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Abstract

Two efflux transporters, ATP-binding cassettes B1 (ABCB1) and G2 (ABCG2), are highly 

expressed in the endothelial cells of the brain, where they regulate the bioavailability and 

distribution of several endogenous and xenobiotic compounds. However, whether ABCB1 or 

ABCG2 has any link with drug dependence, drug withdrawal effects, or the incidence of adverse 

effects in drug abuser is not known. In this study, we determined the effects of voluntary ethanol 

consumption following repeated exposure to cocaine or vehicle on the relative mRNA and protein 

expression of Abcg2/ABCG2 and Abcb1/ABCB1 in the nucleus accumbens (NAc) and medial 

prefrontal cortex (mPFC) of male alcohol-preferring (P) rats. Male P rats were allowed free choice 

access to ethanol (15 and 30% v/v) and water for 5 weeks to establish baseline drinking behavior. 

The following week, rats were either injected with 20 mg/kg i.p. of cocaine or saline, once a day, 

for 7 days. The relative mRNA and protein expression of Abcb1/ABCB1 and Abcg2/ABCG2 in 

the NAc and mPFC were significantly decreased in ethanol-saline- and ethanol-cocaine-exposed 

rats compared to control rats that received neither ethanol nor cocaine. Thus, prolonged exposure 

to commonly abused drugs, ethanol and cocaine, alters the expression of Abcb1/ABCB1 and 

Abcg2/ABCG2 mRNA and protein levels in brain areas that play a role in drug dependence.
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Introduction

Interaction between drugs (e.g., drug-drug interactions; DDI), including drugs of abuse, can 

contribute to severe adverse effects. Some DDI may involve alterations in the expression or 

function of ATP-binding cassette (ABC) proteins [1]. These DDI may result from the non-
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linear elimination characteristics of the ABC transporters, as well as the competition 

between the substrates of ABC transporters. Based on amino acid sequence homology, the 

ABC transporter family has been categorized into seven main subtypes (ABCA–ABCG) and 

these transporters are involved in either the efflux or influx of endogenous and exogenous 

compounds [2]. ABC transporters, such as ABCG2 (breast cancer resistance protein, 

BCRP), ABCB1 (P-glycoprotein, P-gp), and ABCC2 (multidrug resistance proteins 2, 

MRP-2) [3, 4], are expressed in the canalicular membrane of liver cells and the apical 

membranes of the epithelial barriers in the kidney and intestine. The overexpression of these 

efflux transporters is correlated with the reduction in the systemic concentrations of their 

substrates [3, 5]. In addition, the overexpression of ABCB1 and ABCG2 in the brain 

capillary endothelial cells of the blood brain barrier (BBB) limits the penetration of certain 

drugs into the brain, thereby limiting or abrogating their therapeutic efficacy [6, 7].

Drug addicts commonly receive pharmacological treatments for various other medical 

conditions, such as certain antiretroviral and antipsychotic drugs, that are ABCB1 and 

ABCG2 substrates [1, 8]. These treatments could consequently alter responses to drugs of 

abuse, or conversely a history of illicit drug use might alter responses to these treatment 

medications, resulting in deleterious drug-drug interactions or even contributing to the 

addictive process. There is also, of course, substantial co-abuse of multiple illicit substances, 

particularly the co-use of ethanol with most other drugs of abuse. Previous studies, using in 

vitro and in vivo models, have identified roles of specific ABC proteins in transporting 

various drugs of abuse [9–11]. For example, it has been shown that buprenorphine is 

transported across the BBB via an ABCB1-mediated efflux transport system [12]. Cocaine 

was also found to be a substrate for ABCB1 transporters in bovine brain endothelial cells 

[10]. Moreover, methadone inhibits the activity of ABCB1 in vitro in Caco-2 cells [13] and 

in rodents [14, 15], which might therefore affect subsequent responses to methadone and 

other ABCB1 substrates.

