

1A; Table S1). We also measured chromatin accessibility in 1.6 million cells from the same 

organs, using an overlapping set of samples (12). The profiled organs span diverse systems. 

However some systems were not accessible; bone marrow, bone, gonads, and skin are most 

notably absent.

Tissues were obtained from 28 fetuses ranging from 72–129 days in estimated post-

conceptual age. We applied a method for extracting nuclei directly from cryopreserved 

tissues that works across a variety of tissue types and produces homogenates suitable for 

both sci-RNA-seq3 and sci-ATAC-seq3 (12). For most organs, extracted nuclei were fixed 

with paraformaldehyde. For renal and digestive organs where RNases and proteases are 

abundant, we used fixed cells rather than nuclei, which increased cell and mRNA recovery 

(13). For each experiment, nuclei or cells from a given tissue were deposited to different 

wells, such that the first index of sci-RNA-seq3 protocol also identified the source. As a 

batch control for experiments on nuclei, we spiked a mixture of human HEK293T and 

mouse NIH/3T3 nuclei, or nuclei from a common sentinel tissue (trisomy 21 cerebrum), into 

one or several wells. As a batch control for experiments on cells, we spiked cells derived 

from a tissue (pancreas) into one or several wells.

We sequenced sci-RNA-seq3 libraries from 7 experiments across 7 Illumina NovaSeq™ 

6000 sequencer runs, altogether generating 68.6 billion raw reads. Processing data as 

described previously (11), we recovered 4,979,593 single cell gene expression profiles (UMI 

> 250) (File S1–3). Single cell transcriptomes from human-mouse control wells were 

overwhelmingly species-coherent (~5% collisions) (Fig. S1A). Uniform manifold 

approximation and projection (UMAP) (14) of nuclei or cells from the sentinel tissues 

indicated that cell type differences dominated over inter-experimental batch effects (Fig. 

S1B–C). Integrated analysis (15) of nuclei and cells from the common pancreatic tissue also 

resulted in highly overlapping distributions (Fig. S1D).

We profiled a median of 72,241 cells or nuclei per organ (Fig. 1A; max 2,005,512 

(cerebrum); min 12,611 (thymus)). Despite shallow sequencing (~14,000 raw reads per cell) 

relative to other large-scale scRNA-seq atlases (16–19), we recovered a comparable number 

of UMIs per cell or nucleus (median 863 UMIs and 524 genes not including cultured cells; 

Fig. S1E). As expected, nuclei exhibited a higher proportion of UMIs mapping to introns 

than cells (56% for nuclei; 45% for cells; p < 2.2e-16, two-sided Wilcoxon rank sum test). 

We henceforth use “cells” to refer to both cells and nuclei unless otherwise stated.

Tissues were readily identified as deriving from a male (n=14) or female (n=14) by sex-

specific gene expression (Fig. S1F). Each of the 15 organs was represented by multiple 

samples (median 8) including at least two of each sex (Fig. S1G), and over a range of 

estimated post-conceptual ages (Fig. 1B). “Pseudo-bulk” transcriptomes clustered by organ 

rather than individual or experiment (Fig. S1H; File S4–5). About half of expressed, protein-

coding transcripts were differentially expressed across pseudo-bulk transcriptomes (11,766 

of 20,033; FDR of 5%; Table S2).
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We applied Scrublet (20) to detect 6.4% likely doublet cells, corresponding to a doublet 

estimate of 12.6% including both within-cluster and between-cluster doublets (Fig. S1I). We 

then applied a scalable strategy that we previously developed (11) to remove low-quality 

cells, doublet-enriched clusters and the spiked-in HEK293T and NIH/3T3 cells. All analyses 

below focus on the 4,062,980 human single cell gene expression profiles, derived from 112 

fetal tissue samples, that remained after this filtering step.

Identification and annotation of 77 main cell types

Using Monocle 3 (11), we subjected single cell gene expression profiles to UMAP 

visualization and Louvain clustering on a per-organ basis. Altogether, we initially identified 

and annotated 172 cell types based on cell type-specific marker gene expression (16, 21–84) 

(Fig. 1C; Table S3; File S6–7). Collapsing common annotations across tissues, these reduced 

to 77 main cell types, 54 of which were observed in only a single organ (e.g. Purkinje 

neurons in cerebellum), and 23 in multiple organs (e.g. vascular endothelial cells in every 

organ). There were 15 cell types that we were unable to annotate during our manual, organ-

by-organ review (the subset named by pairs of markers in Fig. 1C); these are discussed 

further below and in (85). These 77 main cell types were represented by a median of 4,829 

cells, and ranged from 1,258,818 cells (excitatory neurons in the cerebrum) to only 68 cells 

(SLC26A4+, PAEP+ positive cells in the adrenal gland) (Fig. S2A). Each main cell type was 

observed in multiple individuals (median 9; Fig. S2B). We recovered nearly all major cell 

types identified by previous atlasing efforts directed at the same organs, despite differences 

with respect to species, stage of development and technology (16, 23, 28, 33, 35, 51, 69, 72, 

86–88). We identified a median of 12 main cell types per organ, ranging from 5 (thymus) to 

16 (eye, heart and stomach). We did not observe a correlation between the number of 

profiled cells and the number of identified cell types (Spearman ρ = −0.10, p = 0.74).

On average, we identified 11 marker genes per main cell type (min 0, max 294; defined as 

differentially expressed genes with at least 5-fold difference between first and second ranked 

cell type with respect to expression; FDR of 5%; Fig. S2C; Table S4). There were several 

cell types that lacked marker genes at this threshold due to highly related cell types in other 

organs (e.g. enteric glia vs. Schwann cells). For this reason, we also report sets of “within-

tissue marker genes”, determined by the same procedure but on an organ-by-organ basis 

(average 147 markers per cell type; min 12, max 778; Fig. S2D; Table S5). An interactive 

website facilitates the exploration of these data by tissue, cell type, or gene 

(descartes.brotmanbaty.org).

Although canonical markers were generally observed and indeed critical for our annotation 

process, to our knowledge, the vast majority of observed markers have not been identified in 

prior studies. For example, OLR1, SIGLEC10 and noncoding RNA RP11–480C22.1 are 

amongst the strongest markers of microglia, together with more established microglial 

markers such as CLEC7A (89), TLR7 (90), and CCL3 (91). As anticipated, given that these 

tissues are undergoing development, many of the 77 main cell types include states 

progressing from precursors to one or several terminally differentiated cell types. For 

example, cerebral excitatory neurons exhibited a continuous trajectory from PAX6+ 

neuronal progenitors to NEUROD6+ differentiating neurons (92) to SLC17A7+ mature 
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neurons (93) (Fig. S2E–F). In the liver, hepatic progenitors (DLK1+, KRT8+, KRT18+) (94, 

95) exhibited a continuous trajectory to functional hepatoblasts (SLC22A25+, ACSS2+, 

ASS1+) (Fig. S2G–H) (96–98). In contrast with mouse organogenesis, wherein the 

maturation of the transcriptional program is tightly coupled to developmental time (11), cell 

state trajectories were inconsistently correlated with estimated post-conceptual ages in these 

data (Fig. S2I–J). A potential explanation is that gene expression is markedly more dynamic 

during embryonic than fetal development. However, it is also possible that inaccuracies in 

the estimated post-conceptual ages confound our resolution.

In addition to these manual annotations of cell types, we also generated semi-automated 

classifiers for each organ using Garnett (99). The Garnett classifiers were generated agnostic 

of previous clustering with marker genes separately compiled from the literature (99). 

Classifications by Garnett were concordant with manual classifications (Fig. S3A). Using 

the Garnett models trained on these data, we were able to accurately classify cell types from 

other single cell datasets, including data generated with different methods as well as from 

adult organs. When we applied the classifier for pancreas to inDrop single cell RNA-seq 

data (100), Garnett correctly annotated 82% of the cells (cluster-extended; 11% incorrect, 

8% unclassified) (Fig S3B). These models can broadly be used for the automated cell type 

classification of single cell data from diverse organs (Fig. S3C; descartes.brotmanbaty.org ).

