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Abstract

Over the past years, numerous methods have emerged to automate the quantification of animal 

behavior at a resolution not previously imaginable. This has opened up a new field of 

computational ethology and will, in the near future, make it possible to quantify in near 

completeness what an animal is doing as it navigates its environment. The importance of 

improving the techniques with which we characterize behavior is reflected in the emerging 

recognition that understanding behavior is an essential (or even prerequisite) step to pursuing 

neuroscience questions. The use of these methods, however, is not limited to studying behavior in 

the wild or in strictly ethological settings. Modern tools for behavioral quantification can be 

applied to the full gamut of approaches that have historically been used to link brain to behavior, 

from psychophysics to cognitive tasks, augmenting those measurements with rich descriptions of 

how animals navigate those tasks. Here we review recent technical advances in quantifying 

behavior, particularly in methods for tracking animal motion and characterizing the structure of 

those dynamics. We discuss open challenges that remain for behavioral quantification and 

highlight promising future directions, with a strong emphasis on emerging approaches in deep 

learning, the core technology that has enabled the markedly rapid pace of progress of this field. 

We then discuss how quantitative descriptions of behavior can be leveraged to connect brain 

activity with animal movements, with the ultimate goal of resolving the relationship between 

neural circuits, cognitive processes and behavior.

Tracking, from coarse to fine

Quantitative descriptions of behavior begin by tracking movements. In this section we 

describe the computational tools for extracting measurements of animal motion from video 

recordings and the challenges associated with capturing progressively more detailed 

descriptions such as pose (Fig. 1a).
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Animal centroids, ellipses and identities.

At its coarsest, animal behavior can be quantified by estimating the position of its centroid 

(i.e., the midpoint or the center of mass) over time. These centroid trajectories, quantified as 

sequences of image coordinates, reflect the motion of an animal within its environment and 

can be used to measure spatial navigation or locomotion behavior. The centroid treats the 

animal as a single point, which fails to capture its heading, but this description can be 

augmented by finding the major and minor axes of an ellipse encircling the animal (Fig. 1b). 

This is a conveniently universal description, as most animals with a CNS share a similar 

body plan, in which a spinal or ventral nerve cord forms a line at the center of an elongated 

body.

Classical approaches to estimating centroids and ellipses primarily relied on background 

subtraction, an algorithm that identifies the image pixels belonging to the animal (i.e., the 

foreground) from which the centroid can be computed by finding the midpoint of their 

coordinates. When the background contrasts with the animal, such as in backlit arenas, 

background subtraction can be performed through simple thresholding of the image 

intensity. If the background is static, it can be modeled by finding the median image frame; 

however, this fails often if the animal does not move for prolonged periods of time. Classical 

approaches employ robust algorithms to model the background1, but newer methods have 

begun to use deep learning to better deal with more complex backgrounds, affording the 

ability to track animals in more naturalistic conditions2.

Extending ellipse tracking to multiple animals adds even more richness to behavioral 

descriptions, where quantities such as relative distances and orientations can be used to infer 

complex social interactions. For example, close interactions that occur during aggression or 

courtship may be detectable using the distance between centroids, while the relative angle 

between animals can indicate the directedness of the behavior, such as chasing.

Assuming centroids or ellipses can be detected reliably within individual images, the multi-

animal setting introduces the particularly challenging problem of estimating identity, i.e., the 

task of associating animal detections correctly over time (Fig. 1c). In the broader domain of 

multi-object tracking, the most common approach to the identity assignment problem is 

tracking by detection, in which objects (for example, animals) are detected within single 

images and then subsequently linked together across frames. These algorithms must contend 

with challenging cases such as objects occluding one another, disappearing for periods of 

time or failing to be detected in the first stage. We refer the reader to previous reviews for 

more in-depth analyses of classical multi-animal tracking methodology3-5.

Modern approaches to multi-animal tracking typically address the association problem by 

modeling the appearance and/or motion of the animals. This allows for identity association 

by matching new detections to previous tracks based on their similarity to the modeled 

features. Motion models will typically make constant velocity assumptions to enable 

extrapolation from past trajectories6. These types of models will often fail when animals are 

closely (socially) interacting with each other, as is common in multi-animal experiments. 

Techniques that leverage machine learning to model appearance may rely on artificial 

distinguishing visual features, such as painting the animals’ fur with unique patterns7 or 
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using a different colored tag for each animal8. Some approaches may rely on combining 

videography with implanted radio-frequency identification (RFID) tags, enabling reliable 

and wireless identification for highly robust tracking, making them particularly well-suited 

for monitoring behavior over longer timescales9. These potentially invasive manipulations, 

however, may be prohibitively laborious when using many animals and may hinder the 

ethological validity of experiments intended to measure natural behavior10.

Although identity association in multi-object tracking remains an open problem, the state-of-

the-art techniques now rely on deep learning for learning distinguishable appearance 

features without artificial markers11. A common approach is to employ a technique known 

as contrastive learning: the objective is to find a mapping in which images with the same 

identity are closer to each other than to images with different identities; this is the basis of 

modern facial recognition systems12 and has also been applied to animal facial 

recognition13. In the domain of animal tracking, this approach has been demonstrated to be 

highly effective with socially behaving animals in complex environments14,15. Despite their 

impressive performance, the downside to these methods is that they typically require more 

training data to adapt to new animals, new imaging conditions and new experimental 

settings. This requirement is particularly burdensome, because manual annotation of animal 

identities over video frames can be prohibitively laborious as it may require annotators to 

step through the video frame-by-frame to ensure they do not mislabel animals when they are 

closely interacting. Some approaches to ameliorate this bootstrap the labeling using classical 

tracking for self-supervised learning14, and advances in unsupervised learning may soon 

enable fully automated deep-learning-based tracking without previous annotations16.

Animal pose estimation.