Such effects on the expression of ABC transporters in response to substrate exposure or 

other molecular signals would be expected to be most apparent after chronic treatments. It 

has been reported that short-term (4 days) exposure to ethanol decreases the cellular 

expression of ABCG2 in cortical progenitor cells [16]. Disulfiram, a drug approved for the 

treatment of alcohol abuse, interacts with ABCB1 binding sites, which may induce drug 

resistance [17]. Thus, concurrent exposure to ethanol and disulfiram could produce adverse 

effects due to interactions at the level of ABC transporters. Unlike other drugs of abuse, 

ethanol would not be expected to be a substrate for ABC transporters and to instead cross the 

BBB by passive diffusion [18], but may affect the function of these transporters in other 

ways. For instance, chronic ethanol exposure affects the level of transcriptional factors and 

neuroinflammatory biomarkers that may regulate the expression of ABC transporters [19–

21].

Cocaine is a psychostimulant drug that produces its addictive effects via alteration of 

neuronal function/activity in brain areas hypothesized to mediate reward and reinforcement 

[22]. Cocaine crosses the BBB by passive diffusion to some extent, but more importantly, by 

the proton antiporter flux system [23, 24]. However, data suggest that cocaine may also be 

transported by ABCB1 [10]. In addition to the pharmacodynamic mechanisms that have 
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been postulated to mediate the development of cocaine dependence [25, 26], it has been 

suggested that chronic exposure to cocaine affects brain proteins that may play a role in the 

pathogenesis and/or pathophysiology of other diseases [27, 28]. Indeed, cocaine affects 

chemokine receptors of the immune system [29], and these changes could be involved in the 

activation or repression of ABC transporters [30, 31]. Since long-term exposure to 

chemotherapeutic drugs increases the expression of ABC transporters in the brain, it might 

be thought that exposure to these drugs might influence subsequent responses to drugs of 

abuse that are substrates for these transporters. Similarly, a prior history of drug abuse might 

also affect subsequent responses to chemotherapeutic drugs. It is therefore important to 

investigate the effects of chronic exposure to drugs of abuse, including cocaine, on the 

expression of these transporters. To begin to address this question, the present study 

determined the direct effect of concurrent, repeated i.p. injections of cocaine and voluntary 

oral ethanol consumption on mRNA and protein expression of Abcb1/ABCB1and Abcg2/

ABCG2 in the NAc and mPFC of male alcohol-preferring (P) rats. This dual regimen was 

chosen because of previous research demonstrating substantial changes in brain mechanisms 

influencing the neurotoxic effects of drugs of abuse [32, 33].

Materials and Methods

Subjects

Fifteen male alcohol-preferring (P) rats (21–30 days of age) were obtained from Indiana 

University, School of Medicine (Indianapolis, IN, USA) and were housed in the Department 

of Laboratory Animal Resources, University of Toledo, Health Science Campus. The animal 

protocol for this study was approved by the Institutional Animal Care and Use Committee of 

The University of Toledo and was in accordance with all National Institutes of Health 

guidelines for animal research, including the Guide for the Care and Use of Laboratory 

Animals (Institute of Laboratory Animal Resources, Commission on Life Sciences, 1996).

Animals were grouped and housed in a vivarium room kept on a 12-/12-h light/dark cycle 

and maintained under controlled temperature (23 ± 2 °C) and humidity (50 ± 5%). The 

number of animals in each cage was chosen depending on the animals’ weight in accordance 

with IACUC guidelines.

Behavioral Drinking Paradigm

The time line of voluntary ethanol consumption and repeated cocaine administration (20 

mg/kg, i.p.) is illustrated in Fig. 1. At 75 days of age, rats were housed individually under 

controlled temperature (23 ± 2 °C) and humidity (50 ± 5%) conditions and were maintained 

on a 12-/12-h light/dark cycle. Rats had ad libitum access to food and water throughout the 

study. Ethanol-treated rats (groups 2 and 3 below; see Fig. 1) were exposed to a free choice 

ethanol drinking procedure (15 and 30% ethanol v/v and water, concurrently) for a period of 