We next evaluated the specificity of our main cell types by intra-dataset cross-validation 

with an SVM classifier (101). In this framework, high cross-validation precision/recall 

values indicate that cells derived from a given cluster can robustly be reassigned to that 

cluster; we thus use high F1 scores as a proxy for identifying cell clusters as valid “types”, at 

least in the setting of the tissue in which they were identified. We first evaluated this 

approach on the kidney. As expected, annotated kidney cell types have much higher 

specificity scores (median 0.99) than control cell types in which cell labels are permuted 

before cross-validation (median 0.17) (Figs. 2A (leftmost panel only); 2B (left panel only); 

S4A; Table S3).

We then applied this approach to cells from each organ. Once again, annotated main cell 

types exhibited much higher specificity scores than permuted cell types (Figs. 2C; S4B; 

median 0.99 vs. 0.10, p-value < 2.2e-16, two-sided Wilcoxon rank sum test). Despite smaller 

numbers of cells, most of the 15 initially unannotated cell types also exhibited high 

specificity scores (median 0.98). The exceptions are probably better described as subtypes of 

other cell types (discussed further below and in (85)). We also applied this method to the 

consolidated set of 77 main cell types (i.e. rather than organ-by-organ) with similar results 

(Fig. S4C).

Automated preliminary annotation of cell subtypes

To identify cell subtypes, we performed unsupervised clustering on main cell types with 

>1,000 cells in any given tissue. For each main cell type in each tissue, we first applied batch 

correction (102) followed by dimensionality reduction and Louvain clustering (Fig. 2A). 

After merging clusters that were not readily distinguishable by the intra-dataset cross-

validation procedure described above, a total of 657 cell subtypes were identified across the 

Cao et al. Page 5

Science. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://descartes.brotmanbaty.org


15 tissues, with a median of 824 cells in each. All subtypes were composed of cells 

contributed by at least two individuals (median 7). Unsurprisingly given the procedure used 

for merging clusters, these subtypes have higher specificity scores than permuted controls 

(median 0.77 vs. 0.13, p-value < 2.2e-16, two-sided Wilcoxon rank sum test; Fig. 2C).

We next sought to leverage existing mouse cell atlases to annotate these human subtypes in 

an automated fashion. With a cell type cross-matching method that we previously developed 

(11), we could match 605 of 606 (99%) human cell subtypes to at least one cell type in 

corresponding fetal and/or adult tissues from the mouse cell atlas (MCA) (16) (specificity 

score beta > 0.01, the same threshold that we used to align against MCA previously; 51 

adrenal subtypes excluded because corresponding MCA tissue not available) (Table S6; Fig. 

S5–8). In addition, 77 of 148 (52%) cerebral or cerebellar subtypes matched to at least one 

adult cell type from the mouse brain cell atlas (MBCA) (Fig. S9) (50).

Despite the species difference, many human cell subtypes matched 1:1 with mouse cell 

types. For example, diverse epithelial subtypes in the human kidney matched 1:1 with 

annotated MCA cell types (Fig. 2A), while diverse neuronal subtypes in the human 

cerebrum matched 1:1 with annotated MBCA cell types (Fig. S9). Of note, although there 

were many sets of human subtypes that matched a single MCA or MBCA cell type (e.g. 

hepatoblasts in Fig. S5; oligodendrocytes in Fig. S9), these likely reflect bonafide 

heterogeneity as evidenced by their specificity scores (Fig. 2C). Additional work is 

necessary to annotate such subtypes with greater granularity.

Integration across tissues and investigation of initially unannotated cell 

types

We next sought to integrate data and compare cell types across all 15 organs. To mitigate the 

effects of gross differences in sampling, we randomly sampled 5,000 cells per cell type per 

organ (or in cases where less than 5,000 cells of a given cell type were represented in a given 

organ, all cells were taken), and performed UMAP visualization (Figs. 3A; S10A). As 

expected, cell types represented in multiple organs, as well as developmentally related cell 

types, tended to colocalize. Many surface proteins (4,565 of 5,480), secreted proteins (2,491 

of 2,933), transcription factors (1,715 of 1,984) and noncoding RNAs (3,130 of 10,695) 

were differentially expressed across the 77 main cell types (FDR of 0.05; Fig. 3B; Table S4; 

descartes.brotmanbaty.org). The expression patterns of noncoding RNAs were notably 

sufficient to separate cell types into developmentally coherent groups (Fig. S10B–C).

As noted above, there were 15 cell types that we were unable to annotate during our manual, 

organ-by-organ review (the subset named by pairs of markers in Fig. 1C). To shed light on 

these, we examined their distribution in the global UMAP (Fig. 3A), whether they matched 

to annotated cell types in MCA or MBCA (Figs. S5–9), their distribution across tissues 

derived from different individuals (Fig. S11A), and their potential for maternal origin (Fig. 

S11B).

These further analyses enabled us to annotate 8 of the 15 (85). For example, rare CSH1+, 

CSH2+ cells in the lung and adrenal gland (two of the most deeply profiled organs) are 
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highly similar to placental trophoblasts, e.g. expressing high levels of placental lactogen, 

chorionic gonadotropin, and aromatase (Fig. 3A; (85)). AFP+, ALB+ cells in the placenta 

and spleen resemble hepatoblasts, e.g. expressing high levels of serum albumin, alpha 

fetoprotein, and apolipoproteins (Fig. 3A; (85)); at least in the placenta, similar hepatoblast-

like, AFP+, ALB+ cells were observed in the mouse (Fig. S5). Followup immunostaining 

studies supported the presence of these trophoblast-like and hepatoblast-like cells in the 

adrenal gland and spleen, respectively (Fig. 3C–D; S12). Given that these cell types are 

rarely but recurrently observed in several organs, they potentially correspond to circulating 

trophoblasts and circulating hepatoblasts.

In males, both IGFBP1+, DKK1+ and PAEP+, MECOM+ cells in the placenta expressed 

appreciable levels of XIST or TSIX (Fig. 12B); upon further review of markers, these 

correspond to maternal decidualized stromal cells and maternal endometrial epithelial cells, 

respectively. This conclusion is supported by maternal genotypes in the corresponding cell 

types in chromatin accessibility data (12).

Several additional cell types were annotated through strong matches to MCA or MBCA 

(Fig. S13) or through their position in the global UMAP coupled with additional literature 

review (Fig. 3A; (85)); these include STC2+, TLX1+ cells, which are abundant in the spleen 

and express genes associated with mesenchymal precursor or stem cells (103–105). Of the 

remaining 7 initially unannotated cell types, 4 would likely better be classified as subtypes 

(and correspondingly, these tended to have lower specificity scores), while 3 have high 

specificity scores but remain ambiguous (85).

Characterization of blood lineage development across organs

The nature of this dataset creates an opportunity to systematically investigate organ-specific 

differences in gene expression within broadly distributed cell types, e.g. blood cells. We re-

clustered 103,766 cells, derived from all 15 organs, that corresponded to hematopoietic cell 

types (Fig. 4A). We then performed Louvain clustering and further annotated fine-grained 

blood cell types, in some cases identifying very rare cell types (Fig. 4B). For example, 

myeloid cells separate into microglia, macrophages and diverse dendritic cell subtypes 

(CD1C+, S100A9+, CLEC9A+ and pDCs) (106). The microglial cluster primarily derives 

from brain tissues, and is well separated from macrophages, consistent with their distinct 

developmental trajectories (107). Lymphoid cells clustered into several groups including B 

cells, NK cells, ILC 3 cells, and T cells, the latter including the thymopoiesis trajectory. We 

also recovered very rare cell types such as plasma cells (139 cells, mostly in placenta and 

comprising 0.1% of all blood cells or 0.003% of the full dataset) and TRAF1+ APCs (189 

cells, mostly in thymus and heart and comprising 0.2% of all blood cells or 0.005% of the 

full dataset).

To validate these annotations, we integrated fetal blood cells from all organs with an scRNA-

seq atlas of blood cells from the fetal liver (108) (Figs. 4C, left; S14A). Despite different 

methods, corresponding cell types from two datasets were highly overlapping; this was also 

the case upon integration analysis with another scRNA-seq dataset of 1,231 human 

embryonic blood cells (109)(Fig. S14B). Of note, some extremely rare cell types identified 
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through CD45+ FACS enrichment (e.g. VCAM1+ EI macrophages, monocyte precursors, 

neutrophil-myeloid progenitors) were not annotated in our data. On the other hand, we 

capture fetal blood cells derived from tissues other than the liver, e.g. microglia in the brain; 

T and B cells in the thymus and spleen, respectively. Furthermore, as they span multiple 

organs, we are better able to capture cell state transition paths from hematopoietic stem/

progenitor cells (HSPCs) to lymphoid cells than a single organ study (Fig. 4C, right).

