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Introduction
Wernicke’s encephalopathy (WE) is an acute 
neuropsychiatric state. Untreated, WE can lead 
to coma or death, or progress to Korsakoff syn-
drome (KS). KS is a dementia characterized by 
irreversible loss of anterograde memory.1,2 
Thiamine (vitamin B1) deficiency lies at the heart 
of this condition. Hence, understanding thiamine 
is essential for understanding the etiology of WE, 
its prophylaxis and treatment.

The overall aim of this review is to identify the 
best strategies for prophylaxis and treatment of 
WE in regard to (a) dose of thiamine, (b) mode of 

administration, (c) timing of switch from one 
mode of administration to another, (d) duration of 
administration, and (e) use of magnesium along 
thiamine as an essential cofactor. Evidence from 
randomized controlled trials and other interven-
tion studies is virtually absent. Therefore, we have 
to resort to basic science for proof of principle 
instead. In the first part of our clinical review, we 
explore the physiology of thiamine and the patho-
physiology of thiamine deficiency in their histori-
cal context. In the second (forthcoming) part of 
this review, we will use the findings of the current 
review to make evidence-based inferences about 
strategies for prophylaxis and treatment of WE.
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Historical perspective on thiamine
First descriptions of states compatible with thia-
mine deficiency in form of beriberi appeared in 
Japan in the 9th century. The concept of WE 
emerged 1000 years later. Between 1876 and 
1878, the neurologist Carl Wernicke at the Charité 
Hospital in Berlin identified three cases of a hem-
orrhagic encephalitis, which now bears his name.3 
The etiology remained unknown at the time; the 
concept of vitamins emerged only 25 years later. It 
then took another 30 years to identify the link 
between thiamine deficiency and WE (Table 1). 
Whether “thiamin” or “thiamine” is the correct 
spelling has been debated ever since the name was 
proposed.4 Today, both spellings are used.

Manifestations of thiamine deficiency
Thiamine deficiency can arise from (a) reduced 
intake, (b) impaired absorption, (c) inability to 
convert thiamine to its biologically active form, or 
(d) excessive elimination. Alcohol use disorder 
accounts for about 50% cases of WE. Bariatric 
surgery, consuming illnesses, malabsorption syn-
dromes, and hyperemesis are other examples of 
possible causes.40,41 We will discuss such causes 
in more detail in the second, forthcoming, part of 
this review.

Thiamine deficiency is often divided in two dif-
ferent disease entities, Wernicke-Korsakoff-
syndrome and beriberi. Beriberi has been 
categorized further according to organ involve-
ment into dry, wet, and gastrointestinal beriberi. 
As WE and beriberi overlap, it may be more accu-
rate to use thiamine deficiency as an umbrella 
term, to then be specified further to reflect the 
respective clinical problem (Table 2).42 In this 
way, six different thiamine deficiency states can 
be described, WE, KS, dry and wet beriberi, 
Shoshin beriberi, and thiamine-deficiency-associ-
ated lactic acidosis. Gastrointestinal beriberi is 
probably a manifestation of thiamine-deficiency-
mediated lactic acidosis. Thiamine deficiency 
occurs not only in adults; both beriberi and WE 
have been described in children.43,44

Dietary thiamine
The recommended daily thiamine intake depends 
on age, sex, and calorie and carbohydrate intake. 
As a rule of thumb, thiamine intake should be at 
least 0.4 mg/1000 kcal. The recommended dietary 

thiamine intake is 1.4 mg for adult males and 
1.0 mg for adult females. In pregnancy, daily thia-
mine requirements rise to 1.6–1.8 mg daily. In the 
United Kingdom (UK), the average daily intake 
from food sources is about 1.5 mg.51 If the daily 
thiamine intake falls below 0.2 mg/1000 kcal, uri-
nary excretion becomes low. Clinical symptoms 
of thiamine deficiency may then emerge within 
8 weeks.52 Thiamine can be found in many food-
stuffs including meat, wholegrain products, forti-
fied grain products, pulses, and some fruits. Yeast 
extracts contain most thiamine, and sugar is 
devoid of thiamine. As a general rule, unless forti-
fied, processed foods contain less thiamine than 
comparable non-processed food stuffs (Table 3). 
Of all meats, pork has the highest thiamine con-
tent. Food preparation involving heat can lead to 
a 20% thiamine loss.

Thiamine compounds
There are six known thiamine compounds, free 
thiamine, thiamine monophosphate (TMP), thia-
mine diphosphate (TDP), adenosine thiamine 
diphosphate (ATDP), thiamine triphosphate 
(TTP), and adenosine thiamine triphosphate 
(ATTP)5,55 (Figure 1).

TDP is also referred to as thiamine pyrophos-
phate (TPP). In humans, free thiamine, and 
TMP account for 5–15% of the total thiamine. 
TDP is the principal biologically active form, and 
accounts for 80–90% of total thiamine. TDP pre-
sents in high concentrations in skeletal muscle, 
liver, heart, kidneys, and brain. The remaining 
three components, TTP, ATTP, and ATDP, 
account for only 1% of total thiamine in humans.55 
Whole blood thiamine levels can vary significantly 
between populations (Table 4).

Approximately 75% of whole blood thiamine is 
stored in the erythrocytes, 15% in leukocytes, and 
10% in plasma.61 The compounds can be phos-
phorylated or dephosphorylated as required. The 
enzymes necessary are under genetic control 
(Table 5).