Centroid and ellipse tracking, though highly descriptive, fail to capture the movements of 

limbs and appendages and consequently cannot be used to detect behaviors such as 

grooming, rearing, tapping and locomotor coordination. Animal pose, on the other hand, is 

represented by the location of all of its body-part landmarks (typically at the skeleton joints). 

Pose estimation is able to capture nearly all of the degrees of freedom of body motion—and 

by extension, the degrees of freedom that the brain can actuate via its motor system.

Human pose estimation has long been studied, both from the perspective of biological 

motion perception17,18, i.e., how humans and animals perceive the motion of other 

organisms, and from the engineering point of view, i.e., the design of algorithms to retrieve 

pose19. While the former provides a theoretical grounding for the use of pose as a 

biologically relevant representation of behavior—particularly in social contexts—the latter 

has enabled accurate and automated pose estimation from conventional videography.

State-of-the-art deep-learning-based approaches to human pose estimation have drastically 

improved accuracy over classical methods, owing to the effectiveness of neural networks for 

computer vision tasks in general, but more specifically due to the development of the 

heatmap (also referred to as confidence map; Fig. 2a) representation of landmark 

locations20-22. This representation encodes the location of each landmark as the density 

function of a two-dimensional (2D) Gaussian distribution centered on the ground-truth 

image coordinates of each landmark, i.e., a heatmap image in which the brightest pixel is at 
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the location of the landmark within the image. This representation is particularly well-suited 

for convolutional neural networks (CNNs), which excel at learning complex transformations 

of image patches. Pose estimation CNNs are trained to predict heatmaps from input images 

by learning from labeled examples where the ground truth landmark coordinates are known, 

enabling the correct heatmaps to be computed for comparison with the CNN’s prediction. 

Once trained, the landmark coordinates on unlabeled images can be decoded from the 

predicted heatmaps via peak detection.

Although conceptually there is no difference between human and animal heatmaps, the 

biggest challenge to adapting the deep-learning-based approach to animal pose estimation is 

the need for labeled training data. To enable human pose estimation ‘in the wild’ that 

generalizes to arbitrary viewpoints, illumination, body sizes, clothing and other variability in 

image features, the computer vision community has generated datasets with sizes ranging 

from tens of thousands to millions of labeled images23-25. Efforts to generate these 

employed crowdsourcing and required thousands of hours of manual labor, but these costs 

are amortized over time, as human anatomy is static. In contrast, a CNN that is trained to 

locate human hands would not be able to generalize to predict insect leg tips.

To address the labeling problem, three main approaches have been employed to enable pose 

estimation for new animals when no training data is available: transfer learning and efficient 

neural network design. The first of these, transfer learning, formed the basis and main 

contribution of the widely used animal pose estimation software DeepLabCut26. Transfer 

learning is a widely used method for reducing the need for large datasets; it works by 

reusing the parameters (and therefore visual feature detectors) learned in CNNs trained on a 

broader set of natural images (typically ImageNet27). This relies on the assumption that 

reducing the need for learning general-purpose visual features, such as oriented edges and 

textured patches, will facilitate fine-tuning the parameters of the network with less training 

data. This approach is a topic of active research in computer vision, and recent empirical 

studies have reported conflicting results on its advantages for general computer vision 

tasks28,29 and for animal pose estimation30,31.

In contrast, the second approach formed the primary contributions of the LEAP software 

framework32 and was improved upon in DeepPoseKit33. Efficient neural network design, in 

which the CNN architecture is kept small, has fewer parameters to tune than the general-

purpose architectures normally used in transfer learning34. This reduction is justified by the 

assumption that variability of imaging conditions in animal behavioral data is relatively low

—a foundational feature of reproducible laboratory experimental design—and therefore 

requires lower representational capacity. The added benefit of designing neural networks to 

the needs of the data is that it is considerably faster to train and predict, making human-in-

the-loop training more efficient, but this approach may not be as well suited to the prediction 

of animal pose in less constrained, non-laboratory settings.

Active learning, closely related to human-in-the-loop training35, is a technique that can 

drastically reduce the time required for generating large datasets by proposing images to 

label that are representative of diverse data features; these can then be used to train CNNs 

with a small number of very distinct images. After training with few labels and generating 
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predictions on unlabeled data, new labels can be generated by simply correcting the 

predictions, iteratively reducing the time required to label with every training loop. This 

approach has been adopted by all major animal pose estimation frameworks to reduce the 

effort required to label new datasets.

The success and accessibility of these methods have spurred a revolution in fields dealing 

with animal movement, from neuroscience36 to ecology37. Future research in animal pose 

estimation will continue to reduce the need for labeled data through the use of techniques 

such as self-supervised learning and domain adaptation38-41 and to improve the precision of 

landmark localization by incorporating temporal information without new labels42,43.

Animal pose estimation in three dimensions.

For many animals, 2D pose estimation will be insufficient to capture all body landmarks, as 

some will typically be occluded in any single fixed viewpoint. This issue is especially 

compounded in highly deformable animals such as mice whose skeleton landmarks may be 

difficult to localize through fur44 and during out-of-plane behaviors such as rearing. The 

standard approach to three-dimensional (3D) pose estimation, then, is to record behavior 

using multiple cameras arranged such that they collectively capture all of the landmarks of 

interest across viewpoints (Fig. 1e).

The standard approach to 3D pose estimation consists of three steps: 2D pose estimation, 

triangulation and refinement (Fig. 2b). The 2D pose estimation step is typically performed as 

described for the monocular case, but 3D animal pose estimation frameworks will often 

leverage the ability to map points from one view to another to reduce the labeling effort45,46. 