Although gene expression markers for different immune cell types have been extensively 

studied, these may be limited by their definition via a restricted set of organs or cell types. 

Indeed, here we find that many conventional immune cell markers were expressed in 

multiple cell types. For example, conventional markers for T cells (110–112) were also 

expressed in macrophages and dendritic cells (CD4) or NK cells (CD8A), consistent with 

other studies (113) (Fig. S14C). We computed pan-organ cell type-specific markers across 

14 blood cell types (Fig. 4D; Table S7). From this we observed that T cells specifically 

expressed CD8B and CD5 (114) as expected, but also TENM1 (Figs. 4D; S14C). ILC 3 

cells, whose annotation was determined on the basis of their expression of RORC (115) and 

KIT (116), were more specifically marked by SORCS1 and JMY (Figs. 4D; S14C). These 

and other markers identified by pan-organ analysis may be useful for labeling and purifying 

specific blood cell types.

As expected, different organs showed varied proportions of blood cells (Fig. 4E). For 

example, the liver contained the highest proportion of erythroblasts, consistent with its role 

as the primary site of fetal erythropoiesis (117), while T cells were enriched in the thymus 

and B cells in the spleen. Nearly all blood cells recovered from the cerebellum and cerebrum 

were microglia. The tissue distribution of ILC 3 cells as well as subtypes of dendritic cells 

was captured as well (Figs. 4E; S14D). Pan-organ analysis also enabled the identification of 

rare cell populations in specific organs. We identified rare HSPCs in the liver, but also rare 

cells that are transcriptionally similar to HSPCs in the lung, spleen, thymus, heart, intestine, 

adrenal gland and other organs (Fig. S15). Sub-clustering analyses showed that HSPCs 

outside of the liver, as well as a subset of liver HSPCs, expressed differentiation markers 

such as LYZ (118), ACTG1 (119) and ANK1 (120), while most liver HSPCs expressed 

MECOM and NRIP1, both required for the maintenance and function of normal quiescent 

HSPCs (121, 122) (Fig. S15).

Focusing on erythropoiesis, we observed a continuous trajectory from HSPCs to an 

intermediate cell type, Erythroid-Basophil-Megakaryocyte biased Progenitors (EBMP), 

which then split to erythroid, basophilic and megakaryocytic trajectories (Fig. 5A; Table S8), 

consistent with a recent study of mouse fetal liver (123, 124). This consistency was despite 

differences in species (human vs. mouse), techniques (sci-RNA-seq3 vs. 10x) and tissues 

(pan-organ vs. liver-only). With unsupervised clustering and adopting terminology from that 

study (123), we further partitioned the continuum of erythroid states into three stages: early 

erythroid progenitors (EEPs; marked by SLC16A9 and FAM178B), committed erythroid 

progenitors (CEPs; marked by KIF18B and KIF15), and cells in the erythroid terminal 

differentiation state (ETDs; marked by TMCC2 and HBB) (Fig. 5B). Early and late stages of 

megakaryocytic cells were also readily identified (Fig. 5A–B).
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As expected given their established role in fetal erythropoiesis, a portion of blood cells in the 

liver and spleen corresponded to EEPs, CEPs and megakaryocyte progenitors (125). Of note, 

we also observed EEPs, CEPs and megakaryocyte progenitors in the adrenal gland, in every 

sample studied (Figs. 5C; S16A). Because we do not observe cell types that are more 

common in the liver and spleen, trivial contamination during recovery of adrenal glands is 

an unlikely explanation. While occasional islands of extramedullary hematopoiesis have 

been observed in the adrenal glands of human embryos (126, 127), the consistency across 

individuals led us to further investigate whether the adrenal glands may serve as a normal 

site of erythropoiesis in mammals. Immunohistochemical analysis of human fetal adrenal 

tissues showed nucleated GYPA+ cells outside CD34+ blood vessels (Fig. 5D; S16B). We 

further used imaging flow cytometry to visualize and enumerate maturing erythroid 

precursors and enucleated erythrocytes (128) in the perinatal period of the mouse. 

Approximately 8% of viable dissociated cells from the adrenal gland consisted of maturing 

erythroblasts, compared to 0.2% in the kidney (Fig. 5E). Also consistent with the adrenal 

gland being a site of ongoing erythropoiesis, its distribution of immature to mature 

erythroblasts matched closely with that of the bone marrow of adult mice (Fig. 5E–F).

Macrophages were even more widely distributed. We collated all macrophages, together 

with microglia from the brain, and subjected them to UMAP visualization and Louvain 

clustering, independent of other cell types (Figs. 5G–H; S16C; Table S9). Interestingly, 

microglia were divided into three sub-clusters, one of which, marked by IL1B and 

TNFRSF10D, likely represents activated microglia expressing pro-inflammatory cytokines 

involved in the normal development of the nervous system (129, 130). The other microglial 

clusters were marked by expression of TMEM119 and CX3CR1 (131) (more common in 

cerebrum) or PTPRG and CDC14B (132) (more common in cerebellum).

The macrophages outside the brain clustered into three major groups (Figs. 5G–H; S16C; 

Table S9): 1) antigen-presenting macrophages, found mostly in GI tract organs (intestine and 

stomach) and marked by high expression of antigen-presenting (e.g. HLA-DPB1, HLA-
DQA1) and inflammatory activation (e.g. AHR (133)) genes; 2) perivascular macrophages, 

found in most organs, with specific expression of markers such as F13A1 (134) and 

COLEC12 (135), as well as novel markers such as RNASE1 and LYVE1. 3) phagocytic 

macrophages, enriched in the liver, spleen and adrenal gland (Fig. 5I), with specific 

expression of markers such as CD5L (136), TIMD4 (137) and VCAM1 (138). Phagocytic 

macrophages are critical for removing the pyrenocytes (the so-called ‘extruded nucleus’) 

following enucleation of late-stage erythroblasts to form reticulocytes; their observation in 

the adrenal gland is consistent with its aforementioned potential role as an additional site of 

normal fetal erythropoiesis.

Further below, we leverage integration with a mouse atlas of organogenesis (11) to 

investigate the conserved program of blood cell specification and developmental origins of 

microglia and macrophages.
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Characterization of endothelial and epithelial cells across organs

As a second analysis of a single class of cells across many organs, we reclustered 89,291 

endothelial cells (ECs) that correspond to vascular endothelium (VECs), lymphatic 

endothelium (LECs) or endocardium. These three groups readily separated from one 

another, and VECs further clustered, at least to some degree, by organ (Fig. S17A–C). That 

organ-specific differences are more readily detected than differences between arteries, 

capillaries and veins, is consistent with previous cell atlases of the adult mouse (16, 28). We 

performed an integrative analysis of ECs from human fetal (this study) and mouse adult 

(139) tissues (Fig. S17D–E). Both human and mouse ECs separated first by vascular vs. 

lymphatic vs. endocardial, and then by organ. VECs from the same tissue were generally 

clustered together despite differences with respect to species, developmental stage and 

technique. Conserved markers of organ-specific ECs were readily identified (Fig. S17F) 

(140).

Differential gene expression analysis identified 700 markers that are specifically expressed 

in a subset of ECs (FDR of 0.05, over 2-fold expression difference between first and second 

ranked cluster) (Fig. S17G; Table S10). About one-third of these encoded membrane 

proteins, many of which appeared to correspond to potential specialized functions (12, 141–

143). In agreement observations in mouse (139), brain ECs specifically expressed gene sets 

involved in amino acid transport (q-value = 5.6e-10) and carboxylic acid transport (q-value = 

4.2e-8); lung ECs specifically expressed gene sets involved in cAMP (q-value = 8.2e-3) and 

cyclic nucleotide (q-value = 1.4e-2) catabolism, and vascular ECs from the GI tract, heart 

and muscle specifically expressed gene sets involved in stem cell differentiation (q-value = 

3.7e-2). Potentially underlying these differences, human fetal ECs expressed distinct sets of 

TFs (Fig. S17H). For example, LECs specifically expressed TBX1, brain VECs specifically 

expressed FOXQ1 and FOXF2, and liver VECs specifically expressed DAB2, all consistent 

with observations in mice (139, 144, 145).