Free thiamine and TMP are the thiamine trans-
port compounds that deliver thiamine to and 
from the cells. TDP and TTP are the compounds 
that unfold the biological action. The different 
forms are constantly converted into each other to 
maintain thiamine availability.
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Table 1.  A brief history of thiamine.5–10

Year Milestone

As early as 640 In China and Japan, the term “kakkè” 脚気/かっけ is used to describe what later turns out to be beriberi.11

1873–1874 The Dutch naval surgeon Fredrik Johannes van Leent ascribes high mortality from beriberi among Indian crews to their diet, 
and reduces the incidence of beriberi from 60% to 7% by adding vegetables, meat, bacon, and butter.12

1875 The French surgeon and ophthalmologist Charles Jules Alphonse Gayet describes a case of diffuse encephalitis, later thought 
to have been due to thiamine deficiency.13

1876–1878 The German physician Carl Wernicke describes three cases of the hemorrhagic encephalopathy without being able to clarify 
the etiology.3

1884 The Japanese naval medical officer Takaki Kanehiro prevents beriberi effectively by enriching the white rice diet with meat and 
vegetables, assuming protein deficiency as cause.6

1887 The Russian physician Sergei Korsakoff describes cases of a dementia with anterograde amnesia without being able to clarify 
the etiology.14

1886 The Dutch government sends professor Cornelis Pekelharing and neurologist Cornelis Winkler to Jakarta (at that time Batavia, 
part of the Dutch East Indies) to investigate beriberi. They tentatively conclude that beriberi is of bacterial origin.15 They return 
home and leave their assistant Christiaan Eijkman to isolate the causative organism.

1890–1897 Eijkman conducts experiments in chicken and demonstrates that a diet of polished rice, not bacteria, is associated with a 
beriberi-like illness.16 He confirms the causative association of polished rice and beriberi in an observational study with Adolphe 
Vorderman in 279,623 prison inmates.17 He postulates the presence of an antidote for the disease in the silver skin of rice.

1901 Gerrit Grijns, successor to Eijkman in the Indonesian laboratory, concludes that there is rather a protective substance in rice, 
but even meat and vegetables, essential to maintain the function of the nervous system. “Partial starvation”, for example, 
absence of that micronutrient, which is destroyed by cooking, leads to beriberi.18

1906 Eijkman establishes that the protective substance is water-soluble.19

1910–1912 The Polish scientist Casimir Funk identifies an “antineuritic substance”, which he called beriberi “vitamine” (vita: life; amine: 
nitrogen containing compound).20

1920 The British biochemist Jack Drummond suggests the term vitamin (without “-e” and the distinction of vitamins by name of the 
alphabet.21

1926 The Dutch chemist Barend Jansen together with his colleague Willem Donath isolates pure vitamin B1.22

1929 Eijkman, jointly with Sir Frederick Hopkins, receives the Nobel Prize for Physiology or Medicine for the discovery of vitamins.23

1936 The American chemist Robert Williams synthesises thiamine and later licenses the production process to Merck.24

1937 Several European countries accept the name “aneurine” for vitamin B1. Williams suggests the name “thiamin”, derived from 
the Greek “theion” = sulfur and amine.25

1941 A. C. P. Campbell and Ritchie Russell at the Scottish Mental Hospital’s Laboratory in Edinburgh suggest vitamin B1 deficiency 
as a cause of Wernicke’s encephalopathy.10

1963 The Bread and Flour Regulations 1963 require the addition of vitamin B1 to non-wholegrain bread in Britain.26

1974 In collaboration with the local baker, general practitioner Max Kamien fortified the bread with thiamine, niacin and iron in a 
small town in the Australian outback, eliminating vitamin B deficiency signs in Aboriginal people.27 Thiamine fortification of 
flour becomes mandatory in Australia 1991.28

1999 Thiamine transporter 1 (SLC19A2) is cloned by several groups.29–32 Organic cation transporter (OCT) 3 is shown to have 
thiamine as substrate.30

2000 Thiamine transporter 2 (SLC19A3) is identified and characterized.33

2001 The reduced folate carrier (SLC19A1) is shown to transport phosphorylated thiamine compounds.34

2011 Prion proteins are shown to bind thiamine.35

2014 The human colonic thiamine pyrophosphate transporter (SLC44A4) is identified.36

OCT 1 is recognised as thiamine transporter in the liver.37

The role of multidrug and toxin extrusion proteins (MATE) and OCT 2 in renal excretion of thiamine is discovered.38

A putative thiamine transporter (SLC35F3) is characterized.39
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Thiamine metabolism
Mechanism of thiamine uptake and transport 
through the body has crucial implications for the 
understanding of the etiology of WE and treat-
ment rationale. Humans cannot synthesize thia-
mine but depend on two exogenous sources: 
dietary and bacterial thiamine.69 Transport of 
thiamine and conversion of various thiamine 
compounds into each other are under genetic 
control. These mechanisms require further clari-
fication (Table 4).

Thiamine actions and implications for 
deficiency states
Thiamine plays a central role in energy metabo-
lism. Thiamine is also implicated in the physiol-
ogy of neurotransmission.

Energy metabolism
TDP acts as an important cofactor in glucose, fatty 
acid, and protein metabolism, as well as adenosine 
triphosphate (ATP) generation. Thus, TDP is a 
critical cofactor for transketolase (TK), pyruvate 

dehydrogenase (PDHG), α-ketoglutarate dehydro-
genase (α-KGDH), branched chain α-keto acid 
dehydrogenase E1 (BCAKDH E1), and 2-hydroxy-
acyl CoA lyase 1 (HOACoL).5,70–76 These enzymes 
hold key roles in mitochondrial energy (ATP) gen-
eration in body and nerve cells, nucleic acid synthe-
sis, carbohydrate, fatty acid metabolism, and amino 
acid metabolism. If these enzymes do not function 
properly, energy metabolism becomes impaired and 
oxidative stress increases. At the same time, unde-
sirable compounds may accumulate if chemical 
reactions are re-routed. For instance, if α-KGDH is 
impaired, glutamate is produced instead of succinyl 
CoA. If PDHG is impaired, lactate is produced 
instead of acetyl CoA70 (Table 6, Figure 2).