The triangulation step is preceded by a one-time calibration procedure, in which an object 

with distinct features (typically a checkerboard-like pattern47) is used to compute the camera 

calibration matrices that enable projection of 2D points in the image plane to consistent 3D 

world coordinates. In practice, triangulation is noisy, so some form of refinement is typically 

employed to eliminate false detections and resolve inconsistencies in projections of the same 

point from different views. Tools for 3D animal pose estimation have employed a variety of 

approaches to refinement, such as incorporating constraints on the geometry of the animal’s 

body (for example, limb lengths)45,46, temporal smoothing48 or parametric shape 

modeling49,50. The rapid pace of progress in 3D animal pose estimation is likely to yield a 

series of advances in the coming years; the 3D human pose estimation field provides an 

outlook on what’s to come, in particular, lifting from monocular 2D51, which will reduce the 

technical challenges associated with multicamera animal behavioral setups52.

While 3D landmark localization helps to improve the completeness of behavioral 

representations, it may still fail to capture movement of non-rigid parts of the body, 

particularly in animals with amorphous body shapes, such as hydra53. One approach to 

capturing the full shape information of animals is to fit articulated 3D models of animals to 

new images39,40,54. This model-based technique can be robust and may require relatively 

little training data, but comes at the cost of professional 3D computer-aided design (CAD) 

expertise to design and articulate (‘rig’) models for new animal body types, and it would not 

be robust to large deformations such as in experiments that employ amputations of body 

parts. A more general approach is to explicitly fit a deformable surface to capture the 
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detailed shape of animals within images; although this is an active area of research in 

computer vision, early results hold promise55-57 for development of general-purpose tools to 

enable the routine use of animal shape estimation for behavioral quantification.

Multi-animal pose tracking.

The level of description afforded by pose estimation is uniquely advantageous when 

quantifying social behaviors, as relative features such as inter-body-part distances and 

orientations can be used to detect directed interactions between animals (Fig. 1d). Just as in 

multi-animal centroid and ellipse tracking, however, extending pose estimation to multiple 

animals introduces new technical challenges. First, part association: dealing with multiple 

animals with the same body plan means that sets of detected landmarks must be correctly 

assigned to each animal. Second, identity assignment: detections in one frame must be 

correctly associated with detections belonging to the same animal in subsequent frames. 

Approaches to multi-instance pose estimation (in both humans and animals) can generally 

be categorized as either ‘top-down’, in which the animals are first detected (for example, by 

finding their centroids) and then their body parts are located within a cropped image of the 

animal, or ‘bottom-up’, in which all body parts first located and then grouped by animal.

Top-down pose estimation systems (Fig. 2c) solve the part-association problem implicitly by 

using the location of image features relative to the center of the crop. In this approach 

individual animals are first detected within the frame, such as by standard centroid detection 

methods (see “Animals, centroids, ellipses and identities” section above) or by a neural 

network trained to generate region proposals. These regions are cropped such that the animal 

is centered within the image. Given these crops, the neural network responsible for part 

localization is trained to predict confidence maps with a single peak, just as in the single-

instance case, even if body parts of other animals are present within the crop.

In contrast, bottom-up pose estimation systems (Fig. 2d) encode all instances of each body 

part in the same set of confidence maps and encode their connectivity or grouping 

separately. A commonly used representation of the connectivity between body parts are part 

affinity fields58, which are composed of vectors whose orientation follow the direction of the 

animal’s skeleton within the image. A grouping procedure uses the similarity between the 

line integral of part affinity field vectors between body parts and the line segment between 

the two points as a scoring function for grouping pairs of body part detections.

While there is a variety of theoretical trade-offs between the two approaches, empirical 

studies indicate that selecting the appropriate one may depend on features specific to the 

dataset, such as the morphology of the animals and the relative scale of their image 

features31. See Box 1 for more details on these and other considerations for practitioners.

In the multi-animal context, the problem of pose estimation is naturally promoted to that of 

pose tracking due to the second problem: identity assignment. The primary challenge in 

identity assignment with multi-animal pose tracking, as opposed to multi-animal centroid 

tracking, is the considerably increased manual annotation requirements of labeling 

consecutive frames with both pose and identity. In lieu of labor-intensive labeling, the same 

solutions employed for multi-object centroid tracking can address this problem through 
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conventional motion models (see “Animal centroids, ellipses and identities” above) to track 

the centroid59 or collections of keypoints60,61. More sophisticated approaches that rely on 

identity and pose annotation in consecutive frames may yield considerable improvements for 

animal pose tracking by leveraging temporal information to perform top-down detection 

within clips rather than single images62. In the bottom-up approach, however, the 

representations used for part association must be explicitly extended to the temporal 

dimension, such as in temporal associative embeddings63 or spatiotemporal affinity fields64, 

but they provide the same benefits as the single-image bottom-up approaches.

Quantifying the dynamics of behavior

Behavior is a dynamic phenomenon that involves changes to an animal’s pose over time. 

Unlike the tracking of body parts, quantification of this temporal structure is a 

fundamentally difficult problem without a clear ground truth. It is often assumed that 

behavior can be described as a sequence of discrete behavioral states, such as ‘walking’ or 

‘grooming’. The techniques discussed below use advances in machine learning to classify 

these states from video data or features derived from tracking (Box 2). This type of 

behavioral quantification can facilitate comparison between instances of individual 

behaviors (for example, in response to specific sensory inputs or across experimental 

conditions) and generate hypotheses about the neural circuitry that gives rise to them (for 

example, by demarcating event boundaries or timescales of computation).

Animal behavior, as defined by humans.

The simplest way to define a behavior is by defining a fixed set of rules that describe the 

criteria that must be met to determine its occurrence at a given instant. These can be as 

simple as classifying instances when the animal’s centroid is moving at a speed greater than 

a minimum threshold as ‘locomotion’, but can quickly become complex when establishing 

detailed inclusion and exclusion criteria based on fine descriptions of postural features9. 

Although easy to evaluate and interpret, fixed rules may fail to capture the full variability of 

behaviors that can be flexibly expressed, particularly when subject to experimental 

manipulations that may alter the statistics of the features used in the classification criteria65.