As a third analysis of a broadly distributed type of cell, we reclustered 282,262 epithelial 

cells, derived from all organs, and subjected these to UMAP visualization (Fig. S18A–B). 

While some epithelial cell types were highly organ-specific, e.g. acinar (pancreas) and 

alveolar cells (lung), epithelial cells with similar functions generally clustered together (Fig. 

S18C).

Within epithelial cells, two neuroendocrine cell clusters were identified (Fig. S18C). The 

simpler of these corresponded to adrenal chromaffin cells and was marked by the specific 

expression of HMX1 (NKX-5–3), a TF involved in sympathetic neuron diversification (146). 

The other cluster comprised neuroendocrine cells from multiple organs (stomach, intestine, 

pancreas, lung) and was marked by specific expression of NKX2–2, a TF with a key role in 

pancreatic islet and enteroendocrine differentiation (147). We performed further analysis on 

the latter group, identifying five subsets (Fig. S18D–F): 1) pancreatic islet beta cells, marked 

by insulin expression; 2) pancreatic islet alpha/gamma cells, marked by pancreatic 

polypeptide and glucagon expression; 3) pancreatic islet delta cells, marked by somatostatin 

expression; 4) pulmonary neuroendocrine cells (PNECs), marked by expression of ASCL1 
and NKX2–1, both TFs with key roles in specifying this lineage in the lung (148, 149); and 
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5) enteroendocrine cells. Enteroendocrine cells further comprised several subsets including 

NEUROG-expressing pancreatic islet epsilon progenitors (150, 151), TPH1-expressing 

enterochromaffin cells in both the stomach and intestine (152), gastrin- or cholecystokinin-

expressing G/L/K/I cells (152). Finally, we observed ghrelin-expressing enteroendocrine 

progenitors in the stomach and intestine (151, 153), but also ghrelin-expressing endocrine 

cells in the developing lung (154) (Fig. S18F). The diverse functions of neuroendocrine cells 

are closely linked with their secreted proteins; we identified 1,086 secreted protein-coding 

genes differentially expressed across neuroendocrine cells (FDR of 0.05) (Fig. S18G; Table 

S11). For example, PNECs showed specific expression of trefoil factor 3, involved in 

mucosal protection and lung ciliated cell differentiation (155), gastrin-releasing peptide, 

which stimulates gastrin release from G cells in the stomach (156), and SCGB3A2, a 

surfactant associated with lung development (157).

As an illustrative example of how these data can be used to explore cell trajectories, we 

further investigated the path of epithelial cell diversification leading to renal tubule cells. 

Combining and reclustering ureteric bud and metanephric cells, we identified both 

progenitor and terminal renal epithelial cell types, with differentiation paths that are highly 

consistent with a recent study of the human fetal kidney (158) (Fig. S19A). By differential 

gene expression analysis, we further identified TFs potentially regulating their specification 

(Fig. S19B; Table S12). For example, nephron progenitors in the metanephric trajectory 

specifically expressed high levels of mesenchyme and meis homeobox genes (MEOX1, 
MEIS1, MEIS2) (159), while podocytes specifically expressed MAFB and TCF21/POD1 
(160, 161). As another example, HNF4A was specifically expressed in proximal tubule cells; 

a mutation of this gene causes Fanconi renotubular syndrome, a disease that specifically 

affects the proximal tubule, and HNF4A was recently shown to be required for formation of 

the proximal tubule in mice (162).

Integration of human and mouse developmental atlases

The transition from embryonic to fetal development is of considerable interest, but access to 

human embryonic tissues is even more limited than fetal tissues. To again leverage the 

mouse, we sought to integrate these human fetal data with a mouse organogenesis cell atlas 

(MOCA), for which we previously profiled 2 million cells from undissected embryos 

spanning E9.5 to E13.5 (11). For context, this window corresponds to days 22–44 of human 

development (163, 164), while the tissues studied here are estimated to derive from days 72–

129.

First, we compared the 77 main cell types defined here against the developmental 

trajectories of organogenesis defined by MOCA via cell type cross-matching method (11). 

Most human cell types strongly matched to a single major mouse trajectory and sub-

trajectory (Fig. S20; Tables S13–14). These generally corresponded to expectation, although 

a few discrepancies facilitated important corrections to MOCA (see Figs. S20–21 legends). 

Many human cell types and mouse trajectories that lacked strong 1:1 matches (summed 

NNLS regression coefficients < 0.6) corresponded to tissues excluded in the other dataset 

(e.g. mouse placenta; human skin and gonads). Other ambiguities probably follow from the 

gap between the developmental windows studied (e.g. adrenal cell types), rarity (e.g. bipolar 
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cells) and/or complex developmental relationships (e.g. fetal cell types that derive from 

multiple embryonic trajectories).

Second, we sought to directly co-embed human and mouse cells together. In brief, we 

sampled 100,000 mouse embryonic cells from MOCA (randomly) and ~65,000 human fetal 

cells (max 1,000 cells from each of 77 cell types) and subjected these to integrated analysis 

(15). The distribution of mouse cells in the resulting UMAP visualization was similar to our 

global analysis of MOCA (Figs. 6A–C; S21–S23) (11). Furthermore, despite the species 

difference, human fetal cells were overwhelmingly distributed in a manner that respected 

developmental relationships between cell types. For example, human fetal endothelial, 

hematopoietic, hepatic, epithelial and mesenchymal cells all mapped to the corresponding 

mouse embryonic trajectories (Fig. 6B; S21). Within each major trajectory, mouse cells 

order by successive time point (11), while human fetal cells appear to project from the last 

(E13.5) mouse embryonic time point (Fig. 6C). At the sub-trajectory level, seniscal 

mappings include human fetal intestinal epithelial cells emanating from the mouse midgut/

hindgut sub-trajectory; human fetal parietal and chief cells (stomach) and acinar and ductal 

cells (pancreas) emanating from the mouse foregut epithelial sub-trajectory; human fetal 

bronchiolar and alveolar epithelial cells emanating from the mouse lung epithelial trajectory; 

human fetal ureteric bud and metanephric cells emerging separately from the mouse 

embryonic renal epithelial trajectory; and many others (Figs. S21–23).

However, there were also a few surprises. For example, although CNS neurons mapped to 

the neural tube trajectory and ENS glia and Schwann cells to PNS glial trajectories, some 

neural crest derivatives including ENS neurons, visceral neurons, sympathoblasts and 

chromaffin cells clustered separately from the corresponding mouse embryonic trajectories 

(Figs. S21–23), potentially due to excessive differences between the developmental stages or 

between the species. Human fetal astrocytes clustered with the mouse embryonic neural 

epithelial trajectory (mouse astrocytes do not develop until E18.5 (165)). Human fetal 

oligodendrocytes overlap a rare mouse embryonic sub-trajectory (Pdgfra+ glia) that in 

retrospect is more likely to correspond to oligodendrocyte precursors (Olig1+, Olig2+, 

Brinp3+) (166, 167), and calls into question our previous annotation of a different Olig1+ 

sub-trajectory as oligodendrocyte precursors (11). These and other unexpected relationships 

merit further investigation.

To assess relationships between mouse embryonic and human fetal cells in greater detail, we 

applied the same strategy to extracted cells from the hematopoietic (Figs. 6D; S24), 

endothelial (Fig. S25) and epithelial (Fig. S26) trajectories. In these visualizations, we 

observe examples of the organ-resolved human data deconvoluting the “whole embryo” 

mouse data into more fine-grained subsets. For example, subsets of the mouse “white blood 

cell” embryonic sub-trajectory (11) map to specific human blood cell types such as HSPCs, 

microglia, macrophages (liver and spleen), macrophages (other organs) and DCs (Fig. 6D). 

These subsets were further validated by the expression of related blood cell markers (Fig. 