Thiamine deficiency therefore disrupts energy 
metabolism and ATP production. α-KGDH 
and TK are two key enzymes in the pathophysi-
ology. Decreased α-KGDH activity can develop 
within 4 days of thiamine deficiency.1 Decreased 
α-KGDH activity results in increased oxidative 
stress, lactate acidosis, excitotoxicity, for 
instance through glutamate accumulation, 
inflammation and disturbed blood brain barrier 

Table 2.  Thiamine deficiency states.42,45–50

WE Korsakoff´s 
syndrome

Dry beriberi Wet beriberi Shoshin 
beriberi

Thiamine 
deficiency 
mediated 
lactic acidosis/
gastrointestinal 
beriberi

Organ system 
predominantly 
affected

Central nervous system Peripheral nervous 
system

Cardiovascular system Ubiquitous

Onset Acute Chronic Chronic Subacute Acute Acute

Symptoms 
classically 
described

Nystagmus, 
ophthalmoplegia, 
ataxia, confusion

Memory loss, 
anterograde 
and 
retrograde, 
amnesia, 
apathy

Symmetrical 
peripheral 
neuropathy with 
both sensory 
and motor 
impairments, 
mostly of the distal 
extremities

Hyperdynamic heart failure, 
oedema, ↓ peripheral 
vascular resistance, 
hypotonia, metabolic 
acidosis

Anorexia, nausea, 
vomiting and 
abdominal 
pain, Kussmaul 
breathing
↑ lactate

Etiology ↓ thiamine intake
↓ thiamine 
absorption
↑ thiamine 
elimination

As WE or as 
or sequel of 
WE without 
current 
thiamine 
deficiency

↓ thiamine intake ↓ thiamine 
intake +
↓ folate?

↓ thiamine 
intake +
↓ folate?

↓ thiamine intake
↓ thiamine 
absorption
↑ thiamine 
elimination

WE, Wernicke’s encephalopathy.
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(BBB) permeability, cerebral edema, and, ulti-
mately, neuronal death.71,79 Decreased TK can 
develop within 1 week of thiamine deficiency.1

Signal transmission
Thiamine phosphates have even non-enzymatic 
actions on neurotransmitters and hormones through 
second messengers. Whereas other B-vitamins acti-
vate the adenyl cyclase system, thiamine activates 
the guanyl cyclase system. cGMP is an important 
second messenger for peptide hormones and nitric 
oxide (NO), facilitating smooth muscle relaxation, 
mediating penile erection, regulating vascular and 
airway tone, peristalsis, and insulin secretion.5,75 
TDP also acts as a cofactor for PDGH and facili-
tates acetylcholine synthesis. Thiamine even modu-
lates choline neurotransmission non-enzymatically. 

This can be deducted from the observation that the 
metabolic thiamine antagonist oxythiamine can 
increase acetylcholine release.74,80 The role of TDP 
in the modulation of glutamate neurotransmission 
arises from its impact on α-KGDH. Thiamine may 
also regulate the activity on the astrocyte glutamate 
aspartate transporters.81 These transporters are 
under genetic control. Defects may result in insuf-
ficient clearance of glutamate and hence to an 
increase of interstitial glutamate. This could lead to 
hyperexcitability, neurotoxicity and cell death as 
possible consequences.81–83

Finally, thiamine may also modulate other neu-
rotransmitters such as serotonin.1 Ultimately, 
much of what we know is based on in vitro and 
animal experiments. Our understanding of thia-
mine function in the brain remains limited.55,74

Table 3.  Comparable foods of higher and lower thiamine content.53,54

Item Thiamine (mg/100 g) Item Thiamine (mg/100 g)

Higher thiamine contenta Lower thiamine contenta

Ham 0.80 Turkey slices 0.05

Pork chop, grilled, lean 0.78 Chicken breast, coated, baked 0.10

Bacon, streaky, fried 0.75 Pork sausages, grilled traces

Cornflakes fortified 0.60 Cornflakes unfortified traces

Peas, frozen 0.26 Peas, canned in water, reheated, 
drained

0.09

Bread, whole meal, average 0.25 Cakes from “healthy eating” ranges 0.06

Bread, white, average 0.24 Sponge cake, home made 0.08

Chapati, made without fat 0.23 Rice cakes 0.02

Peanuts, dry, roasted 0.18 Potatoes crisps, fried in sunflower oil 0.09

Potatoes, old, boiled 0.18 Potato chips, from fast food outlet 0.07

Spaghetti, dried, whole wheat, cooked 0.11 Spaghetti, dried, white, cooked 0.08

Rice, brown, wholegrain, cooked 0.11 Rice, long grain, boiled traces

Lentils, red, boiled 0.11 Chickpeas, canned in water, reheated, 
drained

0.05

Oranges 0.11 Apples 0.04

For comparison  

Yeast extract 4.10 Sugar 0.00

aEstimates based on several food samples in each category.
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The journey of thiamine through the body