A common approach that strikes a balance between human definitions and computer-aided 

classification is to leverage supervised machine learning. Given user-provided examples of 

times when particular behaviors are (or are not) occurring, these methods derive 

classification criteria using specific features (for example, body-part positions or speeds) 

extracted from the raw data (Fig. 3b). Popular toolkits use decision trees (or random forest 

ensembles)66-68 to learn potentially complex or abstract classifiers from animal tracking 

features. These methods leverage data to avoid the tedious and potentially flawed manual 

design of classification criteria, in addition to providing measures of robustness to overfitting 

through standard statistical techniques such as cross-validation.

Though these methods can achieve high accuracy, they often rely on user-defined features 

derived from the input data, such as numerical derivatives66, generic dimensionality 

reduction67, or exhaustive combinations of relative features68. These may fail to capture 

more complex relationships in higher-dimensional descriptions (for example, multi-animal 
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poses) or higher-order temporal patterns. A promising direction for more robust general-

purpose supervised behavioral classification in animals is to adopt state-of-the-art techniques 

from human action recognition (i.e., human ‘behaviors’), in which deep-learning-based 

systems have excelled at data-driven feature extraction from kinematic features69 (Box 2).

Animal behavior, as defined by the data.

Supervised behavior classification, though more robust than classification using hand-crafted 

criteria, still suffers from the bias of subjective human annotation. Studies demonstrating the 

large degree of disagreement even among experts with clear guidelines for when to annotate 

a behavior reveal the shortcomings of depending on human definitions of a behavior70-72. 

An alternative approach is to ask a computer to learn patterns from the data alone using 

unsupervised classification methods. In these techniques, the statistics of the behavioral time 

series themselves are used to determine the criteria used to classify a given time point into a 

distinct ‘cluster’ or ‘state’ The common assumption across these methods is that data 

belonging to the same state exhibit similar, stereotyped dynamics given some measure of 

similarity73,74.

The simplest form of unsupervised classification involves clustering (Fig. 3c). In the typical 

clustering workflow, dimensionality reduction and feature extraction (for example, using 

principal component analysis, spectral estimation and manifold embedding techniques such 

as t-stochastic neighbor embedding (t-SNE)75) are applied to the raw data (which can be 

videos or pose data derived from videos). The similarity between behaviors at two points in 

time is then quantified using a similarity metric between the two feature vectors (for 

example, using the Euclidean distance or a probabilistic measure of similarity such as the 

Kullback–Leibler divergence). Given a set of time points and the similarity between them, 

clustering algorithms attempt to group the points into discrete sets in which each point is 

more similar to the other members of its set than it is to points outside the set. The simplest 

algorithms, such as k-means and Gaussian mixture models76, have been used successfully to 

categorize behaviors, but they require the researcher to specify the number of clusters a 

priori (though this can be estimated using statistical testing). Density-based clustering, using 

algorithms such as the watershed transform75, avoid having the user specify the exact 

number of behaviors to be found by identifying peaks in the estimated distribution of time 

points in the space of extracted features. This approach, first introduced in MotionMapper75, 

is widely used and has been effective at clustering behavioral dynamics across species and 

input representation types (Fig. 3e)32,45,46,75,77-80.

Interpretation of the behavioral clusters will depend on the application. These clusters 

describe groupings of points that are self-similar, but do not directly describe what precisely 

distinguishes one cluster from another. The first pass approach to interpreting behavioral 

clusters relies on qualitative observation of raw data exemplars from each group, such as 

video clips75. Visual inspection may reveal that one cluster corresponds to locomotor 

behavior and another to grooming, but may fail to provide an explanation for why one 

cluster of locomotor behavior differs from a separate locomotor cluster. The next step in 

interpreting these clusters is to compute the empirical feature distributions of the data that 

falls within the clusters. These may reveal that one form of locomotion is distinct from 
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another based on the peak frequency of limb oscillations32, but may be more difficult to 

interpret when differences are small or the input data is too high-dimensional to easily 

interpret differences.

Although clustering is an effective method when little is known about the structure of the 

behavioral dynamics, more sophisticated approaches afford the ability to explicitly model 

the characteristics that define the representation of the behavioral dynamics (Fig. 3d). These 

have the advantage of being potentially more interpretable through direct examination of the 

model parameters, and some have the added benefit of being able to generate new examples 

sampled from the model rather than relying on exemplars in the data. One such class of 

methods that build on probabilistic graphical models are termed state-space models. Rather 

than attempting to divide the data based on its similarity, these models assume that there 

exist unobservable (hidden) discrete ‘states’ that parametrize the processes underlying the 

data. MoSeq81 uses autoregressive generative processes with a sticky hidden Markov model 

to identify the hidden states and the transition structure between states. This form of 

modeling can also be combined with simpler generative processes like a multivariate 

Gaussian distribution49. Other approaches leverage non-parametric Bayesian statistics to 

model recurrent dependencies in the transitions between different linear dynamical systems, 

combining the expressivity of graphical models for describing sequence structure with the 

algebraic interpretability of a linear dynamical system82. An alternative approach to 

leveraging linear dynamical systems uses an adaptive segmentation algorithm based on 

statistical model testing rather than an explicit model of transitions between states83.

Behavioral programs operate at many timescales and can be described at different levels of 

abstraction, all of which could potentially be useful representations of underlying neural 

computations. For example, it may be desirable to describe the fast timescale kinematics of 

locomotion while simultaneously representing the longer timescale motivational state of the 

animal that sets up its navigational goal. Hierarchical clustering can capture structure in 

behavioral dynamics in a similar way to simple clustering, with the added benefit of 

decomposing higher-order behavioral clusters into progressively finer-grained subtypes84. 