S24C) and annotated based on their human k-nearest-neighbours (k = 3) in the co-

embedding (Fig. S24D).
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Out of 1,087 human fetal blood cell type specific gene markers that are also differentially 

expressed across mouse blood cell types, 337 genes were differentially expressed (FDR of 

0.05) in the same cell type (Fig. 6E; Table S15; for comparison, only 12 genes intersected 

after permutations of labels). 28 of these 337 conserved markers were TFs, 24 of which have 

been previously reported to be involved in early blood cell differentiation or maintenance for 

target cell types, e.g. HLF as a critical regulator of HSPCs quiescence (168), MITF as 

driving mast cell differentiation (169), PAX5 as a master regulator of B cell development 

(170), and SOX6 as enhancing the differentiation of erythroid progenitors (171). However, 4 

of the 28 conserved marker TFs have not been previously characterized in the relevant 

context -- NR1D2 in IL 3 cells, TCF7L2 in macrophages, FHL2 in megakaryoblasts, and 

NUAK1 in microglia.

In this same analysis, human fetal macrophage and microglia form distinct clusters, but are 

connected by a subset of mouse cells from the white blood cell trajectory (Fig. 6D), 

consistent with previous studies showing that both cell types differentiate from yolk sac 

progenitors (172). To explore this further, we extracted and reanalyzed 4,327 mouse 

embryonic microglia and macrophages via unsupervised trajectory analysis (173). We 

observed three smooth cell differentiation trajectories from a common progenitor to 

microglia in the brain, phagocytic macrophages (TIMD4+, CD5L+; mostly in liver, spleen, 

adrenal), and perivascular macrophages (F13A1+, LYVE1+; widely distributed) (Fig. S27A; 

Fig. 5). The directionality of progression through pseudotime along each macrophage 

trajectory was consistent with real developmental time (Fig. S27B). 1,412 genes, including 

111 TFs, were differentially expressed in the three macrophage branches (Table S16). For 

example, the microglial trajectory showed elevated expression of BACH2 and RUNX3 as 

well as known microglial regulators SALL1 (174) and MEF2A (174, 175), perivascular 

macrophages of DAB2, and TCF7L2, phagocytic macrophages of MAFB and NR1H3 (Fig. 

S27C). Overall, these analyses illustrate how fetal annotations can be used to identify and 

characterize progenitors of specific lineages at developmental time points where they may be 

difficult to resolve on their own, even across species.

Discussion

Two centuries after the formulation of the cell theory -- the assertion that all living things 

consist of cells and that the cell is the most basic unit of life (176) -- we are on the cusp of 

cataloging and characterizing all cell types that constitute a human body, both in health and 

disease. To this end, the field of single cell biology is progressing at an astonishing rate, 

propelled by a synergy between new technologies and new computational methods to make 

sense of the data produced by those technologies. In the past few years alone, this synergy 

has enabled compelling and informative single cell atlases of many human organs as well as 

of entire model organisms (11, 51, 69, 108, 153, 177–183).

Human development is a remarkable process that begins with a fertilized zygote and 

proceeds through a germinal stage followed by embryogenesis. By the end of the tenth 

week, the embryo has acquired its basic form, and is termed a fetus. For the following thirty 

weeks, all organs continue to grow and mature, with diverse terminally differentiated cell 

types arising from their progenitors. Although the germinal and embryogenesis stages have 
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been intensively profiled with single cell methods in humans or mice (11, 181, 182), it has 

been more challenging to profile the fetal stage. Although several single cell studies of 

human fetal development recently appeared (153, 183–185), these are restricted to individual 

organs or cell lineages, and fail to obtain a comprehensive view.

In this study, together with (12), we set out to generate single cell atlases of gene expression 

and chromatin accessibility using diverse tissues obtained during human fetal development. 

From 15 distinct organs, we successfully profiled gene expression in ~4 million single cells 

and chromatin accessibility in ~800,000 single cells. Important limitations of these datasets 

include non-uniform sampling (i.e. more cells profiled in some organs than others), missing 

tissues (most notably, bone marrow, skin, bone, gonads), relatively low sequencing depth 

and the sparsity of single cell molecular profiles. Nonetheless, we notably identified 

hundreds of cell types and subtypes that are supported by both a framework for quantifying 

specificity as well as by matching nearly all of them to cell types or subtypes from published 

mouse atlases.

In contrast with organ-specific studies, the diversity of tissues profiled here enabled cross-

tissue comparisons of broadly distributed cell types. We emphasize that our process for 

annotating cell types benefited tremendously from the myriad single cell atlases of specific 

human organs or other mammals that have been generated to date (8, 9, 11, 16, 28, 50, 108, 

139). Of course, decisions in the annotation process can be subjective (e.g. over- vs. under-

clustering), and both cell type and subtype annotations made here should be considered 

preliminary and subject to revision.

The apparent hematopoiesis that we observe in the fetal adrenal gland is consistent with the 

fact that the adrenal gland, along with many other organs (e.g. spleen, liver, and lymph 

nodes), can serve as a site of extramedullary hematopoiesis in adults with pathologic 

conditions that lead to an increased demand for blood cell production, particularly 

hemoglobinopathies (186, 187). While occasional islands of extramedullary hematopoiesis 

have been seen in the adrenal glands of human embryos (126, 127), our findings both in the 

human and mouse provide quantitative evidence that the adrenal gland serves as a normal, 

albeit minor, site of erythropoiesis during a developmental window that overlaps with the 

transition of hematopoiesis from the liver to the marrow.

An additional surprise, at least to us, was the ease with which we were able to integrate 

single cell profiles from mouse organogenesis and human fetal development, given that these 

represent different stages of mammalian development not to mention our separation from 

mice by >100 million years of evolution. The relatively straightforward alignment of the 

datasets highlights the extent of evolutionary constraint on the molecular programs of 

individual cell types, and furthermore lends support to long-standing use of the mouse as a 

powerful model system for studying human development.

Looking forward, we envision that the somewhat narrow window of midgestational human 

development studied here will be complemented by additional atlases of earlier and later 

timepoints (e.g. embryonic, adult), as well as similarly comprehensive profiling and 

integration of data from model organisms. The continued development and application of 
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methods for ascertaining gene expression and chromatin accessibility in concert with spatial, 

epigenetic, proteomic, lineage history, and other information, will necessary to obtain a 

comprehensive view of temporal unfolding of human cell type diversity that begins at the 

single cell zygote.

To date, investigations of human development have largely been indirect, with key molecular 

factors nominated by human genetics and then investigated in model organisms and/or in 
vitro systems. Knowledge of the in vivo landscape of gene expression and regulation has 

been limited. In filling part of this gap, we hope that this atlas will enable a better 

understanding of the molecular and cellular basis of both rare and common disorders of 

human development, while also informing the path to successful therapies.

Online Materials and methods

A more detailed version of materials and methods is provided with the supplementary 

materials.

sci-RNA-seq3

A more detailed version of the full sci-RNA-seq3 workflow is available on protocols.io 

(http://dx.doi.org/10.17504/protocols.io.9yih7ue) and in the supplementary materials.

Preparation of nuclei

Human fetal tissues (89 to 125 days estimated post-conceptual age) were obtained by the 

UW Birth Defects Research Laboratory (BDRL) under a protocol approved by the 

University of Washington Institutional Review Board. Tissues of interest were isolated and 

rinsed in 1X HBSS. Dried tissue was snap frozen in liquid nitrogen, manually pulverized on 

dry ice with a chilled hammer, aliquoted, and stored at −80°C until further processing. A 

subset of these aliquots were used for sci-RNA-seq3, and others for sci-ATAC-seq3, as 

described in the companion paper. For RNA-seq, nuclei from tissues and control cell lines 

were lysed in the cell lysis buffer and fixed with ice-cold 4% paraformaldehyde (EMS, 15–

4-100) based on the published sci-RNA-seq3 protocol (11). For human cell extraction in 

renal and digestive organs (kidney, pancreas, intestine, and stomach) and paraformaldehyde 

fixation, we followed the procedure described in (13).