Thiamine transport in and out of cells: general 
principles
For the human organism, thiamine is an extremely 
valuable substance due to its central role in many 
metabolic processes (Table 6). As thiamine cannot 
be synthesised by humans, it is crucial to secure a 
steady supply to the cell. This involves maximizing 
uptake and minimizing loss. In most cells, different 
systems of transporters are available to facilitate 
uptake into the cell and into the mitochondria 
(Table 7). The kidneys are fine-tuned to either 
reabsorb or excrete thiamine depending on the 
actual thiamine plasma concentration. A further 
mechanism of facilitating thiamine uptake into the 

cells may involve prion proteins (PrP).84 PrP are 
membrane-anchored proteins, particularly abun-
dant in neuronal cells in vertebrates. It has been 
shown that thiamine binds to PrP.35 The thiamine 
transporters are quickly saturated when extracel-
lular thiamine concentrations exceed the physio-
logical range. Thiamine transporter functions 
partly overlap. For instance, the reduced folate 
carrier (RFC/SLC19A1) can take over transport 
from Thiamine transporter 1 (ThTR-1). General 
cation-transporters, which are not specific to thia-
mine, can also transport thiamine at higher con-
centrations. Such include transporters belonging 
to the organic cation-transporter (OCT) and mul-
tidrug and toxin extrusion proteins (MATE) fam-
ily (Table 7). This partial overlap of thiamine 

Figure 1.  Thiamine compounds.
*In red blood cells.
#Thiamine phosphate esters are hydrolyzed by various phosphatases and nucleotide diphosphatases.
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transporters may be the reason why not all thia-
mine transporter deficiencies are associated with 
pathologies.

From food to enterocyte
Dietary thiamine exists mainly in phosphorylated 
forms. Exogenously acquired thiamine is thought to 
be first de-phosphorylated to free thiamine by gas-
trointestinal phosphatases.107 Free thiamine is then 
absorbed in the small intestine, preferentially in the 
jejunum. There are two transport mechanisms, 
active and passive (Figure 3). The active transport 
system involves ThTR-1 and ThTR-2.108 The pas-
sive transport is proportional to the thiamine con-
centration in the intestinal lumen.109 Where 
epithelial and endothelial linings are made up by 
tight junctions, only small molecules can pass 
through by simple passive diffusion. As thiamine is 
a relatively large molecule, its passive transport most 
likely occurs in the form of facilitated diffusion, along 

an electrochemical gradient via protein channels.110 
This suggests that, within limits, passive thiamine 
transport is a non-saturable process.109,111 Active 
and passive thiamine transport may operate 
simultaneously.112 The active transport follows a 
Michaelis–Menten kinetic and seems to be satu-
rated at a concentration of 2-2.5 µmol/l.113–115 As 
shown in lines of heterogenous human epithelial 
colorectal adenocarcinoma cells (Caco-2 cells), 
active transport has evolved to maximize thiamine 
uptake in scenarios of low availability.116 Animal 
experiments have shown that thiamine uptake in the 
small intestine can be increased dramatically during 
thiamine deficiency. However, during chronic alco-
hol use, thiamine uptake is reduced. In the presence 
of alcohol, expression of both ThTR-1 and ThTR-2 
diminished significantly.117

An alternative source of thiamine is bacterial. 
Bacteria flora in the large intestine may synthesize 
both free thiamine and TDP.36,103,104 Previously, 

Table 4.  Whole blood thiamine concentrations in four populations.56–60

n Sex Age range 
(year)

Free 
(nmol/l)

TMP 
(nmol/l)

TDP (nmol/l) TTP 
(nmol/l)

Total 
(nmol/l)

Ratio phosphorylated 
thiamine 
(TMP + TDP + TMP)/
free thiamine

Japana

509 M 21–80 7 (2–18) 17 (5–47) 124 (70–229) 0 (0–4) 150 (89–262) 22 (9–58)

460 F 18–70 6 (2–17) 16 (4–60) 114 (63–200) 0 (0–3) 139 (80–235) 22 (8–58)

Norway 1991b

15 M 32–54 33.4 (10.4) 10.9 (5.1) 165.0 (40.4) <2  

15 F 23–60 29.6 (10.0) 9.7 (2.3) 121 (29.6) <2  

The Netherlandsb

65 4.3 (1.9) 4.1 (1.6) 120 (17.5) <4  

  Belgiumb  

7 4 (3) 10 (4) 138 (33) 13 (4)  

  The 
Netherlandsc

 

98 115 (70–185)  

aMean (95% confidence interval).
bMean (standard deviation).
cMean (range)
F, female; M male, TDP, thiamine diphosphate; TMP, thiamine monophosphate; TTP, thiamine triphosphate.
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it has been assumed that this colonic thiamine 
cannot be used. Now, based on animal cell cul-
ture experiments, it has been suggested that 
microbiota generated TDP is taken up into the 
colonocytes by a human TDP transporter. At 
present it remains unclear how much colonic thi-
amine contributes to physiological functions of 
TDP across the body (Figure 3).36,69,104

From enterocyte to blood
In the enterocyte, as in any other cell, free thiamine 
can be phosphorylated directly to TDP. The 
enterocyte uses a part of this TDP for its own meta-
bolic needs. The rest is broken down to TMP and 
free thiamine. Free thiamine and TMP are then 
transported out of the cell into the plasma.64,112 
The release of thiamine into plasma has been 

Table 5.  Enzymes required for the conversion of thiamine compounds.1,55,62–66

HGNC 
approved gene 
symbol

Cytogenic 
location

Transporter/enzyme 
expressed

Reaction Magnesium 
requirement

Pathologies associated 
with genetic change

TPK1 protein 
network

7q35 Thiamine 
diphosphokinase/
Thiamine 
diphosphotransferase
EC 2.7.6.2

Free thiamine 
→ TDP

Divalent cations, 
best activation with 
Mg2+

Thiamine metabolism 
dysfunction syndrome 
5: onset of acute 
encephalopathic 
episodes in early 
childhood67

  Thiamine-diphosphate 
kinase
EC 2.7.4.15

TDP → TTP Mg2+ required by 
several animal 
organisms, but not 
shown for humans

 