Information theoretic techniques for grouping behaviors based on the structure of state 

transitions have shown a link between a hierarchical temporal organization of the behaviors 

and the similarity between behaviors85. Explicitly hierarchical dynamical models such as the 

hierarchical hidden Markov model86 or adaptive segmentation algorithm83 organize 

behavioral states in a hierarchy based on the structure of their generating processes, 

affording additional interpretability to the multiscale representations. Assuming a flat 

discretization of behavioral states, higher-order sequence models such as those used in 

bioinformatic algorithms to discover motifs in genetic data87 or formal grammars used to 

model natural language88 can be co-opted to describe behavioral state sequences.

Though these methods address the problems of representing behavior across multiple 

timescales, they do not effectively provide a solution to the problem of simultaneously 

occurring behaviors such as walking and sniffing. Though recognizing parallel behaviors is 

possible through supervised classification by simply using multiple independent classifiers, 

an unsupervised solution has not yet been proposed. Future work in this domain may be able 
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to achieve this by taking into account that parallel dynamical processes involve different 

appendages, for example.

Adding continuous structure to discrete representations.

Although the typical behavior map presumes strictly discrete boundaries between distinct 

behaviors, the execution of motor commands is ultimately expressed through continuous 

motion73. For example, while walking and jogging may require distinct motor programs, 

slow walking and fast walking may differ only in the frequency of the stride cycle, smoothly 

transitioning through ‘moderate walking’. Ultimately, a complete representation of behavior 

would include both discrete boundaries between behaviors and the continuous variation 

within them.

Dimensionality reduction methods such as principal component analysis are an effective 

means of discovering continuous patterning within a behavior, as they compress behavioral 

dynamics into fewer dimensions, along which the dynamics smoothly vary. This approach 

has been used to describe worm postural dynamics, revealing an oscillator structure during 

locomotion89, as well as to describe continuous dynamics of postural trajectories within 

zebrafish locomotion78 and hunting90 behaviors. More complex kinematics that are not as 

easily reduced can be captured through nonlinear manifold embedding algorithms and have 

been employed, for example, to reveal complex periodic structure in fruit fly locomotion 

(Fig. 3f)91 (akin to the worm oscillator).

Recent methods have begun to employ neural networks as a means of extracting continuous 

dynamic representations from behavioral time series. These methods afford greater 

flexibility by enabling robust feature extraction while simultaneously inferring discrete 

clusters in tandem with continuous representations92,93 or by imposing variational 

constraints on the distribution of the representations, thereby encouraging more interpretable 

quantities to be captured in the manifold of dynamics94,95.

Linking brain activity and behavior

A core application of the methods described above is to use descriptions of behavior to 

understand the neural activity that generates it. As we have discussed above, tools for 

tracking movement quantify the motor output of the brain, from coarse centroid tracking that 

describes spatial navigation to fine-grained pose estimation that captures the dynamics of 

muscle control (Fig. 1). Since these tools can locate the sensory organs of the animal, they 

also make it possible to reconstruct the sensory inputs animals receive. For example, the 

visual field of an animal can be estimated from the position of objects in its environment 

relative to its eyes (Fig. 4a). This is particularly advantageous in freely-moving behavioral 

setups, which sacrifice the ability to control (and therefore precisely know) the visual stimuli 

in a given psychophysics or virtual reality experiment96-99. Stimuli of other sensory 

modalities, such as mechanosensation, can also be estimated from videography, while others 

such as acoustic stimuli will require different instrumentation and methods for feature 

extraction (Box 3).
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As tools to measure behavioral features improve, so does the resolution of the estimated 

representations of the inputs and outputs to the nervous system. Here we highlight the major 

classes of approaches that have successfully leveraged behavioral quantification to dissect 

brain function.

Peri-behavior time histograms.

Analogously to how peristimulus time histograms enable circuit interrogation by aligning 

the activity of neurons relative to onset or offset of stimuli, a major approach to linking 

neural function to behavior is to describe the distribution of behavioral quantities 

surrounding neural events. For example, manipulation of neural activity through genetic 

tools has enabled brain-wide screens that associate activation of precise subsets of neurons 

with the animal’s entire behavioral repertoire84,100,101.

While neuromodulation experiments provide precise temporal control over stimulation, 

techniques for awake and freely-moving in vivo recording can be used to align neural 

activity to more naturalistic and spontaneous behaviors. Combined with tracking and 

quantification of dynamics, this approach has been successfully used to discover neural 

correlates of a number of behavioral features described in this review. Instantaneous animal 

pose has been found to be represented across cortical regions in freely-moving rodents102. 

Discrete behavioral motifs identified using state-space models such as MoSeq81, as well as 

their sequences, have been associated with neural activity in the striatum, revealing a code 

for action selection103. Higher-order behavioral states (hierarchies), such as the exploration-

versus-exploitation dichotomy in zebrafish hunting behavior, have been associated with 

internal neural states through the use of whole-brain imaging and pose estimation (Fig. 

4b)104. Multi-timescale behavioral structures have been found to correlate with a hierarchy 

of neural dynamics in freely moving worms, connecting population-level codes with fast 

timescale motor control105.

Finally, simultaneous recording of neural activity across multiple animals has recently been 

used to identify neural correlates of social behavioral features in both bats and mice106,107. 

By aligning neural activity to social behavior quantified from multi-animal tracking, neural 

representations were discovered that encode both fast timescale features, such as the current 

and future behavior of the animal’s social partner, as well as higher-order cognitive features, 

such as their social hierarchy. These codes appear to be synchronized across animals, 

revealing a potential mechanistic basis for coordination of social behaviors, reflecting 

previous reports of synchronization identified from behavioral data alone108.

Models of sensorimotor transformations.

Given representations of sensory inputs and motor outputs, another way to link behavior to 

neural activity is through explicit modeling of this sensorimotor transformation. Modeling 

the transformation from sensory input to motor output can recover stimulus filters109 and 

even infer internal states110. These models attempt to fit simple but easily interpretable 

transformations between sensory input and behavioral output (Fig. 4c). This level of 

modeling has the benefit of being a general-purpose approach to discovering the relative 

importance of different sensory features and their timescales.