Immunohistochemistry

Fetal tissues were fixed in formalin and embedded in paraffin. Sections of 4–5 μm thickness 

were cut and placed on Superfrost Plus slides (12–550-17, FisherBrand). For 

Immunohistochemistry, sections were subjected to heat mediated antigen retrieval (pH6.0) 

followed by blocking with normal serum. Primary antibodies were incubated overnight at 

4°C. The primary antibody we used: GYPA (R&D, MAB1228, 1:250), CD34 (R&D, 

AF7227, 1:250), CD34 (Novus, NBP2–32933, 1:250), ANXA1 (R&D, AF3770, 1:500), 

TNFRS10C (R&D, MAB6301, 1:500), AFP (Novus, NBP1–76275, 1:400), ALB (R&D, 

MAB1455, 1:10K), AHSG (R&D, AF1184, 1:400), and APOA1 (R&D, MAB36641, 

1:250). Species and subtype-appropriate fluorescent dye-labelled secondary antibodies were 

used (Alexa Fluor 488 and 594, 1:400, Jackson ImmunoResearch Lab) or biotinylated 
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secondary antibody were used followed by ABC Elite Systems (PK-6100, Vector Lab) for 

DAB chromogen staining.

sci-RNA-seq3 library construction and sequencing

The paraformaldehyde fixed nuclei were processed similarly to the published sci-RNA-seq3 

protocol (11). For paraformaldehyde fixed cells, frozen fixed cells were thawed on 37°C 

water bath, spun down at 500xg for 5 min, and incubated with 500ul PBSI (1 × PBS, pH 7.4, 

1% BSA, 1% SuperRnaseIn) including 0.2% Triton X-100 for 3min on ice. Cells were 

pelleted and resuspended in 500ul nuclease free water including 1% SuperRnaseIn. 3ml 

0.1N HCl were added into the cells for 5min incubation on ice (17). 3.5ml Tris-HCl (pH = 

8.0) and 35ul 10% Triton X-100 were added into cells to neutralize HCl. Cells were pelleted 

and washed with 1ml PBSR. Cells were pelleted and resuspended in 100ul PBSI. The 

following steps were similar with the sci-RNA-seq3 protocol (with paraformaldehyde fixed 

nuclei) with slight modifications: (1) We distributed 20,000 fixed cells (instead of 80,000 

nuclei) per well for reverse transcription. (2) We replaced all nuclei wash buffer in following 

steps with PBSI. (3) All nuclei dilution buffer were replaced with PBS + 1% BSA.

Processing of sequencing reads

Read alignment and gene count matrix generation for the single cell RNA-seq was 

performed using the pipeline that we developed for sci-RNA-seq3 (11) with minor 

modifications: Duplicates were removed using the unique molecular identifier (UMI) 

sequence (ED < 2, including insertions and deletions), reverse transcription (RT) index, 

hairpin ligation adaptor index and read 2 end-coordinate.

After the single cell gene count matrix was generated, cells with fewer than 250 UMIs were 

filtered out. Each cell was assigned to its original human fetal sample based on the RT 

barcode. Reads mapping to each fetus individual were aggregated to generate “pseudobulk 

RNA-seq” datasets. For sex assignments, we counted reads mapping to female-specific non-

coding RNA (TSIX and XIST) or chrY genes (except genes TBL1Y, RP11–424G14.1, 
NLGN4Y, AC010084.1, CD24P4, PCDH11Y, and TTTY14, which are detected in both 

males and females). Fetuses were readily separated into females (more reads mapping to 

TSIX and XIST than chrY genes) and males (more reads mapping to chrY genes than TSIX 
and XIST).

Clustering analysis of pseudobulk transcriptomes was done with Monocle 3/alpha (11). 

Briefly, an aggregated gene expression matrix was constructed as described above for human 

fetal organs from each individual. Samples with over 5,000 total UMIs were selected. The 

dimensionality of the data was reduced by PCA (10 components), first on the top 500 most 

highly dispersed genes and then with UMAP (max_components = 2, n_neighbors = 10, 

min_dist = 0.5, metric = ‘cosine’).

Cell filtering, clustering and marker gene identification

For the detection of potential doublet cells and doublet-derived subclusters from each organ, 

we used an iterative clustering strategy as shown before (11). For data visualization, cells 

labeled as doublets (by scrublet/v0.1 pipeline (189)) or from doublet-derived subclusters 
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were filtered out. For each cell, we only retain protein-coding genes, lincRNA genes and 

pseudogenes. Genes expressed in less than 10 cells and cells expressing less than 100 genes 

were further filtered out. The downstream dimension reduction and clustering analysis were 

done by Monocle 3/alpha with similar settings (11). Clusters were assigned to known cell 

types based on cell type-specific markers (Table S3). We found the above Scrublet and 

iterative clustering based approach is limited in marking cell doublets between abundant cell 

clusters and rare cell clusters (e.g. less than 1% of total cell population). To further remove 

such doublet cells, we took the cell clusters identified by Monocle 3 and first computed 

differentially expressed genes across cell clusters (within-organ) with the 

differentialGeneTest() function of Monocle 3. We then selected a gene set combining the top 

ten gene markers for each cell cluster (ordered by q-value and fold expression difference 

between first and second ranked cell cluster). Cells from each main cell cluster were selected 

for dimension reduction by PCA (10 components) first on the selected gene set of top cluster 

specific gene markers, and then by UMAP (max_components = 2, n_neighbors = 50, 

min_dist = 0.1, metric = ‘cosine’), followed by clustering identification using the density 

peak clustering algorithm implemented in Monocle 3 (rho_thresh = 5, delta_thresh = 0.2 for 

most clustering analysis). Subclusters showing low expression of target cell cluster specific 

markers and enriched expression of non-target cell cluster specific markers were annotated 

as doublets derived subclusters and filtered out in visualization and downstream analysis. 

Differentially expressed genes across cell types (within-organ) were re-computed with the 

differentialGeneTest() function of Monocle 3 after removing all doublets or cells from 

doublet-derived subclusters.

Adjudication of the 15 initially unannotated cell types

As noted in the main text, our first round of annotation was performed on a tissue-by-tissue 

basis by comparing observed cell types to those expected from prior knowledge of the same 

tissue. In general, we recovered all or nearly all main cell types identified by previous 

atlasing efforts directed at the same organs, despite differences with respect to species, stage 

of development and/or technology. In addition, we identified 15 cell types that we did not at 

least initially expect to observe in a given tissue. We labeled these based on the top enriched 

differentially expressed gene markers within that tissue, e.g. CSH1_CSH2 positive cells. 

Subsequent to the initial round of annotation, we reexamined these 15 cell types based on 

their distribution in the global UMAP, whether they matched annotated cell types in mouse 

atlases, their distribution across tissues derived from different individuals, and their potential 

for maternal origin. Our updated interpretations are summarized in the supplementary 

material.

Clustering analysis of cells across organs

For clustering analysis of 77 main cell types across 15 organs, we sampled 5,000 cells from 

each cell type (or all cells for cell types with fewer than 5,000 cells in a given organ). The 

dimensionality of the data was reduced first by PCA (50 components) on the gene set 

combining top cell type-specific gene markers identified above (Table S5, qval = 0) and then 

with UMAP (max_components = 2, n_neighbors = 50, min_dist = 0.1, metric = ‘cosine’). 

Differentially expressed genes across cell types were identified with the 

differentialGeneTest() function of Monocle 3. For annotating cell type-specific gene 
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features, we intersected the cell type-specific genes identified above with the predicted 

secreted and membrane protein coding gene sets from the Human Protein Atlas (190), as 

well as the TF set annotated in the “motifAnnotations_hgnc” data from package RcisTarget/

v1.2.1 (191).

For clustering analysis of blood cell across 15 organs, we extracted all blood cells 

corresponding to annotated clusters of myeloid cells, lymphoid cells, thymocytes, 

megakaryocytes, microglia, antigen presenting cells, erythroblasts, and hematopoietic stem/

progenitor cells. The dimensionality of the data was reduced first by PCA (40 components) 

on the expression of a gene set combining the top 3,000 blood cell type-specific gene 

markers (Table S5, only genes specifically expressed in at least one blood cell type were 

selected (q-value < 0.05, fold expression difference between first and second ranked cell 

cluster > 2) and ordered by median qval across organs) and then with UMAP 

(max_components = 2, n_neighbors = 50, min_dist = 0.1, metric = ‘cosine’). Cell clusters 

were identified using the Louvain algorithm implemented in Monocle 3 (louvain_res = 

1e-04). Clusters were assigned to known cell types based on cell type-specific markers. We 

then co-embedded the human fetal blood cells and a scRNA-seq atlas of blood cells from the 

fetal liver (108), using the Seurat v3 integration method (FindAnchors and IntegrateData) 

(15) with a chosen dimensionality of 30 on the top 3,000 highly variable genes with shared 

gene names in both datasets.