5 weeks. During the fourth week of ethanol consumption, ethanol and water intake were 

measured three times a week for 2 weeks. Rats consuming less than 4 g/kg/day of ethanol 

were excluded (three rats) from the study, as described in previous studies [32, 34]. On the 

following week, the ethanol-exposed P rats were randomly divided into two groups, so that 

there were three groups overall: (A) group 1 (water control group), exposed to water 
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throughout the study and injected i.p. with 0.9% saline (vehicle); (B) group 2 (ethanol-saline 

group), exposed to ethanol and water throughout the study and injected i.p. with saline once 

daily for 7 days; and (C) group 3 (ethanol-cocaine group), exposed to ethanol and water 

throughout the study and injected with 20 mg/kg i.p. of cocaine once daily for 7 days.

Brain Tissue Harvesting

Carbon dioxide (27%) was used to euthanize rats 24 h after the last cocaine or saline 

injection (and at the same time for control subjects). Rats were decapitated using a guillotine 

and the brains were removed, placed on dry ice until frozen and stored at − 80 °C until 

samples were collected. A cryostat apparatus, set at − 20 °C, was used for dissection of 

samples from the mPFC and NAc. Tissue sections were taken until the brain regions of 

interest could be identified using the Rat Brain Atlas [35]. The isolated brain regions (left 

and right sides) were stored at − 80 °C for immunoblot and quantitative polymerase chain 

reaction (PCR) analysis.

Western Blot

A lysis buffer (1 M Tris HCL, 3 M NaCl, 0.5 M EDTA, 10% NP-40, 10% Triton, 10% SDS) 

containing protease inhibitors (Thermo Scientific, Rockford, IL, USA) was used to lyse the 

brain tissues in preparation for Western blot analysis, as previously described [36]. A protein 

quantification assay was performed using a DC (detergent compatible) protein assay (Bio-

Rad Laboratories, USA). Subsequently, equal amounts of extracted proteins from each 

sample were separated on 10% polyacrylamide gels. The proteins were transferred from the 

gels to PVDF membranes (Bio-Rad, Hercules, CA, USA). Subsequently, TBST (50 mM Tris 

HCl; 150 mM NaCl, pH 7.4; 0.1% Tween 20) containing 5% non-fat dry milk was used to 

block the membranes at room temperature for 30 min. The membranes were then exposed to 

one of the following primary antibodies: mouse anti-MDR1/ABCB1 (1:200, Novus 

Biological), or mouse anti-ABCG2/CD338 (1: 2000, Novus Biological) at 4 °C overnight. A 

loading control protein was assessed throughout the study using mouse anti-GAPDH (1: 

5000; Cell Signaling Technology). On the second day, the membranes were washed five 

times with TBST. Subsequently, TBST in 3% non-fat dry milk was used to further block the 

membranes for 30 min. At room temperature, membranes were exposed to the secondary 

antibody, anti-mouse ABCB1, ABCG2, and GABDH (1:5000; Cell Signaling Technology) 

for 90 min. The membranes were washed five times with TBST, dried, and incubated with 

the developing kits to detect proteins (SuperSignal West Pico Chemiluminescent substrate, 

Rockford, IL, USA). The membranes were exposed to film (Kodak BioMax MR Film, 

Fisher Inc., Holiston, MI, USA) and the film was developed using an SRX-101A machine 

(Konica Minolta Medical and Graphic Inc.). To quantify the intensity of the detected bands, 

an MCID system (Imaging Research Inc., Ontario, Canada) was used and obtained values 

were expressed as a percentage of the relative ratio of the proteins of interest to GAPDH 

(100% water control value) as described previously [25, 37].

The gels in the Western blot analyses were run in triplicate and not all samples could be run 

on the same gel. Furthermore, there are many factors that can influence, by increasing or 

decreasing, the intensity of the blot in each run, including room temperature, the amount of 

protein loaded, the ratio of the developing kit, and the film exposure time. Hence, we 
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standardized the expression of the protein of interest for each sample to the corresponding 

water control sample that was run in the same gel, under the same conditions, as described in 

several previous studies [32, 38–41].