Pereira et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Approaches that more comprehensively model the internal computations of the sensorimotor 

transformation afford the ability to incorporate knowledge about the underlying biological 

structure of the computations at the cost of increased model complexity. By simulating 

known neural connectivity and their biophysics, these forms of models enable in silico 

experimentation111,112. For example, performing ablations of specific model neurons and 

observing the changes in behavioral responses can provide insights into the computations 

being performed, which can be validated with analogous experiments in vivo.

Designing network models becomes increasingly difficult as the behaviors they attempt to 

predict become more detailed and less constrained, as is the case in freely moving and 

naturally behaving animals. An emerging approach to address this is to use artificial neural 

networks (ANNs) that can learn to perform the sensorimotor transformations while 

abstracting away details about the underlying biological neural networks. This form of 

modeling naturally leads to agent-based models, i.e., models that can perceive and respond 

to their environment. If the environment can be fully simulated, these agents are able to be 

trained without any data by providing them with a behavioral task and constraining their 

kinematics to realistic biomechanics. Recently, it was demonstrated that an agent-based 

model of rodents trained to perform classical cognitive–behavioral tasks, such as the two-tap 

task or navigating a Y-maze, are not only able to attain comparable performance to real 

animals, but also learn to compute internal representations of motor planning and control 

from sensory inputs (Fig. 4d)113,114.

Finally, an approach called imitation learning combines the ability of ANNs to efficiently 

learn complex transformations with the ability to impose biological fidelity derived from 

empirical data. These are constructed as agent-based models, but rather than being trained in 

simulation, they instead learn from behavioral data to predict motor outputs (for example, 

changes in pose) from reconstructed sensory inputs (for example, visual field-of-view). 

These have been applied to fruit fly data and shown to be capable of learning high-level 

representations of the computations underlying unconstrained behavior115,116. ANNs can 

also be constructed with architectures based on biological neuroanatomy to further constrain 

the types of representations it learns (a feature that is particularly useful in light of recent 

advances in connectomics117). Recent work has shown that the computations learned by 

these models exhibit a remarkable degree of similarity to physiology, even when trained on 

behavioral data alone118.

Conclusion

In this Review we have detailed the existing and emerging methods in quantifying animal 

behavior to better understand the brain. From tracking to dynamics, it is clear that advances 

in deep learning and computer vision have revolutionized our ability to extract increasingly 

detailed descriptions of behavior. Further, as modeling frameworks continue to evolve, so 

will our ability to use behavior as a means of comparing neural dynamics and structure 

across diverse animals and experimental paradigms, toward developing holistic theories of 

brain function. We believe that these advances position behavioral quantification as a core 

instrument in the neuroscience toolbox, essential to the quest of understanding the brain.
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Box 1 ∣

Choosing a tracking system

Selecting the appropriate behavioral quantification tool is an important decision that 

should be made at the experimental design stage. Some types of experiments may 

preclude some forms of tracking altogether, for example, multi-camera setups. 

Constraints on the data acquisition, such as resolution, illumination and arena size should 

be balanced with the desire to get as much information out of the behavioral recordings 

as possible.

The primary consideration is the level of description necessary for capturing the 

behavioral signals that best test a given hypothesis. Centroid and orientation tracking may 

suffice, for example, to obtain coarse locomotor statistics, information about navigational 

strategies, place preference or characteristics of some social interactions. For single 

animal tracking, a classical tracker such as Ctrax1 or ToxTrac6 may be a practical 

solution because additional labeling is not required. If imaging conditions are not 

optimal, for example, due to low illumination or complex backgrounds, it may be 

preferable to use a deep-learning-based solution even for centroid tracking2. When 

tracking multiple animals, addressing the identity assignment problem will be the 

primary challenge in ensuring the quality of the tracking. If the animals frequently 

occlude one another or disappear from the field of view, it may be necessary to employ a 

deep-learning-based multi-animal tracker such as idtracker.ai (https://

idtrackerai.readthedocs.io/en/latest/) to minimize identity switches14.

If a pose estimation system is optimal, it is important to consider the resolution required 

to capture the smallest feature of an animal. For insects with thin appendages, high 

spatial resolution is required, which must be balanced with the size of the field of view; 

for rodents, a lower resolution may suffice, but note that some body parts like the tail 

may require additional considerations if imaging against a low-contrast background. 

Next, consider the viewpoint of the camera. For ideal 2D pose estimation, movements out 

of the image plane should be minimized, which is most commonly achieved by carefully 

aligned cameras either overhead or from below a transparent floor of an elevated arena. 

For immobilized animals, higher resolution may be more easily achieved, but it may be 

difficult to get a viewpoint where movements are within the image plane. Finally, ensure 

that the signal-to-noise ratio of the images is maximized by providing sufficient, constant 

and uniform illumination (potentially in infrared to reduce corruption by room light), 

focused camera optics to reduce spatial blur and low camera exposure time to reduce 

temporal blur.

In the majority of cases, any of the mature animal-pose-estimation frameworks (for 

example,DeepLabCut26, SLEAP31 and DeepPoseKit33) should produce satisfactory 

results and can be configured to achieve similar speed and accuracy. All of these 

frameworks provide a shared base set of features: graphical user interfaces (GUI) for 

labeling and inspecting results, usage documentation with example data, active learning, 

multiple neural network architectures with optional pretraining for transfer learning, and 

Python-based implementations. Their differences derive primarily from their capacity for 
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customization and extension for specialized applications. DeepLabCut has a large user 

base that has adapted it to a diverse range of specialized applications; DeepPoseKit 

provides a minimalist implementation of the core functionality required to build a pose 

estimation system; and SLEAP provides a flexible codebase, developed with a 

standardized code style and documentation formats, continuous integration, and native 

multiplatform support and modular application programming interfaces to facilitate 

extensibility and customization for specialized applications.