We then applied a similar analysis strategy as above for clustering analysis of endothelial or 

epithelial cells across organs. For endothelial cells, we first extracted cells corresponding to 

annotated clusters of vascular endothelial cells, lymphatic endothelial cells and endocardial 

cells across organs. The dimensionality of the data was reduced first by PCA (30 

components) on the gene set combining top 1,000 endothelial cell type-specific gene 

markers identified above (Table S5, only genes specifically expressed in at least one 

endothelial cell type were selected (q-value < 0.05, fold expression difference between first 

and second ranked cell cluster > 2) and ordered by median qval across organs) and then with 

UMAP with the same parameters used for blood cells. Cell clusters were identified using the 

Louvain algorithm implemented in Monocle 3 (louvain_res = 1e-04), and then annotated 

based on the tissue origin of endothelial cells. For epithelial cells, we first extracted cells 

from the epithelial cell cluster in Fig. S4B, followed by dimension reduction first by PCA 

(50 components) first on the top 5,000 most highly dispersed genes and then with UMAP 

(max_components = 2, n_neighbors = 50, min_dist = 0.1, metric = ‘cosine’). For validating 

the tissue specific endothelial cells, we then co-embedded the human fetal endothelial cells 

and a scRNA-seq atlas of endothelial cells from mouse adult tissues (140), using the Seurat 

v3 integration method (FindAnchors and IntegrateData)(15) with a chosen dimensionality of 

30 on the top 3,000 highly variable genes with shared gene names in both datasets.

Intra-dataset cross-validation analysis

For cells from each organ, we randomly sampled up to 2,000 cells from each main cell type. 

We then followed the same process (101). Briefly, we combined all sampled cells from each 

organ and evaluated cell type specificity by applying a 5-fold cross-validation to the dataset, 

with a support vector machine (SVM) classifier (with linear kernel). Whole transcriptome 
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was used in cell type prediction. We then computed the cross-validation F-1 value as cell 

type specificity score. As control, we randomly permuted the cell type labels, followed by 

the same analysis pipeline. For cell type specificity analysis across all organs, we applied the 

same analysis strategy to the full dataset after sampling up to 2,000 cells of each main cell 

type.

Sub-clustering analysis

For each main cell type (with over 1,000 cells) in each organ, we applied Harmony/v1.0 for 

batch correction and dimension reduction (102). Briefly, the dimensionality of the data was 

reduced by PCA (30 components, or 10 components for cell types with less than 5,000 cells) 

first on the top 3,000 (or 1,000 for cell types with less than 5,000 cells) most highly variable 

genes, followed by batch correction on sample ID. Cell clusters were identified using the 

Louvain algorithm implemented in Seurat/v3.1.4 (15) (resolution = 0.5). We then applied the 

intra-dataset cross-validation approach to evaluate the specificity of sub-clusters within each 

main cell type. For every sub-cluster pair, A and B, we computed the number of A cells 

mislabeled as B cells in cross-validation analysis with the true dataset (mislabeled cell 

number: n) or the permuted dataset (mislabeled cell number: m). A large n value suggests 

the two sub-clusters are not well separated by the full transcriptome. We thus iteratively 

merged similar sub-cluster pairs (n > m), and identified a total of 657 subtypes across 15 

organs. The intra-dataset cross validation approach was applied to evaluating subtype 

specificity within each main cell type in each organ. To annotate the identity of subtypes, we 

applied the same cell type correlation analysis strategy described in (11) to compare cell 

subtypes from this study to cell types of the same organ from the Microwell-seq based 

Mouse Cell Atlas (MCA) (16). A similar comparison was performed for all subtypes from 

the brain against cell types annotated in a recent mouse brain atlas (MBCA) (50).

Validating erythropoiesis in the adrenal tissues from newborn mice

Adrenals and kidneys were harvested from CD1 Swiss albino mice (Charles River) on the 

day of birth (P0), and bone marrow cells were flushed from the femurs of the dams. Solid 

tissues were dissociated using collagenase and stained for imaging flow cytometry using the 

markers Ter119 (AF488), CD117 (PE-CF594), CD71 (PE), CD45 (EF450), and DRAQ5. 

Gating of maturing erythroblast populations was performed using published methods (128) 

and analyzed with IDEAS (Luminex) software.

Comparison of human and mouse developmental atlases

We first applied a slightly modified version of the strategy described in (11) to identify 

correlated cell types between this human fetal cell atlas and the mouse organogenesis cell 

atlas (MOCA) (11). As a different approach, we co-embedded the human fetal cell atlas and 

the mouse organogenesis cell atlas (MOCA) (11) using the Seurat v3 integration method 

(FindAnchors and IntegrateData) (15) with a chosen dimensionality of 30 on the top 3,000 

highly variable genes with shared gene names in both human and mouse. We first integrated 

65,000 human fetal cells (up to 1,000 cells randomly sampled from each of 77 cell types) 

and 100,000 mouse embryonic cells (randomly sampled from MOCA) with default 

parameters. We then applied the same integrative analysis strategy to extracted human and 

mouse cells from the hematopoietic, endothelial and epithelial trajectories.
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For the co-embedded human and mouse hematopoietic cells, we annotated each mouse cell 

based on its k nearest neighbours of human cells. We chose a small k value (k = 3) such that 

rare cell types were also annotated. Differentially expressed genes across mouse 

hematopoietic cells were computed with the differentialGeneTest() function of Monocle 3/

alpha.

Pseudotemporal ordering of mouse macrophage/microglia cells was done with Monocle 3/

alpha with the reduction method of “DDRTree”. Briefly, the top 3 principal components on 

the top 500 highly variable genes were used to construct the DDRTree pseudotime trajectory 

with UMI number per cell as a covariate (param.gamma = 120, norm_method = “log”, 

residualModelFormulaStr = “~ sm.ns(Total_mRNAs, df = 3)”). The cells are separated into 

three branch trajectories in the DDRTree space. Differentially expressed genes across the 

three branches were computed with the differentialGeneTest() function of Monocle 3/alpha. 

We then clustered cells with k means clustering (k = 10) and computed the average 

development time for each cluster. The progenitor cell group was annotated based on the 

lowest average development time and appeared at the center of the three branches. Each cell 

was assigned a pseudotime value based on its distance from the progenitor cells.

Using the Garnett models trained on this human cell atlas for cell type classification

The R package Garnett for Monocle 3 (version 0.2.9) was used to generate cell type 

classifiers for each of the 15 tissues. Marker genes for each cell type were assembled from 

literature searches by author HAP, and models were trained using train_cell_classifier using 

default parameters and the gene database org.Hs.eg.db (version 3.10.0). Models were trained 

on the entirety of each tissue dataset with the exception of cerebrum, where 100,000 cells 

were randomly sampled for training for computational efficiency. To compare cell type 

assignments to those obtained via manual annotation by author JC (i.e. the 77 main cell 

types), we applied the function classifiy_cells using the trained models with the following 

non-default parameters: cluster_extend = TRUE, cluster_extend_max_frac_incorrect = 0.25, 

cluster_extend_max_frac_unknown = 0.95. Garnett cell type assignments that matched the 

cell type assignment from manual annotation were considered ‘correct’ with the following 

exceptions: Garnett classification of “Chromaffin cells” was considered correct when 

manual annotation was “Sympathoblasts”, Garnett classification of “B cells” or “T cells” 

was considered correct when manual annotation was “Lymphoid cells”, Garnett 

classification of “Cap mesenchyme cells”, “Collecting duct cells”, “Distal tubule cells”, 

“Loop of Henle cells”, “Proximal tubule cells”, and “Podocytes” were considered correct 

when manual annotation was “Metanephric cells”, Garnett classification of “Ureter cells” 

and “Collecting duct cells” were considered correct when manual annotation was “Ureteric 

bud cells”, Garnett classification of “Pancreatic Alpha cells”, “Pancreatic Beta cells”, and 

“Pancreatic Delta cells” was considered correct when manual annotation was “Islet 

endocrine cells”, Garnett classification of “D cells” was considered correct with manual 

annotation of “Neuroendocrine cells”.