Real-Time, Quantitative PCR (RT-PCR, qPCR)

Triazol Reagent (Life Technologies, Carlsbad, CA, USA) was used to isolate total RNAs 

from the NAc and mPFC. Subsequently, using a verso cDNA synthesis kit (Thermo 

Scientific, Lithuania), reverse transcription (RT) was done according to the manufacturer’s 

protocol. An iCycler (Bio-Rad laboratories, München, Germany) was used to perform Real-

Time PCR (RT-PCR). RT-PCR was done using a reaction mixture of SYBR Green as a 

fluorescent dye (Bio-Rad Laboratories), a 1/20 volume of cDNA preparation as a template, 

and the appropriate primers for the genes of interest as shown in Table 1. A threshold cycle 

number (CT) for each sample was obtained from the iCycler and was used to compare the 

relative amount of target mRNA in experimental groups with those of controls, using the 

2−ΔΔCT method [33, 44]. Each sample was run in triplicate. In order to get ΔCT, the mean CT 

value for the control gene, GAPDH was subtracted from the mean CT value of the gene of 

interest. The ΔCT values for the control group (ethanol-naive) were then averaged and were 

subtracted from ΔCT for the experimental groups to obtain ΔΔCT. The relative fold change 

from control was then expressed by calculating 2−ΔΔCT for each sample and the results were 

reported as the group mean fold change ± SEM.

Statistical Analyses

The relative mRNA and protein expression of Abcb1/ABCB1 to Gapdh/GAPDH and 

Abcg2/ABCG2 to Gapdh/GAPDH for water-control, ethanol-saline, and ethanol-cocaine 

groups were analyzed using a one-way ANOVA. Post hoc comparisons were made using the 

Newman-Keuls multiple comparison test. A priori significance level was set to p < 0.05.

Results

The Effect of Voluntary Ethanol Consumption and the Repeated Cocaine Administration on 
the Relative mRNA Expression of Abcb1 and Abcg2 in the NAc and the mPFC

The Relative mRNA Expression of Abcb1 and Abcg2 in the NAc

Abcb1 mRNA: Statistical analysis indicated a significant decrease in the relative Abcb1 
mRNA expression [F (2, 12) = 5.454, p = 0.0207] in the NAc of rats that voluntarily 

consumed ethanol and in rats treated chronically with 20 mg/kg i.p. of cocaine after ethanol 

consumption, compared to ethanol-naïve P rats (Fig. 2 and Table 2, left). There was no 

significant difference between ethanol-treated groups resulting from cocaine exposure.

Abcg2 mRNA: Statistical analysis revealed a significant decrease in the relative Abcg2 
mRNA expression [F (2, 12) = 7.549, p = 0.0075] in the NAc of rats that voluntarily 

consumed ethanol and in rats treated chronically with 20 mg/kg i.p. cocaine after ethanol 

consumption, compared to ethanol-naïve P rats (Fig. 2 and Table 2, right). There was no 

significant difference between ethanol-treated groups resulting from cocaine exposure.
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The Relative mRNA Expression of Abcb1 and Abcg2 in the mPFC

Abcb1 mRNA: A significant decrease in relative Abcb1 mRNA expression [F (2, 12) = 

8.254, p = 0.0056] occurred in the mPFC of rats that voluntarily consumed ethanol and in 

rats chronically treated with 20 mg/kg i.p. cocaine after ethanol consumption, compared to 

ethanol-naïve P rats in mPFC (Fig. 3 and Table 3, left). There was no difference between 

ethanol-treated groups resulting from cocaine treatment.

Abcg2 mRNA: A significant decrease in relative Abcg2 mRNA expression [F (2, 12) = 

4.857, p = 0.0285] occurred in the mPFC of rats that voluntarily consumed ethanol and in 

rats chronically treated with 20 mg/kg i.p. of cocaine after ethanol consumption (Fig. 3 and 

Table 3, right). There was no difference between ethanol-treated groups resulting from 

cocaine treatment.