For multi-animal tracking, all three frameworks support top-down approaches; a recent 

update to DeepLabCut provides experimental support for bottom-up, while SLEAP offers 

native support for both. MARS121 provides an alternative solution for tracking rodents 

with different fur colors and is integrated with tools for advanced downstream analyses. 

The SLEAP GUI offers functionality for proofreading tracking, as it was designed with 

special emphasis on multi-animal pose tracking.

When extending to 3D, it is important to first consider how many cameras may be 

necessary and to ensure that they are synchronized and calibrated. For larger animals, 

such as non-human primates that can occupy large spaces, OpenMonkeyStudio46 

describes a state-of-the-art system using an array of 62 cameras. For smaller animals, 

DeepFly3D45 and Anipose48 provide flexible general-purpose toolkits to deal with 

calibration and triangulation of 2D landmarks. At the cutting edge, the 3D-from-2D pose 

estimation framework LiftPose3D52 may be suitable for settings in which multicamera 

triangulation is not possible.
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Box 2 ∣

Choosing a behavioral feature representation

Tracking data, whether at the resolution of centroids or pose, is ultimately represented as 

a set of coordinates in space, typically in units of pixels in the reference frame of the 

camera. Converting these into a meaningful representation amenable to interpretation and 

analysis requires the choice of a feature representation that can be derived from the raw 

coordinates. This step precedes the analysis of dynamics, and most methods for 

quantifying dynamical structure are agnostic to the specific behavioral feature (Fig. 3a) 

on which they operate.

A simple and effective approach when dealing with pose is to adjust the coordinates to an 

egocentric representation, which can be achieved by centering the coordinates such that 

the origin is at a fixed anatomical position (e.g., thorax in insects, spine base in rodents or 

centroid more generally). With a second reference point, such as the head or neck, the 

remaining points can then be rotated such that the animal is always facing in a consistent 

orientation, enabling a fully egocentric reference frame for the pose coordinates32. In 3D, 

a third point of reference is required to ensure this rotational invariance, and its selection 

depends on the available landmarks and the animal’s anatomy46,50,80. Once transformed 

to egocentric coordinates, displacements can be interpreted in relation to the body, and 

their occupancy reflects body configuration independent of global position or orientation.

From coordinates, a number of hand-crafted features can easily be derived, such as 

velocities, distances and orientations, both between body parts and in relation to other 

animals or objects in the environment. A number of these have been previously described 

for various species and experimental contexts1,9,50. Some frameworks facilitate the 

computation of exhaustive sets of combinations of pairwise features, such as all-to-all 

distances, angles and velocities66,68,79; these can provide a superset of behavioral 

features agnostic to their semantic interpretation, but much less precise than deliberately 

designed features. For behaviors involving highly periodic movements, such as 

locomotion or grooming, spectral features can provide an effective representation by 

expressing the behavioral feature in time–frequency space32,75,122.

An alternative approach that may be better suited to capturing the correlation structure 

between postural coordinates (or even between pairwise features) is to employ 

dimensionality-reduction techniques. Principal component analysis (PCA), for example, 

is often used to describe body shape in few dimensions, as it naturally takes advantage of 

the high correlation between articulated body segments in the kinematic tree of animal 

skeletons. This is particularly useful for animals such as worms89 and fish78 that have 

many degrees of articulation along a centerline. More complex correlation structure may 

be analogously identified using nonlinear dimensionality reduction on the coordinates or 

pairwise features, such as variational auto-encoders95.

Some dynamics may not be effectively captured by tracking, particularly for non-rigid 

and ‘blobby’ body parts, such as subtle facial movements44. For these, traditional 

methods for extracting behavioral features operate directly on the images, typically by 

performing dimensionality reduction on egocentrically aligned crops of the animals75,81 
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or on regions of interest in immobilized animals44,123,124. In one notable application, a 

facial emotion recognition technique was applied to mouse faces to extract estimates of 

their emotional state from facial image features directly125. A recently described database 

of animal faces may be of particular interest for future work on general purpose animal 

face features13.

Finally, while many approaches to quantifying dynamics may be effective at capturing 

the structure and describing the correlation between semantically meaningful behavioral 

features (body kinematics), for the task of directly classifying behaviors from video 

frames, methods that capture general image motion may improve accuracy over pose-

based features. In the human action recognition field, while some methods do operate on 

pose126, many opt instead to use deep neural networks to learn to extract motion features 

by training them to classify actions directly from raw video frames127. In animals, 

ABRS128 and DeepEthogram129 describe systems for classifying behaviors directly from 

video by using optical flow features and other learned image features. These techniques 

alone, however, do not lend themselves directly to understanding the neural control of 

behavior, which necessarily involves motion and actuation of specific body parts, but can 

be useful tools to predict the occurrence of well-defined behaviors.
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Box 3 ∣

Quantifying acoustic behaviors

Not all motor output can be quantified using conventional videography. In particular, 

vocalizations and other forms of acoustic communication are either not clearly visible or 

are produced at frequencies much higher than the frame rates of standard video cameras. 

Acoustic behaviors, however, can be easily measured using microphones placed in 

proximity of interacting animals. Similar to the challenges described for tracking and 

segmenting behaviors from video, the primary challenge in quantifying acoustic 

behaviors is detecting and classifying individual acoustic events, such as courtship song 

syllables.

Classical approaches rely on signal processing techniques to filter and extract acoustic 

events based on spectral and temporal features of animal songs. These have been used 

with much success to detect, for example, Drosophila courtship song130, zebra finch 

song131 and mouse vocalizations132,133. The automated detection of fly song has 

facilitated analysis of large behavioral datasets linking visual feedback cues (the moving 

female fly) to the dynamic patterning of male song, which would not have been possible 

otherwise134. Newer approaches have been developed to ease the difficulty of hand-

crafting specialized signal-processing pipelines by leveraging deep learning to learn from 

user annotations135-137. These tools are crucial in improving the robustness of acoustic 

behavior detection to new experimental conditions with different noise properties.