AK1 9q34.11 Erythrocyte adenolate 
kinase
EC 2.7.4.3

TDP → TTP in 
red blood cells

Mg2+ required Defect associated with 
hemolytic anaemia68

THTPA protein 
network

14q11.2 Thiamine- 
triphosphatase/TTP 
Hydrolase
EC 3.6.1.28

TTP → TDP Mg2+ required  

ALPI 2q27.1
1p36.12

Alkaline phosphatase
EC 3.1.3.1

TDP → TMP
TMP → free 
thiamine

Intestine. Mg2+ used 
as a cofactor

 

Multiple Multiple Acid phosphatase
EC 3.1.3.2

TTP → TDP
TDP → TMP

Mg2+ used as a 
cofactor

 

Not available Not available Nucleoside-
triphosphate 
phosphatase/
unspecific diphosphate 
phosphohydrolase
EC 3.6.1.15

TDP → TMP Mg2+ not required  

Not available Not available Thiamine phosphate 
(mono) phosphatase
EC 3.1.3.100

TMP → free 
thiamine

Mg 2+ enhanced 
membrane-bound 
activity 1.7-fold, 
soluble enzyme 
independent of Mg 2+  
(based on animal 
experiments)

 

ALPI, alkaline phosphatase, intestinal; EC, Enzyme Commission; HGNC, HUGO Gene Nomenclature Committee; Mg2+, bivalent magnesium cation; 
TDP, thiamine diphosphate; THTPA, thiamine triphosphatase; TMP, thiamine monophosphate; TPK1, thiamine pyrophosphokinase; TTP, thiamine 
triphosphate.
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ascribed to ThTR-1,108 but other transporters may 
be involved. As an organic cation, thiamine can be 
transported by organic cation/antiport systems into 
the enterocyte.107 From there, organic cation trans-
porter proteins (OCT) 1 and 3 can transport thia-
mine into the blood.92,112 OCT 1 and 3 can take up 
thiamine in concentration ranges from 10 to 
500 µmol/l (Figure 4).112 This may be the mecha-
nism behind the passive thiamine transport at high 
concentrations. However, it remains currently 
unclear how far this extracellular “flooding” of cells 
with free thiamine leads to higher intracellular lev-
els of pharmacologically active phosphorylated thi-
amine forms. Alcohol can impair the active intestinal 
transport mechanism.69,117 However, alcohol does 
not seem to affect passive uptake of thiamine at high 
doses.114,118

From blood to tissue
Once in the plasma, free thiamine and TMP are dis-
tributed throughout the body. Phosphorylated thia-
mine is bound partly to plasma proteins.119 Both free 
thiamine and TMP can enter the cell. Free thiamine 
in the cationic form crosses the cell membrane with 
help of ThTR-1.108 The mechanism by which TMP 
crosses the cell membrane is not well described. RFC 
(SLC19A1) has been implicated (Table 4).86,120 
Once free thiamine enters the cell, it is phosphoryl-
ated to TDP directly without generation of TMP as 
an intermediary. The responsible enzyme is thiamine 
diphosphokinase, which catalyzes the following reac-
tion: free thiamine + ATP → TDP + AMP. A 
small part can be phosphorylated further to TTP. 
TTP can be dephosphorylated to TDP, TDP to 
TMP, and TMP to free thiamine (Figure 4).55,64

Figure 2.  Thiamine- and magnesium-dependent metabolic pathways.
Red arrows, thiamine- and magnesium-dependent reactions; black arrows, reactions not dependent on thiamine.
α-KGDH, α-ketoglutarate dehydrogenase; BCAKDH, branched chain α-keto acid dehydrogenase; F6P, d-fructose 
6-phosphate; G3P, d-glyceraldehyde 3-phosphate; G6P, d-glucose 6- phosphate; HOACol, 2-hydroxyacyl CoA lyase 1; PDHG, 
pyruvate dehydrogenase complex; TKL, transketolase.
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In a study of thiamine kinetics in six healthy 
volunteers,121 large increases in thiamine blood 
concentration after intravenous (i.v.) injection 
reflected increases in extracellular plasma con-
centrations. Only a little free thiamine was stored 
in the blood cells. Further, only a small amount 

was phosphorylated to TDP. At the same time, 
thiamine was eliminated seven times faster from 
the plasma than blood cells. These findings hint 
at thiamine phosphorylation rather than thiamine 
transport being the rate-limiting factor for TDP 
availability.

Figure 3.  From food to blood.
OCT, organic cation transporter; RFC, reduced folate carrier; T+, free thiamine; TDP, thiamine diphosphate; ThTR, thiamine 
transporter; TMP, thiamine monophosphate; TTP, thiamine triphosphate.
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From blood to brain
Data from small post-mortem studies indicate 
brain thiamine concentrations between 25.1 and 
32.5–36.2 pmol/mg protein.58,122 These are lower 
concentrations than reported in rodents or other 
primates. TDP is by far the most prominent 
compound. The above concentrations translate 
to 283 nmol thiamine/100 g fresh brain tissue.55 
Standard textbooks report “thiamine” concen-
trations in the brain between 0.14 mg and 
0.44 mg/100 g fresh brain tissue.123,124 However, 
these data are not referenced. For an average 
brain of 1300 g, this would amount to 1.82–5.72 g 
or 5.6–17.5 µmol. About 2% of all available thia-
mine is transported into the brain.117 As any 
other solute, thiamine cannot freely enter the 
brain. Instead, all solutes need to cross either the 
BBB or the blood-cerebrospinal fluid barrier 