The Effect of Voluntary Ethanol Consumption and the Repeated Cocaine Administration on 
ABCB1 and ABCG2 Protein Expression in the NAc and the mPFC

ABCB1 and ABCG2 Expression in the NAc

ABCB1: Statistical analysis indicated that a significant decrease [F (2, 12) = 9.259, p = 

0.0037] in relative ABCB1 expression occurred in the NAc of rats that voluntarily consumed 

ethanol and in rats treated chronically with 20 mg/kg i.p. cocaine after ethanol consumption, 

compared to ethanol-naïve P rats (Fig. 4 and Table 4, left). There was no difference between 

ethanol-treated groups resulting from cocaine treatment.

ABCG2: Statistical analysis indicated that a significant decrease [F (2, 12) = 20.078, p < 

0.0001] in relative ABCG2 expression occurred in the NAc of rats that voluntarily consumed 

ethanol and in rats treated chronically with 20 mg/kg i.p. of cocaine after ethanol 

consumption, compared to ethanol-naïve P rats (Fig. 4 and Table 4, right). There was no 

difference between ethanol-treated groups resulting from cocaine treatment.

ABCB1 and ABCG2 Expression in the mPFC

ABCB1: Statistical analysis indicated that a significant decrease [F (2, 12) = 9.653, p = 

0.0032] in relative ABCB1 expression occurred in the mPFC of rats that voluntarily 

consumed ethanol and in rats treated chronically with 20 mg/kg i.p. of cocaine after ethanol 

consumption, compared to ethanol-naïve P rats (Fig. 5 and Table 5, left). There was no 

difference between ethanol-treated groups resulting from cocaine treatment.

ABCG2: Statistical analysis indicated that a significant decrease [F (2, 12) = 19.567, p = 

0.0002] in relative ABCG2 expression occurred in the mPFC of rats that voluntarily 

consumed ethanol and in rats treated chronically with 20 mg/kg i.p. cocaine after ethanol 

consumption, compared to ethanol-naïve P rats (Fig. 5 and Table 5, right). There was no 

difference between ethanol-treated groups resulting from cocaine treatment.

Discussion

In this study, the voluntary consumption of ethanol, as well as concurrent ethanol and 

cocaine treatment, significantly decreased relative mRNA and protein expression of the 
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ABCB1 and ABCG2 transporters in the NAc and mPFC of male P rats. To our knowledge, 

our study is the first to report that ethanol and ethanol-cocaine treatment alter the expression 

of mRNA and protein expression of ABCB1 and ABCG2 transporters. The relative mRNA 

expression was calculated according to the 2−ΔΔCT method [44], in which the relative mRNA 

expression of the desired target is normalized to GAPDH. This was performed to correct for 

variations in the amount of cDNA added for each sample and to decrease the differences 

caused by the cycling process and PCR set-up, parallel to a previous published report [45]. 

Similarly, protein expression for each target was normalized to GAPDH as a loading control 

widely used for whole cell lysate, and the results were presented as a percentage of the ratio 

of tested protein/ GAPDH, relative to ethanol-naïve (water) control groups (100% control 

value) similar to previously published papers [25, 34, 38].

Ethanol-cocaine treatment did not produce any further increases or decreases in Abcb1/

ABCB1 or Abcg2/ABCG2 expression compared to ethanol treatment alone. Importantly, no 

statistical significance was shown while comparing the expression of mRNA and protein 

expression of ABCB1 and ABCG2 transporters in the NAc and the mPFC between ethanol-

saline and ethanol-cocaine groups. However, more research is required to investigate the 

effects of cocaine on these transporters and the timing of changes in mRNA and protein 

expression relative to different treatment regimens. It remains to be seen whether cocaine 

treatment alone will produce similar effects to ethanol or whether combinatorial actions 

might occur depending on the dose and treatment regimen. Moreover, the mechanisms 

underlying these actions remain to be determined. In this study a three bottle consumption 