However, these methods are limited by a priori knowledge of the syllables or modes that 

comprise song. A parallel approach to the supervised techniques leverages unsupervised 

learning to discover new acoustic behavioral subtypes, analogous to the unsupervised 

approaches for tracking. Manifold embedding has enabled the discovery of previously 

undiscovered fruit fly song types138 and immature songbird sequences139, as well as 

mapping of less-stereotyped mouse vocalizations140-142.
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Fig. 1 ∣. Tracking, from coarse to fine.
a, Representations extracted by different forms of tracking, ranging from a single point to 

full 3D pose. b, Single mouse tracked with ellipse and orientation2. c, Multi-animal tracking 

of ants with reliable identity assignment14. d, Multi-animal pose tracking of a pair of 

socially interacting fruit flies31. e, 3D pose estimation of a monkey from multiple camera 

views46. Images in a adapted with permission from SciDraw.io119 or created with 

BioRender.com120; in b from ref. 2, Nature Publishing Group; in c from ref. 14, Nature 

Publishing Group; in e from ref. 46, Nature Publishing Group.
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Fig. 2 ∣. Anatomy of pose estimation systems.
a, In single-instance pose estimation32, each body-part type is encoded as a confidence map 

that is predicted by a convolutional neural network given an image as input (left). The 

network is trained to predict confidence maps (CMs) with only a single peak per channel 

(middle), enabling the coordinates to be decoded by finding the global peak in each channel 

of the confidence maps (right). b, The 3D pose estimation system employed in DeepFly3D 

(ref. 45). These systems may use a single neural network (left) to predict 2D confidence 

maps (middle) for each independent view. These landmarks are then triangulated based on 

the geometry of the cameras and the consistency of the 2D predictions (right). c, A top-down 

multi-animal pose estimation system employed in SLEAP31. All instances of an ‘anchor 
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part’ are first located by a CNN trained to predict anchor part confidence maps (left). The 

image is cropped around each anchor (middle) and a CNN trained to predict all part 

confidence maps is applied to each crop (right). d, A bottom-up multi-animal pose 

estimation system employed in SLEAP31. A single neural network detects all instances of all 

body parts and simultaneously predicts part affinity fields (PAFs)58, a representation of the 

connectivity between body parts (left). The grouping of body parts to the appropriate 

animals via a matching procedure uses the PAFs to score candidate connections (right). 

Images in b adapted with permission from ref. 45, eLife.
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Fig. 3 ∣. Quantifying behavioral dynamics.
a, A snippet of behavioral dynamics during which two types of behavior occur. Behavior 1 

(blue) is characterized by slow, step-like dynamics, whereas behavior 2 (red) is characterized 

by fast oscillations with sharp peaks. b, In supervised classification, a human first annotates 

examples of each type of behavior (top). A classifier such as a decision tree will learn 

criteria to classify new data based on the examples provided (bottom). c, In clustering, 

examples are grouped by their similarity rather than human annotations. The resulting 

clusters correspond to distinct behaviors. Points represent short windows of time reduced to 

two dimensions for visualization. d, In dynamical models, behaviors are represented by 

states that the model is permitted to transition between (top). These states parametrize the 

models that generate the state-specific dynamics (middle). The observed dynamics are 

assumed to come from the model that is most likely to generate similar dynamics (bottom). 

e, Clusters of zebrafish hunting behaviors based on the similarity of their postural 

trajectories (depicted within the bubbles)90. Points correspond to individual bouts after 

applying nonlinear dimensionality reduction to the zebrafish pose trajectories as a 

preprocessing step. f, Manifold embedding of fruit fly gait with the cyclical continuous 

structure of different gait modes highlighted91. Note that although this representation does 

not capture cluster-like structure, it does identify both the phase of gait strides (circles) and a 

continuous axis of variation that transitions smoothly from slow (non-canonical) to fast 

(tripod) locomotion. Images in e adapted with permission from ref. 90, Cell Press; in f from 

ref. 91, eLife.

Pereira et al. Page 28

Nat Neurosci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 ∣. Approaches to linking brain to behavior.
a, Tracking centroids and orientations of animals enables the reconstruction of their sensory 

inputs by simulating a first-person view of their environment9. b, Zebrafish tracking and 

whole-brain imaging during hunting behavior shows how representations of internal states 

(exploration vs exploitation) are revealed when aligning to behavioral data104. c, Model of 

courting flies captures the shape and timescale of visual sensory inputs (mfDist; distance 

between animals) that predicts behavioral output (courtship song) modulated by internal 

state110. d, An ANN can learn to control a simulated rat via motor commands to perform a 

tapping task. Top: rendering of the simulated rat performing the task. Bottom: latent 

representations learned by the ANN that is used to drive the behavior113. Images in a 
adapted with permission from ref. 9, Nature Publishing Group; in b from ref. 104, Nature 

Publishing Group; in c from ref. 110, Nature Publishing Group; in d from ref. 113, arXiv.

Pereira et al. Page 29

Nat Neurosci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Tracking, from coarse to fine
	Animal centroids, ellipses and identities.
	Animal pose estimation.
	Animal pose estimation in three dimensions.
	Multi-animal pose tracking.

	Quantifying the dynamics of behavior
	Animal behavior, as defined by humans.
	Animal behavior, as defined by the data.
	Adding continuous structure to discrete representations.

	Linking brain activity and behavior
	Peri-behavior time histograms.
	Models of sensorimotor transformations.

	Conclusion
	References
	Fig. 1 ∣
	Fig. 2 ∣
	Fig. 3 ∣
	Fig. 4 ∣