(BCSFB).120 The BBB is the barrier between 
cerebral blood vessels and brain tissues. The 
BCSFB is the barrier between the blood and the 
CSF on the one hand and the CSF and brain tis-
sues on the other. The choroid plexus forms the 
interface between the blood/CSF component. 
The arachnoid membrane forms the interface 
between the CSF/brain tissue component.110,125 
Within the brain, there is no barrier between the 
extracellular space and the CSF.110,126 Substance 
transport over the BCSFB is not thought to con-
tribute relevantly to the metabolic needs of the 
brain.127

The anatomical structure of the BBB with tight 
cellular junctions limits the possibility of thia-
mine passing into the brain by simple passive 
diffusion. Indeed, has it been suggested that, 

Figure 4.  From blood to cell.
α-KGDH, α-ketoglutarate dehydrogenase; BCAKDH, branched chain α-keto acid dehydrogenase; HOACol, 2-hydroxyacyl CoA 
lyase 1; OCT, organic cation transporter; PDHG, pyruvate dehydrogenase; RFC, reduced folate carrier; T+, free thiamine; 
TDP, thiamine diphosphate; ThTR, thiamine transporter; TK, thiamine kinase; TMP, thiamine monophosphate; TPC, 
mitochondrial thiamine pyrophosphate carrier; TTP, thiamine triphosphate.
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“normally,” less than 10% of B vitamins is 
transferred into the brain by simple passive dif-
fusion.128 How exactly thiamine enters the brain 
remains unclear. The BBB consists of vascular 
endothelium, pericytes, and astrocyte end-feet. 
The space between endothelial cells is rendered 
impermeable by tight junctions. Therefore, con-
trary to permeable endothelial cells in other 
parts of the body, substances cannot by-pass the 
endothelial cells in the brain. Instead, they have 
to pass through the endothelial cells. Like neu-
rons and glial cells, BBB-forming cells have spe-
cific solute carriers.129 Free thiamine seems to 
enter the brain via active transport, most likely 
involving ThTR-2. The transport system is half-
saturated at normal plasma concentration of 
0.1–0.3 µmol/l. Lack of the other major thia-
mine transporter, ThTR-1, leads to thiamine-
responsive megaloblastic anaemia syndrome but 
not to WE. Therefore, ThTR-1 may not be 
essential for thiamine uptake into the brain.120 
Parallel to the active carrier-mediated process, a 
non-saturable process also exists at higher 

concentrations.111,130,131 Thiamine may also be 
taken up passively via facilitated diffusion.120,132

TMP may possibly enter the brain via active 
transport involving the reduced folate carrier.120 
This transport system is half-saturated at normal 
plasma concentration of 25 µmol/l. Overall, there 
are about 10 µmol thiamine in the brain. The rate 
of thiamine turnover in the brain is about 60–
100% per day. This suggests that thiamine home-
ostasis in the brain is managed tightly to render a 
steady state between thiamine entering and leav-
ing the brain.120 Thus, administration of large 
amounts of thiamine for medicinal purposes may 
not necessarily lead to increased thiamine con-
centrations in the brain.56,110 An animal experi-
ment reported in 1968 supports this assumption. 
Rats fed a thiamine-deficient diet developed overt 
encephalopathy, in which thiamine brain concen-
tration fell to less that 20% of normal. Increasing 
thiamine to only 26% of normal concentration 
reversed symptoms to an essentially normal neu-
rologic state.133 In humans, reversibility of 

Figure 5.  From blood to urine or urine to blood.
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symptoms is variable. Prompt treatment can 
reverse symptoms as long permanent damage and 
cell death has not occurred.2,71

Body stores
The body can store about 30 mg of thiamine.70,74 
Again, most of this can be expected to be intracel-
lular in the form of TDP. The concentrations are 
highest in heart, skin, kidneys, adipose tissue, 
lung, and colon.134 It remains unclear how long 
these stores last in circumstances of thiamine 
deficiency. One study investigated the urinary 
excretion of thiamine in eight young men. These 
consumed a 2800 kcal diet that provided 400 g of 
carbohydrates and 0.11–0.18 mg thiamine a day. 
This corresponded to 10% of the recommended 
nutritional intake (RNI) of thiamine. Urine thia-
mine decreased to <50 µg a day within 6 days and 
became undetectable on the 18th day of thiamine 
depletion.135 Another study of three volunteers 
found a half-time excretion for thiamine of 9.5, 
13, and 18.5 days.136 These studies suggest that 

thiamine depletion may occur within approxi-
mately 2-3 weeks of thiamine deficiency.

Deactivation and metabolism
Thiamine can be broken down by two thiami-
nases: type I and II. These cleave thiamine into its 
pyrimidine and thiazole moieties.137 In humans, 
thiaminase activity is negligible under normal con-
ditions. However, thiamine deficiency can occur 
when thiaminase-containing foods are ingested 
excessively or not processed properly. Thiaminase I 
is found in fish, shellfish, ferns, and some bacteria. 
Thiaminase II is found in some bacteria.138 
Thiaminases are usually heat-labile; they can be 
destroyed through cooking.70 Thiaminase I in nar-
doo (Marsilea drummondii), an Australian fern 
can, however, withstand high temperatures. One 
historical account of beriberi due to thiaminase 
poisoning stems from the Burks and Wills expedi-
tion to cross Australia from coast to coast from 
1860 to 1861. Of the four participating European 
men, only one survived. During their journey, the 

Figure 6.  Renal regulation of thiamine.
hMATE, human multidrug and toxin extrusion protein; OCT, organic cation transporter; RFC, reduced folate carrier; T+, free 
thiamine; TDP, thiamine diphosphate; ThTR, thiamine transporter; TMP, thiamine monophosphate.