procedure (15 and 30% ethanol concurrently with water) was used for the voluntary home-

cage exposure for a period of 5 weeks. The use of two concentrations of ethanol together 

with water has been proven to increase free ethanol intake [46]. This model of voluntary 

exposure was used in many studies from our laboratory to study factors that influence 

ethanol consumption and mitigate excessive ethanol intake in P rats [34, 36, 47]. The 

cocaine dose for co-exposure was based on studies that have established that repeated 

cocaine exposure (20 mg/ kg, i.p.) changes the clearance and release of different 

neurotransmitters in the brain, including glutamate and dopamine [48, 49]. Moreover, the 

repeated cocaine exposure (20 mg/kg, i.p.) has been shown to downregulate the protein 

expression of glial glutamate transporters [33].

Previous studies have shown that exposure to different drugs of abuse, including ethanol, 

cocaine, and nicotine alter neurotransmission and within the neural circuitry underlying drug 

reward and reinforcement. These changes include altered expression of various proteins 

regulating neurotransmission in both female and male rats [33, 50]. On this basis it would be 

potentially expected that alterations in ABCB1 and ABCG2 transporters would be observed 

in both sexes. More studies are warranted in order to verify this effect on female rats. The 

75-day-old rats were chosen in order to examine the effect of exposure to drugs of abuse on 

adults rather than on adolescents. With regard to the issue of age, although similar effects of 

drugs of abuse were shown on the expression of different transporters, including glial 

glutamate transporters in adolescents and adults [25, 33, 50], adolescent animals were shown 

to consume more ethanol than adults [51–53]. Additional research will certainly be needed 

to determine if the sensitivity of ABC transporters to exposure to drugs of abuse is greater in 

adolescence, a period in which animals have shown altered sensitivity to drugs of abuse.
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A number of studies have shown that transcriptional factors regulate the expression of ABC 

transporters, including ABCB1 and ABCG2, notably the aryl hydrocarbon receptor (AHR), 

the pregnane xenobiotic receptor (PXR), and the constitutive and rostane receptor (CAR) 

[54, 55]. Furthermore, AHR mRNA has been detected in the BBB of humans, whereas PXR 
and CAR have not been detected in the microvessels of the brain [56]. Nonetheless, CAR 

and PXR have been found to play a critical role in regulating the expression of ABCB1 and 

ABCG2 in the BBB [57, 58]. It has been reported that chronic exposure to ethanol (50 mM 

for 7 days + 200 mM for 6 h) significantly reduces the expression and availability of AHR in 

mice [19]. Furthermore, exposure to ethanol (200 mM) for 4 h significantly reduces the 

binding of AHR [59]. These results suggest that chronic exposure to ethanol reduces the 

availability and the activity of AHR, which in part may decrease the gene and protein 

expression of Abcb1/ABCB1 or Abcg2/ABCG2. The exposure of rats to ethanol (4 g/kg, 

p.o.) for 5 weeks significantly decreased the relative mRNA expression of PXR [60], 

suggesting that persistent daily ethanol exposure induces a reduction in the expression of 

this regulator of ABC transporters. More directly, it has been reported that the incubation of 

cortical progenitor cells with ethanol (120 and 620 mg/dL) significantly reduces the cellular 

expression of ABCG2 in vitro [16].

It is also possible that the ethanol-induced decrease in the expression of ABCB1 and 

ABCG2 transporters could result from ethanol-induced neuroinflammation [20, 21]. For 

example, ethanol exposure significantly increases the levels of pro-inflammatory cytokines, 

which are known to alter the expression of ABCB1 and ABCG2 [21]. In addition, chronic 

exposure (5 g/kg/day, i.g. for 10 days) may also induce neuroinflammation by stimulating 

the production of tumor necrosis factor-alpha (TNF-α) in the brain [61, 62]. Indeed, 

increased brain TNF-α has been found to be correlated with a decrease in ABCB1 and 

ABCG2 expression [21, 63]. Interleukin-1β (IL-1β) levels and mRNA expression in the 

brain were increased in animals exposed to ethanol compared to ethanol naïve animals [62, 

64, 65]. IL-1β could also reduce the expression of ABCB1 and ABCG2, as well as other 

ABC proteins [21, 66]. In the present study, we found that the ethanol downregulated the 

relative mRNA and protein expression of Abcb1/ABCB1 and Abcg2/ABCG2 in both the 

NAc and mPFC. This effect may be mediated, in part, by an increase in the levels of 

neuroinflammatory cytokines in the brain, although this remains to be examined.