To test the applicability of Garnett trained models to future data, we applied the pancreas 

model to human adult pancreas scRNA-seq data from reference (100). The model was 

applied using the function classify_cells with the same parameters as above. When 
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compared cell type assignments to those provided by the authors, we considered the 

following cell types to be equivalent: acinar, Acinar cells; ductal, Ductal cells; endothelial, 

Endothelial cells; mast, Myeloid cells; macrophage, Myeloid cells; schwann, Glia; alpha, 

Pancreatic Alpha cells; beta, Pancreatic Beta cells; delta, Pancreatic Delta cells; 

activated_stellate, Pancreatic stellate cells; quiescent_stellate, Pancreatic stellate cells; t_cell, 

T cells.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data generation and identifying cell types across 15 human organs.
(A) Project workflow (left) and barplot (right) showing the number of cells profiled per 

organ on a log10 scale. Dots indicate the number of cells remaining for downstream analysis 

after QC filtering procedures. (B) Barplot showing the distribution of estimated post-

conceptual ages for tissue samples corresponding to each organ. (C) After filtering against 

low-quality cells and doublet-enriched clusters, 4 million single cell gene expression profiles 

were subjected to UMAP visualization and Louvain clustering with Monocle 3 on a per-

organ basis. Clusters were initially annotated on a per-organ basis as well, utilizing recent 

organ-specific cell atlas efforts, which yielded 172 main cell types (colors and labels). 

Because many cell type annotations appear in multiple organs (e.g. vascular endothelial 

cells), we consolidated these to 77 main cell types.
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Figure 2. Identification of cell subtypes.
(A) Pipeline for cell subtype identification. Briefly, on a tissue-by-tissue basis, we subjected 

each main cell type with >1,000 cells to batch correction (102), UMAP visualization and 

Louvain clustering. Clusters with similar transcriptomes were merged by an automated 

procedure. Briefly, we applied an intra-dataset cross validation approach (101) to evaluate 

their specificity and iteratively merged similar clusters. We then compared putative human 

cell subtypes identified in our data (rows) against annotated mouse cell types from the 

corresponding tissues (16) (columns) by cell type correlation analysis. Colors correspond to 

beta values, normalized by the maximum beta value per row. All MCA cell types with a beta 

of a matched human cell type > 0.01, that is also the maximum beta for that human cell type, 

are shown for the kidney metanephric cells. (B) Confusion matrix for intra-dataset cell type 

cross-validation with an SVM classifier for main cell types (left) and metanephric subtypes 

(right) in the kidney. 2,000 cells (or all cells for cell types with less than 2,000 cells profiled) 

are randomly sampled for each cell type or subtype before cross-validation analysis. (C) Box 

plot showing the cell specificity score (F1 score) distribution for permuted controls, main 

cell types and subtypes, from intra-dataset cross validation.
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Figure 3. Integrated visualization of cell types across all profiled tissues.
(A) From each organ, we sampled 5,000 cells from each cell type (or all cells for cell types 

with fewer than 5,000 cells in a given organ). These were subjected to UMAP visualization 

on the basis of the top differentially expressed genes across cell types within each organ. 

Here they are colored by cell type labels, with colors as in Fig. 1C. In Fig. S10A, the same 

UMAP visualization is colored by tissue-of-origin. (B) Heatmap showing the relative 

expression of surface and secreted protein-coding genes, non-coding RNAs, and TFs 

(columns) in 77 main cell types (rows). UMI counts for genes are scaled for library size, log-

transformed, and then mapped to Z scores and capped to [0, 3]. (C-D) Representative 

fluorescence microscopy of human fetal adrenal (C) or spleen (D) tissue, staining for for 

endothelium (CD34+), CSH1+, CSH2+ cells (ANXA1+; labeled by arrowhead) (C) or AFP
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+, ALB+ cells (AFP+ and labeled by arrowhead) (D). Nuclei are stained with blue DAPI. 

Bottom panels correspond to inset zooms. Scale bars, 50 μm (top) and 10 μm (bottom).
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Figure 4. Identification and characterization of blood cell subtypes and developmental 
trajectories.
(A-B) UMAP visualization and marker-based annotation of blood cell types colored by 

organ type (A) and cell type (B). (C) UMAP visualization of blood cells, integrating across 

all profiled organs of this study and an scRNA-seq atlas of blood cells from human fetal 

liver (108). Cells from (108) are colored in light grey, while cells from our study are colored 

by tissue of origin (left) or blood cell types (right). Black arrows indicate inferred cell state 

transition directions from HSPCs to all main blood lineages. (D) Dotplot showing 

expression of two selected marker genes per cell type. The size of the dot encodes the % of 

cells within a cell type in which that marker was detected, and its color encodes the average 

expression level. (E) Barplot showing the estimated fraction of cells per organ derived from 

each of the 17 annotated blood cell types.
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Figure 5. Identification and characterization of erythropoiesis and macrophage differentiation in 
adrenal gland.
(A) Zoomed view of the erythropoiesis trajectory portion of Fig. 4B, colored by erythroid or 

megakaryocyte subtype. Black arrows show trajectory directionalities defined by (123). (B) 

Plots similar to (A), colored by the normalized expression of cell type-specific genes (FDR 

of 0.05 and over 2-fold expression difference between first and second ranked cell type), 

with the number of cell type-specific genes used and names of top few genes shown. UMI 

counts for these genes are scaled for library size, log-transformed, aggregated and then 

mapped to Z scores. (C) Point and box plot showing the proportion of blood cells that are 

EEPs for individual samples of different organs. Samples with low recovery of blood cells 

(<= 200) are excluded. (D) Representative fluorescence microscopy of human fetal adrenal 

tissue, staining for endothelium (CD34+) and erythroblasts (nucleated and GYPA+); nuclei 

stained with blue DAPI. The arrow indicates an GYPA+ erythroblast outside a CD34+ blood 

vessel. Scale bars, 10 μm. (E) Left: percentage of dissociated kidney and adrenal glands 
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from newborn (P0) mice composed of enucleated erythrocytes and maturing erythroblasts. 

Right: distribution of maturing erythroblasts (proerythroblasts, ProE; basophilic 

erythroblasts, BasoE; polychromatophilic erythroblasts, PolyE; and orthochromatic 

erythroblasts, OrthoE) in the adrenal gland at P0 and in adult bone marrow. Error bars 

represent mean + SEM, n=3. (F) Representative images of maturing erythroblasts in the P0 

adrenal gland and the adult bone marrow. Size bar = 10 μm. (G-H) UMAP visualization and 

marker-based annotation of macrophage subtypes colored by organ type (G) and subtype 

name (H). (I) Point and box plot showing the proportion of blood cells that are phagocytic 

macrophages for individual samples of different organs. Samples with low recovery of blood 

cells (<= 200) are excluded.
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Figure 6. Integration of human fetal and mouse embryonic cell atlases.
(A-C) After downsampling as described in the text, we applied Seurat (15) to jointly analyze 

human fetal and mouse embryonic cells (11). (A) Cells are colored by source species. (B) 

Mouse cells are colored by the identity of the main mouse embryonic trajectory (11). Human 

cells are colored in grey. (C) Cells are colored by source and development stage. Within 

each major trajectory and as previously (11), mouse cells order by successive time points, 

and human fetal cells appear to project from the last (E13.5) mouse embryonic time point. 

(D) We applied Seurat (15) to jointly analyze 103,766 human and 40,606 mouse 

hematopoietic cells. The same UMAP visualization is shown in all panels. Left: Cells are 

colored by source and development stage. Middle: Mouse cells are colored by the identity of 

mouse sub-trajectory (11). Human cells are colored in grey. Right: Human cells are colored 

Cao et al. Page 41

Science. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



according to annotations from Fig. 4B. Mouse cells are colored in grey. (E) Plot similar to 

(D), colored by the normalized expression of human-mouse conserved cell type-specific 

genes, with their number listed and top TFs named. UMI counts for these genes are scaled 

for library size, log-transformed, aggregated and then mapped to Z scores.
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