https://journals.sagepub.com/home/tpp
http://tpp.sagepub.com


Therapeutic Advances in Psychopharmacology 10

16	 journals.sagepub.com/home/tpp

men began eating nardoo-based flour, preparing it 
the European way instead of the Aborigine way. It 
is speculated that they did not soak the fern suffi-
ciently long in water to diminish the activity of 
nardoo thiaminase 1.139

Polyhydroxyphenols, caffeic acid, phenols, flavo-
noids, and tannins, can also serve as anti-thiamine 
factors. Such polyhydroxyphenols are found, for 
instance, in coffee, tea, betel nuts, blueberries, 
blackcurrants, Brussels sprouts, and red cabbage. 
They destroy thiamine by an oxidative process 
transforming thiamine to non-absorbable thia-
mine disulfide.140 Polyhydroxyphenols are heat-
stable components and cannot be destroyed 
through cooking.70 Therefore, excessive ingestion 
can lead to thiamine deficiency.141

Recycling and elimination in the kidney
In humans, a multitude of metabolites have been 
identified by radioactive labelling of the pyrimi-
dine or thiazole moiety of thiamine.136 Studies in 
rats demonstrated up to 22 different thiamine 
metabolites identifiable in the urine.142–144 The 
kidneys can largely adapt their handling of free 
thiamine to the current plasma concentration 
(Figure 5). Therefore, free thiamine is eliminated 
or reabsorbed renally, depending on thiamine sta-
tus. However, thiamine metabolites cannot be 
reabsorbed in the kidney. Paradoxically, the 
amount of metabolites excreted is not decreased 
in a state of thiamine deficiency.135

In the glomerulus, thiamine is filtrated freely, like 
any other small solute. Glomerularly filtrated thia-
mine is then processed in the proximal tubule. 
Thiamine stored in blood cells or bound to protein 
cannot be filtrated. Data on plasma protein bind-
ing is again conflicting. Thom et  al. found that, 
under physiological conditions, up to 30% of 
plasma thiamine may be bound to albumin (10% 
TMP, 20% TDP).119 These thiamine compounds 
may bind to albumin via the phosphate moiety of 
the molecule. At thiamine concentrations over 
119.5 µmol/l, albumin binding decreases to 2%. 
Weber et al., however, suggested that plasma thia-
mine was not bound to protein.145

Under physiological conditions, up to a concentra-
tion of 200 nmol/l, thiamine is reabsorbed to mini-
mize excretion. Phosphorylated thiamine, mostly in 
the form of TMP, is dephosphorylated to free thia-
mine in the tubule.145 ThTR-1, ThTR-2, and 
OCT1, expressed in the brush border membrane 

mediate thiamine uptake from urine into the tubu-
lar cells. ThTR-1 as well as OCT2 and 3 in the 
basolateral membrane mediate thiamine uptake 
from tubular cells into the blood. ThTR transport-
ers have a much higher affinity than OCT. They are 
also saturated at lower concentrations. Principally, 
all transporters are bidirectional.38,85,146–148

In thiamine deficient states, thiamine transporters 
are upregulated.149 Ziporin et al. showed that uri-
nary thiamine excretion could decrease to unde-
tectable levels.135

In states of thiamine excess, for example, achieved 
through pharmacological dosing, thiamine is elimi-
nated completely by the kidneys.145 Elimination is 
increased by switching from reabsorption to active 
secretion. In that case, thiamine that has not been 
filtrated in the glomerulus is excreted via the renal 
tubular cells. Thiamine directly inhibits ThTR-1 
mediated uptake.30 In such circumstances, the 
ThTR mediated pathway may be reversed from 
thiamine uptake to secretion.147 Additionally, the 
kidneys can eliminate thiamine through two types 
of cation transporters: OCTs and multidrug and 
toxin extrusion proteins (MATEs). Thiamine 
enters the renal tubular cells from the blood through 
OCT 1 and 2 located in the basolateral mem-
brane.148 From there, thiamine is excreted across 
the brush border membrane into the urine through 
MATE1 and MATE2-k.38,150–152 This mechanism 
can lead to complete plasma thiamine elimination 
from all the blood passing through the kidneys 
(renal blood flow). The elimination amounts to five 
times the glomerular filtration rate (Figure 6).145

Magnesium as cofactor for thiamine
Magnesium is an alkaline earth metal with an 
atomic weight of 24.31. In the body, magnesium 
occurs mostly ionized as the bivalent cation Mg2+. 
Mg2+ is the fourth most abundant cation in the 
body after sodium, potassium, and calcium, and 
the second most abundant intracellular cation after 
potassium.153–155 Mg2+ is a cofactor to more than 
600 enzymatic reactions.156 Mg2+ is implicated in 
the energy metabolism of macronutrients, oxidative 
phosphorylation, protein and nucleic acid synthe-
sis, neuro-muscular signal conduction, and regula-
tion of cell membrane permeability.154,155 Despite its 
crucial contribution to physiology, magnesium is 
relatively under-researched compared with other 
nutrients, such iron or calcium. Therefore, clini-
cians may be much less vigilant to possible states of 
magnesium deficiency.156 Part of the problem is 
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that magnesium deficiency is difficult to assess by a 
simple blood test; more than 99% magnesium is 
intracellular.154,157

Significance of magnesium for thiamine 
function
A significance of magnesium for alcohol-associ-
ated WE was first suggested in 1964.158 Along 
with thiamine, magnesium has since turned out to 
be an essential cofactor to several key metabolic 
enzymes (Table 5) that govern glucose, fatty acid, 
and protein metabolism as well as ATP genera-
tion. Magnesium is also required as cofactor for 
thiamine transport and conversion of the various 
thiamine compounds into each other (Table 6). 
Without magnesium, thiamine cannot function 
properly. This implies that magnesium deficiency 
can impair thiamine activity. But we do not know 
how substantial magnesium deficiency has to 
become to trigger clinical symptoms of thiamine 
deficiency (cf. magnesium deficiency below).