The expression of ABC transporters may also be regulated more broadly by the immune 

system. There is a significant positive correlation between chemokine receptor-4 (CXCR-4) 

overexpression and ABCB1 overexpression in non-small cell carcinoma [31] and peripheral 

blood mononuclear cells [67]. Inhibition of the CXCR-4 receptor decreases resistance to 

doxorubicin, which is an ABCB1 substrate [31]. Cocaine modulates the immune system, in 

part, by suppressing CD4+ T cell function [68]. Furthermore, in vitro, cocaine exposure at a 

dose of 10−9 to 10−4 M inhibits the migration of human fetal brain-derived neural precursor 

cells in response to the chemokine CXCL-12 and exposure at a concentration of 10−6 M for 

7 days downregulates CXCR-4 [29]. Importantly, CXCR-4 induces the expression of c-Jun 

and consequently upregulates the expression of ABCG2 [30]. Thus, it is possible that the 

effects of cocaine on ABCB1 and ABCG2 transporters in our study could result from 

alterations in chemokines, although this remains to be determined.
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Modulation of ABC transporters by drugs of abuse may have wide-ranging implications for 

the treatment of diverse conditions with drugs that are substrates of these transporters, as 

well as for addiction. A history of illicit drug use might influence responses to other 

medications by altering tissue penetration and other pharmacokinetic properties of drugs that 

are substrates of these transporters. The present data suggest that there are alterations in 

brain expression of these transporters, but it remains highly probably that there are 

alterations in the expression of these transporters in other tissues involved in the excretion of 

these drugs, including cancerous tissues for which the expression of these transporters is an 

important aspect of drug resistance. The converse may also be true that exposure to other 

drugs that influence the expression of these transporters might subsequently influence 

responses to drugs of abuse. It remains to be determined if the changes in the expression of 

these transporters are associated with changes in pharmacokinetic properties of drugs of 

abuse, and in particular brain penetration, and whether such changes might influence the 

subsequent behavioral and psychological impact of drugs as part of the addictive process.

The idea that the level of expression of these transporters might play a role in drug 

dependence is supported by other findings. The ABC transporter ABCC4 has been 

repeatedly found to be associated with drug dependence in genome-wide association studies 

(GWAS) [69]. Particular transporters may also be more specifically related to dependence to 

particular drugs or drug classes. ABCB1 markers have been repeatedly associated with 

opiate dependence [70]. There is also some suggestion that it may be associated with ethanol 

dependence [71]. Although the association did not reach “genome-wide” significance in that 

study, other approaches in animals also identified the homologous gene as being associated 

with responses to ethanol [72, 73]. A meta-analysis of nicotine dependence studies, seeking 

to identify pathways involved in the liability to nicotine dependence, identified a cluster of 

genes involved in xenobiotic signaling, including ABCB1, AHR, and TNF [74]. As it is the 

case for many genes associated with drug dependence, the genetic relationship may not be 

direct, but might be associated with another endophenotype or psychiatric co-morbidity, 

such as antisocial behavior, which has been associated with ABCB1 markers [75]. Most 

importantly, the deletion of Abcb1 or Abcg2 in mice has been shown to increase both blood 

and brain levels of Δ−9-tetrahydrocannibinal (THC) and to potentiate the THC-induced 

hypothermia [76], and deletion of Abcb1 potentiates the respiratory depressive effects of 

buprenorphine by reducing brain efflux of norbuprenorphine [77].