Dietary magnesium
Recommendations for daily intake depend on age 
and sex. They vary somewhat internationally. In 
the UK, the recommended daily magnesium 
intake is 300 mg for adult males and 270 mg for 
adult females.51 In the United States (US), the rec-
ommended daily intake is slightly higher, 420 mg 
for men and 320 mg for women aged between 31 
and 50 years. No extra magnesium is required dur-
ing pregnancy. However, an additional 50 mg per 
day is required for women who breastfeed to com-
pensate for magnesium losses in breast milk.53 
Magnesium is found in nearly all foods. As a cen-
tral component of chlorophyll, magnesium is par-
ticularly common in leafy vegetables. Whole grain 
cereals, nuts, and yeast extracts are also rich 
sources of magnesium.51,53,157

Magnesium metabolism
Mg2+ absorption and excretion depend on nutri-
tional uptake, intestinal absorption, and renal 
capacity for reabsorption. Magnesium can be 
taken up anywhere across the intestine. It has been 
suggested that the duodenum takes up 11% of all 
the magnesium absorbed, the jejunum 22%, the 
ilium 56%, and the colon 11%.157 Of all absorbed 
Mg2+, between 20% and 70% are excreted again 
in the feces.156 The remainder is distributed 
throughout the body. About 50–60% are stored in 
the bone, 20–30% in muscles and 20–25% in other 

organs. An average adult stores about 24 g Mg2+ in 
the body. Only 0.8% of magnesium is found in the 
blood, 0.3% in serum, and 0.5% in erythrocytes. 
There is a constant exchange between Mg2+ stored 
and Mg2+ in the blood. The kidney can filtrate 
about 10% of bodily Mg2+, corresponding to a 
renal filtration rate of 2.4 g/day. Between 5% and 
70% can, however, be reabsorbed and re-entered 
into the redistribution cycle.153,156,157

Magnesium deficiency
Magnesium deficiency may manifest itself in neu-
rological symptoms, such as neuromuscular 
hyperexcitability and weakness. Magnesium defi-
ciency is also associated with electrocardiographic 
(ECG) changes and arrhythmias, hypoparathy-
roidism, and vitamin D deficiency. There are also 
biochemical changes, including hypocalcaemia, 
hypokalaemia, and metabolic alkalosis.159,160 
However, unless severe, symptoms of magnesium 
deficiency can be difficult to spot. Normal magne-
sium serum concentration lies in a range from 0.7 
to 1.0 mmol/l. Magnesium deficiency may occur 
when the serum magnesium concentration falls 
below 0.66 mmol/l. Yet, clinical symptoms may 
become observable only at levels below 
0.5 mmol/l.161 As magnesium is over 99% intracel-
lular, a normal magnesium serum concentration 
does not exclude deficiency. Such normo-magne-
semic magnesium deficiency may occur in patients 
with chronic harmful use of alcohol.162

Magnesium deficiency can occur in three con-
texts: (a) decreased uptake or absorption, (b) 
increased gastrointestinal or renal elimination, or 
(c) shift from the extracellular to the intracellular 
space.163,164 Reduced magnesium uptake can 
occur in the context of total nutritional defi-
ciency. It can also occur with one-sided nutrition 
with low magnesium content. Inflammatory 
bowel diseases and treatment with proton pump 
inhibitors such as omeprazole are associated with 
reduced magnesium absorption. Increased gas-
trointestinal magnesium elimination occurs for 
instance in the context of excessive vomiting or 
laxative abuse. Renal magnesium wasting can 
also occur in the context of treatment with loop 
or thiazide diuretics, cisplatin, amphotericin, 
aminoglycosides, foscarnet, cyclosporine, and 
tacrolimus.155,164 Increased renal elimination 
occurs when tubular reabsorption becomes 
impaired, for instance in the context of osmotic 
diuresis or some renal diseases. Such include 
interstitial nephritis, Gitelman, Bartter, and 

https://journals.sagepub.com/home/tpp
http://tpp.sagepub.com


Therapeutic Advances in Psychopharmacology 10

18	 journals.sagepub.com/home/tpp

Fanconi syndromes. Shifts from extracellular to 
intracellular space occur in settings of refeeding, 
treatment of diabetic ketoacidosis or other meta-
bolic acidosis, hungry bone syndrome or pancrea-
titis. Alcohol dependency is associated with 
several risk factors for magnesium deficiency, 
including poor nutrition, gastrointestinal prob-
lems associated with proton pump inhibitor use 
and reduced absorption, increased diuresis, 
excessive urinary excretion, and vomiting.160,165

Therapeutic implications
Thiamine is a key factor in human energy metabo-
lism and an important contributor to neurotransmit-
ter functions. These fundamental roles explain why 
thiamine deficiency can lead to devastating conse-
quences such as WE. Thiamine stores in humans are 
limited, and thiamine homeostasis depends on 
external thiamine sources. For many thiamine-
mediated reactions, even magnesium is required as a 
cofactor. In spite of the enormous significance of 
thiamine and its dependency on magnesium, sur-
prisingly few studies have examined strategies for 
prophylaxis and treatment of deficiency states. In the 
absence of clinical evidence, a thorough understand-
ing of the basic science behind thiamine can assist in 
formulating treatment strategies, with a rationale 
resting on pharmacodynamic and pharmacokinetic 
concepts. In this first part of this review, we have 
explored the basic science behind thiamine. In the 
forthcoming second part of this review, we will 
examine current guidelines for prophylaxis and 
treatment of WE in light of our understanding of the 
basic science behind thiamine.
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