In summary, our work sheds the light on the direct effect of voluntary ethanol consumption 

(with or without repeated cocaine exposure) on the expression of ABC efflux transporters in 

central brain regions involved in drug reward and reinforcement. Our work provides 

information about some possible drug-drug interactions among the substrates of the ABC 

transporters, including drugs of abuse in the brain. However, this area of research is not well-

studied and needs further investigation, as it has important potential implications for 

mechanisms that may contribute to the addictive process, as well as for the use of drugs in 

individuals with a history of drug abuse. Future studies are warranted to investigate the 

effects of chronic exposure of ethanol, cocaine, and other abused drugs on the transcriptional 

factors that regulate ABC transporters and other potential mediators of these effects, such as 

neuroinflammation and immune factors. Moreover, additional research is required to 
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determine the relationship between ABC transporter expression and function, and behavioral 

and psychological responses to drugs of abuse.
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Fig. 1. 
The time line for voluntary ethanol drinking and repeated cocaine exposure

Hammad et al. Page 15

Mol Neurobiol. Author manuscript; available in PMC 2021 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Relative mRNA expression of Abcb1 and Abcg2 in the NAc following voluntary ethanol 

consumption and repeated cocaine exposure (mean ± SEM). a One-way ANOVA followed 

by the Newman-Keuls multiple comparisons test revealed a significant decrease in relative 

mRNA expression of Abcb1 in the NAc. b One-way ANOVA followed by the Newman-

Keuls multiple comparisons test revealed a significant decrease in relative mRNA expression 

of Abcg2 in the NAc. (*p < 0.05, **p < 0.01), (n = 5 for each group)
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Fig. 3. 
Relative mRNA expression of Abcb1 and Abcg2 in the mPFC following voluntary ethanol 

consumption and repeated cocaine exposure (mean ± SEM). a One-way ANOVA followed 

by the Newman-Keuls multiple comparisons test revealed a significant decrease in relative 

mRNA expression of Abcb1 in the mPFC. b One-way ANOVA followed by the Newman-

Keuls multiple comparisons test revealed a significant decrease in relative mRNA expression 

of Abcg2 in the mPFC. (*p < 0.05, **p < 0.01), (n = 5 for each group)
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Fig. 4. 
ABCB1 and ABCG2 protein expression in the NAc following voluntary ethanol 

consumption and repeated cocaine exposure (mean ± SEM). a One-way ANOVA followed 

by the Newman-Keuls multiple comparisons test revealed a significant decrease in ABCB1 

expression in the NAc. b One-way ANOVA followed by the Newman-Keuls multiple 

comparisons test revealed a significant decrease in ABCG2 expression in the NAc. (**p < 

0.01, ***p < 0.001), (n = 5 for each group)
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Fig. 5. 
ABCB1 and ABCG2 protein expression in the mPFC following voluntary ethanol 

consumption and repeated cocaine exposure (mean ± SEM). a One-way ANOVA followed 

by the Newman-Keuls multiple comparisons test revealed a significant decrease in ABCB1 

expression in the mPFC. b One-way ANOVA followed by the Newman-Keuls multiple 

comparisons test revealed a significant decrease in ABCG2 expression in the mPFC. (*p < 

0.05, **p < 0.01,***p < 0.001), (n = 5 for each group)
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Table 1

Primer sequence for rat Abcb1, Abcg2, and Gapdh

Gene Primer Sequence
a, b

Abcb1 Forward primer 5’- GTGTTTCTAGATGGCAAAGA −3’

Reverse primer 5’- CCACTCTGGTGTTGTATTTC −3’

2Abcg2 Forward primer 5’- AAGACCATGAAGCAAACAAG −3’

Reverse primer 5’- ACACTGGTTGTTAGTCAGGA −3’

Gapdh Forward primer 5’- CCCCCAATGTATCCGTTGTG −3’

Reverse primer 5’- TAGCCCAGGATGCCCTTTAGT-3’

a
Abcb1 and Abcg2 primer sequences were taken from [42]

b
Gapdh primer sequences were taken from [43]
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